Certif	icate	ii
Decla	ration by the Candidate	iii
Copy	right Transfer Certificate	iv
Ackno	owledgements	V
Conte	_	viii
List o	f Figures	xii
	f Tables	xvii
Preface		xix
Chapto	er 1: Introduction: A bibliographic review	24-70
1.1 Ove	erview of Next Generation	25
1.2 Ne	ed of sustainable energy sources	26
1.3. Th	in Film Technology	30
1.4 Wh	y Thin Films?	35
1.5 App	plication of Thin Films	38
	1.5.1 Optoelectronic and Device applications	39
	1.5.2 Photodiodes	40
	1.5.3 Solar cells	40
	1.5.4 Light Emitting Diodes (LED's)	41
	1.5.5 Laser Diodes	41
	1.5.6 Optical Fibers	41
1.6	II-VI compound semiconductors	42
1.7	Cadmium and Molybdenum based thin film semiconductors	43
	Thin Film Solar cell: Need, current status and scope	46
1.9	Light absorbing material	50
1.10	Window layer in solar cell	51
1.11	Buffer layer in solar cell	52
1.12	Back contact	53
1.13	Review of literature and importance of the study	54
1.14	Objectives/Scope of present work	64
1.15	Outline of Thesis	66
Chapto	er 2: Thin film growth and Characterization Techniques	71-124
2.1 Th	nin film growth techniques	73
	2.1.1 Vacuum Evaporation	76
	2.1.2 Pulse laser deposition	77
	2.1.3 Chemical Vapor deposition	77

2.1.4 Thermal Evaporation	78
2.1.5 E-beam Evaporation	79
2.1.6 Sputtering	80
2.2 Experimental characterization tools	86
2.2.1 X-Ray diffractometer (XRD)	87
2.2.2 Microscopic Techniques	93
2.2.2.1 Electron Microscopy Scanning (SEM)	94
2.2.2.2 Interpretation of SEM Images	100
2.2.2.3 Atomic Force Microscopy (AFM)	102
2.2.3 Energy Dispersive X-Ray Spectroscopy	110
2.2.4 Electrical Conductivity Measurement	112
2.2.4.1 Four Point Probe	112
2.2.5 Optical Properties Measurement	114
2.2.5.1 UV-VIS spectroscopy	114
2.2.5.2 Fourier Transform infrared spectroscopy	116
2.2.5.3 Raman spectroscopy	118
2.2.5.4 Optical bandgap determination	120
2.3 Theoretical band structure calculations	123
	ered
Graphene-CdS bilayer	125-142
Graphene-CdS bilayer 3.1 Introduction	
	125-142
3.1 Introduction	125-142 127
3.1 Introduction3.2 Methods and Characterization details	125-142 127 129
3.1 Introduction3.2 Methods and Characterization details3.3 Results and discussions	125-142 127 129 131
 3.1 Introduction 3.2 Methods and Characterization details 3.3 Results and discussions 3.3.1 Morphological studies by FESEM 	125-142 127 129 131 131
 3.1 Introduction 3.2 Methods and Characterization details 3.3 Results and discussions 3.3.1 Morphological studies by FESEM 3.3.2 X-Ray diffraction Analysis 	125-142 127 129 131 131 132
 3.1 Introduction 3.2 Methods and Characterization details 3.3 Results and discussions 3.3.1 Morphological studies by FESEM 3.3.2 X-Ray diffraction Analysis 3.3.3 UV-Vis analysis 	125-142 127 129 131 131 132 133
 3.1 Introduction 3.2 Methods and Characterization details 3.3 Results and discussions 3.3.1 Morphological studies by FESEM 3.3.2 X-Ray diffraction Analysis 3.3.3 UV-Vis analysis 3.3.4 Raman Spectral Analysis 	125-142 127 129 131 131 132 133 135
 3.1 Introduction 3.2 Methods and Characterization details 3.3 Results and discussions 3.3.1 Morphological studies by FESEM 3.3.2 X-Ray diffraction Analysis 3.3.3 UV-Vis analysis 3.3.4 Raman Spectral Analysis 3.3.5 FTIR Analysis 	125-142 127 129 131 131 132 133 135 136
3.1 Introduction 3.2 Methods and Characterization details 3.3 Results and discussions 3.3.1 Morphological studies by FESEM 3.3.2 X-Ray diffraction Analysis 3.3.3 UV-Vis analysis 3.3.4 Raman Spectral Analysis 3.3.5 FTIR Analysis 3.3.6 Electrical Analysis	125-142 127 129 131 131 132 133 135 136 138
 3.1 Introduction 3.2 Methods and Characterization details 3.3 Results and discussions 3.3.1 Morphological studies by FESEM 3.3.2 X-Ray diffraction Analysis 3.3.3 UV-Vis analysis 3.3.4 Raman Spectral Analysis 3.3.5 FTIR Analysis 3.3.6 Electrical Analysis 3.3.7 Mechanism and Theorem Section 	125-142 127 129 131 131 132 133 135 136 138 140 141
 3.1 Introduction 3.2 Methods and Characterization details 3.3 Results and discussions 3.3.1 Morphological studies by FESEM 3.3.2 X-Ray diffraction Analysis 3.3.3 UV-Vis analysis 3.3.4 Raman Spectral Analysis 3.3.5 FTIR Analysis 3.3.6 Electrical Analysis 3.3.7 Mechanism and Theorem Section 3.4 Conclusion 	125-142 127 129 131 131 132 133 135 136 138 140 141
3.1 Introduction 3.2 Methods and Characterization details 3.3 Results and discussions 3.3.1 Morphological studies by FESEM 3.3.2 X-Ray diffraction Analysis 3.3.3 UV-Vis analysis 3.3.4 Raman Spectral Analysis 3.3.5 FTIR Analysis 3.3.6 Electrical Analysis 3.3.7 Mechanism and Theorem Section 3.4 Conclusion Chapter 4: Investigating Optical, Structural and Morphological Propertic	125-142 127 129 131 131 132 133 135 136 138 140 141 ies of
3.1 Introduction 3.2 Methods and Characterization details 3.3 Results and discussions 3.3.1 Morphological studies by FESEM 3.3.2 X-Ray diffraction Analysis 3.3.3 UV-Vis analysis 3.3.4 Raman Spectral Analysis 3.3.5 FTIR Analysis 3.3.6 Electrical Analysis 3.3.7 Mechanism and Theorem Section 3.4 Conclusion Chapter 4: Investigating Optical, Structural and Morphological Propertical Polycrystalline CdTe Thin-film Deposited by RF Magnetron Sputtering	125-142 127 129 131 131 132 133 135 136 138 140 141 ies of 143-163

4.3.1 XRD Analysis	148
4.3.2 Morphological and thickness Analysis (FESEM and AFM)	150
4.3.3 UV-Vis spectroscopy analysis	152
4.3.4 Structural and Electronic properties	154
4.3.5 Optical properties	159
4.4 Conclusion	162
1. 1 Conclusion	102
Chapter 5: Investigation on the effect of Process Parameter on physical p	oroperties of
RF sputtered Mo-Ni thin films as a back contact thin-film solar cell	164-179
5.1 Introduction	165
5.2 Materials And Methods	166
5.3 Results and Discussion	168
5.3.1 Influence of RF power	168
5.3.1.1 Structural Studies	168
5.3.1.2 Surface Morphological Analysis	170
5.3.1.3 Electrical Analysis	173
5.3.1.4 Optical properties	173
5.3.2 Influence of deposition time	174
5.3.2.1 Structural Analysis	174
5.3.2.2 Surface Morphological Analysis	175
5.3.2.3 Electrical Properties	177
5.3.34 Optical Properties	178
5.4 Conclusion	179
Chapter 6: Investigations on tailoring physical properties of RF magnetr	on
sputtered Cadmium Sulphide (CdS) thin films	180-197
6.1 Introduction	181
6.2 Materials and Methods	186
6.3 Results and Discussion	188
6.3.1 Structural Analysis	188
6.3.2 Surface Morphological	191
6.3.3 Optical Analysis	193
6.4 Conclusion	196
Chapter 7: Observation Structural and Morphological Control of Magnetro	on
Sputtered Molybdenum Oxide thin Films	198-210
7.1 Introduction	199
7.2 Methods and Characterization	201
7.3 Results and Discussion	202
7.3.1 Structural Studies	202

7.3.2 Morphological Analysis	204
7.3.3 Electrical Analysis	207
7.4 Conclusion	209
Chapter 8: Summary and future perspectives	212-215
8.1 Summary	213
8.2 Future perspectives	215
References	217-241
List of Publications	242
Schools / Meetings / Workshops / Conference Attended	243-244

Figure 1.1 Images of thin films.	36
Figure 1.2 Applications of II-VI wide-band gap compound semiconductors.	43
Figure 2.1 (a) Instrumentation picture of reactive RF magnetron spur schematic diagram of ion ejection from target and coating.	ttering (b)
Figure 2.2 Basic setup of RF sputtering method.	85
Figure 2.3 (a) Instrumentation picture of X-Ray Diffraction (b) schematic diagraydiffraction working principle.	ram of X-
Figure 2.4 Schematic showing main electron interactions with the thin specime information available by analytical microscopy.	en and the
	electron
microscope (b) Cross-section view of FESEM	95
Figure 2.6 The intermittent-contact mode.	105
Figure 2.7 Beam deflection systems, using a laser and photodetector to meas	ure the
beam position.	106
Figure 2.8 The parts of an approach-retraction cycle of the tip.	107
Figure 2.9 AFM - non-contact mode.	108
Figure 2.10 (a) Instrumentation picture of Energy Dispersive X-ray spectrosc	opy (b)
schematicdiagram of electron working principle.	111
Figure 2.11 Four-point probe techniques for sheet resistance measurement	113
Figure 2.12 Schematic diagram of the incident, reflected, and transmitted beams.	115
Figure 2.13 Schematic Diagram of Double Beam UV-Vis Spectrophotometer.	116
Figure 2.14 Schematic diagram of FTIR.	117

schematic diagram of FTIR working principle.	118	
Figure 2.16 (a) Instrumentation picture of Raman spectroscopy (b) sche	ematic	
diagram of Raman working principle.	120	
Figure 2.17 Partial reflection, absorption, and transmission of light in a thin film.	122	
Figure 2.18: Variation of $(\alpha h \nu)^2$ as a function of $h\nu$	122	
Figure 3.1. Graphene dispersion stages on the substrate.	129	
Figure 3.2 . Address layer of cadmium sulfide sample grown on graphene.	130	
Figure 3.3 FESEM images of (a ₂ ,a ₁) Graphene/Si, (b ₂ ,b ₁) Graphene/CdS/Si	132	
Figure 3.4 XRD results of pristine graphene, CdS/Graphene nanocomposite, and	d pure	
CdS NPs.	134	
Figure 3.5 (a) UV-VIS spectra (b) UV-Vis reflectance spectra graphene/Si,	CdS/Si,	
CdS/graphene/Si hybrid	134	
Figure 3.6. Raman spectra of (a) graphene and (b) CdS/Graphene hybrid material.	136	
Figure 3.7 FTIR spectra of graphene/Si and CdS/Graphene/Si	137	
Figure 3.8 Current-voltage (I-V) characteristics of CdS/Si, graphene/S	i and	
CdS/graphene/Si.	139	
Figure 3.9. Schematic diagram of the charge separation and transfer in the G	raphene-	
cadmium sulfide (Gr–CdS) system under visible light.	140	
Figure 4.1. Schematic diagram of indigenously designed locally fabricated RF m	agnetron	
sputtering system	146	
Figure 4.2: XRD spectra of the CdTe films before and after annealing (to	p shows	
different N_2 concentrations of 1, 2, and 3% and bottom show different RF powers of 50,		
100, and 150 W).	149	

- **Figure 4.3**: AFM images of as-deposited and annealed CdTe thin films (top shows different N₂ concentrations of 1, 2, and 3% and bottom show different RF powers of 50, 100, and 150 W).
- Figure 4.4: FESEM images of CdTe films after annealing (top shows different N_2 concentrations of 1, 2, and 3% and bottom show different RF powers of 50, 100, and 150 W).
- Figure 4.5:a.) UV-Vis optical absorption spectra (left) b.) optical band gap relation plotted between $(ahv)^2$ versus hv (right) for CdTe films after annealing (top shows different N_2 concentrations of 1, 2, and 3% and bottom show different RF powers of 50, 100 and 150 W).
- **Figure 4.6:** The Energy vs Volume curve of the CdTe using GGA approximation. 155
- **Figure 4.7: (a)** The total DOS of CdTe for GGA and MBJ approximations. (b) and (c) represents PDOS of the CdTe orbitals based GGA for Cd and Te respectively.
- **Figure 4.8:** (a) The CdTe Band structure for Fermi area levels. (b-e) the level of the (a) part with the 1st and 2nd derivation diagrams.
- **Figure 4.9:** (a) , (b) The Real & Imaginary parts of dielectric functions (c) Absorption curve, (d) Optical conductivity and (e) Eloss diagram of CdTe versus photon energy. 162
- **Figure 5.1:** Schematic of RF magnetron sputtering
- **Figure 5.2**: XRD spectra for the samples deposited at various RF powers of a) 100 W, b) 150 W and c) 200 W.
- **Figure 5.3:** AFM images (3D and 2D) of Mo-Ni thin films deposited at various RF powers of 100, 150, and 200 W.
- **Figure 5.4:** FESEM images of Mo-Ni thin films deposited at different RF power: a) 100 W, b) 150 W and c) 200 W.

- Figure 5.5: Reflectance spectra of Mo-Ni thin films deposited at different RF power. 174
- **Figure 5.6**: XRD pattern for Mo-Ni thin films deposited at various deposition times: a) 15min, b) 30min and c) 45min.
- **Figure 5.7**: AFM images of Mo-Ni thin films deposited at different deposition times and constant RF power.
- **Figure 5.8:** FESEM images of Mo-Ni films deposited at various deposition times: a) 15 min, b) 30 min and c) 45 min.
- **Figure 5.9**: Reflectance of the Mo-Ni thin films deposited at different deposition times: a) 15min, b) 30min and c) 45min.
- Figure 6.1: XRD pattern of sputtered CdS thin films deposited at different N_2 concentrations in Ar/N_2 mixture.
- **Figure 6.2**: FESEM images of sputtered CdS thin films at different N₂ concentrations in Ar/N₂ mixture.
- **Figure 6.3**: AFM images of CdS thin films sputtered at different N₂ concentrations in Ar/ N₂ mixture.
- Figure 6.4: Transmission spectra for CdS thin films deposited by sputtering at different N_2 concentrations in Ar/ N_2 mixture.
- **Figure 6.5**: Plot of $(\alpha h \nu)^2$ vs. photon energy $(h \nu)$ for CdS thin films deposited in pure Ar and with the variation of N_2 concentration in Ar/ N_2 mixture.
- **Figure 7.1:** Schematics of (a) RF magnetron sputtering, (b) furnace and experimental conditions.
- **Figure 7.2:** XRD spectra of as-deposited Mo and Annealed MoO_x Films at 300, 400 and 500 °C

Figure 7.3: FESEM images of (a) as-deposited Mo, (b) annealed at 300°C, (c)	annealed a	at
$400^{\circ} C$ and (d) annealed at $500~^{\circ} C$ MoO $_x$ films (inset $3 \mu m$ scale)	205	
Figure 7.4: 2D and 3D AFM images of (a) as-deposited Mo, (b) annealed at annealed at 400°C and (d) annealed at 500 °C MoO _x films	300°C, (d	e)
Figure 7.5: Raman spectra of (a) MoO ₂ and (b) MoO ₃ film	209	

List of Tables

Table 1.1 a brief introduction of thin-film synthesis techniques.	35
Table 1.2 The development of thin-film technology.	37
Table 1.3 Applications of Thin-Film in wide range of area.	39
Table 2.1: Thin-film growth processes classified by physical and chemical techniques.	75
Table 3.1. The table of experiment conditions and parameters.	130
Table 3.2: Variation of sheet Resistivity of CdS/Si, Graphene/Si, and CdS/Graphene/S	Si thin
films.	139
Table 4.1: RMS, average roughness, and bandgap values for as-deposited annealed C	dTe
thin films with different N_2 concentrations of 1, 2, and 3% and RF powers of (50, 100,	
and 150 W).	154
Table 4.2: The group velocity ($V_{\rm g}$ (m/s)), the effective electron mass to free electro	n mass
$(m^*\!/m_0)$ which presented in Fig.8 (b-e) and Energy band gap of CdTe thin film (E_g(eV)).	156
Table 5.1: Summary of the XRD measurements and the result for thickness, roughne	ss, and
electrical resistivity test for various RF powers	170
Table 5.2 For various deposition times, a summary of the XRD data and the results for th	ickness
roughness, and electrical resistivity tests.	177
Table 6.1: Summary of structural parameters of sputtered CdS thin film deposited at variable for the control of	ious N2
concentrations in Ar/N_2 mixture.	190
Table 7.1: Roughness and electrical resistivity measurement for as-deposited, annealed a	t 300,
400 and 500°C samples.	208