Contents | | | Pa | age | |----|------------------------|--|------------------------| | A | bstra | ${f ct}$ | \mathbf{v} | | C | onter | ats | ix | | Li | st of | Tables | xiii | | Li | st of | Figures | $\mathbf{x}\mathbf{v}$ | | Li | ${ m st}$ of | Abbreviations | xii | | 1 | Intr | oduction | 1 | | | 1.1 | Motivation | 1 | | | 1.2 | Research Background | 2 | | | 1.3 | Electric Motor for EVs | 4 | | | 1.4 | Permanent Magnet Brushless DC Motor | 8 | | | 1.5 | Traction effort for vehicle movement | 10 | | | 1.6 | Regenerative braking of electric vehicle | 12 | | | 1.7 | Organization of the Thesis | 16 | | 2 | Rev | iew of High Gain Bidirectional Converters | 19 | | | 2.1 | Introduction | 19 | | | 2.2 | Classification of bidirectional DC-DC converter | 20 | | | | 2.2.1 Isolated bidirectional DC-DC converter | 21 | | | | 2.2.2 Non-isolated bidirectional DC-DC converter | 25 | | | 2.3 | Conclusion | 38 | | 3 | Qua | dratic Gain Bidirectional DC-DC Converter | 39 | | | 3.1 | Introduction | 39 | | | 3.2 | Step-up or Motoring mode of operation | |---|------|--| | | | 3.2.1 Mode 1 $(0, T_{on})$ | | | | 3.2.2 Mode 2 (T_{on}, T_s) | | | 3.3 | Step-down or Regeneartive braking mode of operation | | | | 3.3.1 Mode 1 $(0, T_{ON})$ | | | | 3.3.2 Mode 2 (T_{ON}, T_s) | | | | 3.3.3 Regenerative braking commutation by three switch strategy 40 | | | 3.4 | Converter Design and Stability Analysis | | | | 3.4.1 Converter Design | | | | 3.4.2 Small-signal Analysis | | | 3.5 | Simulation Results | | | 3.6 | Validation through developed prototype | | | 3.7 | Conclusion | | 4 | Mo | dified Quadratic Gain Bidirectional DC-DC Converter 69 | | | 4.1 | Introduction | | | 4.2 | Operation of the converter | | | | 4.2.1 Step-up or Motoring Mode Operation | | | | 4.2.2 Step-down or Regenerative Braking Mode Operation | | | | 4.2.3 Commutation strategy of VSI during regenerative braking 74 | | | 4.3 | Converter Design and Stability Analysis | | | | 4.3.1 Converter Design | | | | 4.3.2 Stability Analysis | | | 4.4 | Computational and Experimental results | | | | 4.4.1 Computational Results | | | | 4.4.2 Hardware Results | | | 4.5 | Conclusion | | 5 | Cou | pled Inductor Based Quadratic Gain Bidirectional DC-DC Con- | | | vert | ter 10' | | | 5.1 | Introduction | | | 5.2 | Step-up or Motoring Operation | | | | 5.2.1 Step-up in CCM | | | | 5.2.2 | Step-up in DCM | . 112 | |----------------------|-------|--------|--|-------| | | 5.3 | Step-c | lown or Regenerative braking Operation | . 115 | | | | 5.3.1 | Step-down in CCM | . 116 | | | | 5.3.2 | Step-down in DCM | . 119 | | | | 5.3.3 | Regenerative braking commutation by single-switch strategy | . 122 | | | 5.4 | Small- | signal Analysis of the Converter | . 125 | | | 5.5 | Simula | ation and Experimental Results | . 128 | | | | 5.5.1 | Simulation Results | . 128 | | | | 5.5.2 | Experimental Results | . 137 | | | 5.6 | Concl | usion | . 147 | | 6 | Con | clusio | ns and Future Scope | 149 | | | 6.1 | Concl | usions | . 149 | | | 6.2 | Future | e Scope | . 151 | | $\mathbf{R}\epsilon$ | efere | nces | | 153 | | Lis | st of | Public | cation | 169 | ## List of Tables | Chapte | er 1 | |--------|--| | 1.1 | Comparison of five most widely used electric motors for EV application | | 1.2 | PMBLDC motor specification | | Chapte | er 2 | | 2.1 | Comparison of performance parameters of different isolated bidirectional | | | converter | | 2.2 | Comparison of performance parameters of different non-isolated bidirec- | | | tional converter | | Chapte | er 3 | | 3.1 | Converter specifications | | 3.2 | Converter passive components | | 3.3 | Comparison of simulation and experimental results | | 3.4 | Comparision of different bidirectional converters with proposed converter . 67 | | Chapte | er 4 | | 4.1 | Converter specifications | | 4.2 | Converter specifications | | 4.3 | Comparison of simulation and experimental results for output voltage 200 | | | V and operating frequency 20 kHz | | 4.4 | Comparison of simulation and experimental results for output voltage 98 | | | V and operating frequency 15 kHz | | Chap | ter 5 | |------|---| | 5.1 | Converter specifications | | 5.2 | Converter specifications | | 5.3 | Comparison of simulation and experimental results for output voltage 200 | | | V and operating frequency 40 kHz | | 5.4 | Comparison of simulation and experimental results for output voltage 98 | | | V and operating frequency 15 kHz | | 5.5 | Comparision of different bidirectional converters with proposed converter . 147 | Comparision of different bidirectional converters with proposed converter . $105\,$ 4.5 ## List of Figures ## Chapter 1 | 1.1 | Typical performance characteristics of electric motors for traction | 5 | |-------------------------------------|--|----| | 1.2 | Types of motors for EV application | 6 | | 1.3 | PMBLDC motor drive system | Ö | | 1.4 | PMBLDC motor armature current, back-EMF waveform and switching | | | | PWM | 10 | | 1.5 | Forces acting on a vehicle | 11 | | 1.6 | Belt-drum arrangement system | 12 | | 1.7 | Current flowing path single-switch control strategy when (a) switch S_4 ON | | | | (b) switch S_4 OFF during RB of PMBLDC motor | 13 | | 1.8 | Current flowing path of two-switch control strategy when (a) switch S_4 | | | | and S_3 ON (b) switch S_4 and S_3 OFF during RB of PMBLDC motor | 14 | | 1.9 | Current flowing path of three-switch control strategy when (a) switch S_4 , | | | | S_6 and S_3 ON (b) switch S_4 , S_6 and S_2 OFF during RB of PMBLDC motor. | 15 | | $\operatorname{Chapt}_{f \epsilon}$ | er 2 | | | 2.1 | The structure of bidirectional DC-DC converter | 20 | | 2.2 | The classification of bidirectional DC-DC converters | 20 | | 2.3 | Soft-switched bidirectional dual half-bridge dc-dc converter [1] | 21 | | 2.4 | Isolated bidirectional converter [2] | 22 | | 2.5 | Isolated bidirectional full-bridge converter with a flyback snubber [3] | 22 | | 2.6 | Z-source isolated bidirectional full-bridge converter [4] | 23 | | 2.7 | High-conversion-ratio isolated bidirectional dc–dc converter [5] | 23 | | 2.8 | Isolated bidirectional interleaved converter [6] | 24 | | | | | | 2.9 | High voltage gain isolated bidirectional converter $[7]$ | 25 | |--------|--|----| | 2.10 | The circuit configurations of conventional converter (a) Buck (b) Boost (c) | | | | Buck-Boost presented in 1972 [8] | 26 | | 2.11 | Non-isolated bidirectional converter proposed in [9] | 27 | | 2.12 | Basic bidirectional SC structures of (a) two-time and (b) three-time con- | | | | version ratio [10] | 29 | | 2.13 | Interleaved switched-capacitor bidirectional converter proposed in [11] | 30 | | 2.14 | Interleaved coupled-inductor bidirectional converter proposed in [12] | 30 | | 2.15 | Coupled-inductor based high voltage gain bidirectional converter [13] | 31 | | 2.16 | A new cascaded buck-boost bidirectional converter [14] | 32 | | 2.17 | A new interleaved bidirectional converter with built-in transformer [15] | 33 | | 2.18 | A multi-port bidirectional converter proposed in [16] | 34 | | | | | | Chapte | or 3 | | | 3.1 | The topology of quadratic gain bidirectional DC-DC converter | 40 | | 3.2 | Converters' boost mode operation in Mode-1 | 41 | | 3.3 | Converters' boost mode operation in Mode-2 | 42 | | 3.4 | Converter's voltage and current waveforms in boost mode | | | 3.5 | Convers' buck mode operation in Mode-1 | | | 3.6 | Converter's buck mode operation in Mode-2 | | | 3.7 | Converter's voltage and current waveform in buck mode | 46 | | 3.8 | The working waveform of PMBLDC motor and Equivalent circuit for | | | | three-switch strategy (a) Back-EMF, armature current and switching sig- | | | | nal of PMBLDC motor (b) Bidirectional VSI with equivalent circuit of a | | | | PMBLDC motor | 47 | | 3.9 | Current flowing path of three-switch strategy (solid line: switches are ON; | | | | dotted line: switches are OFF) (a) At 30 electrical degree and (b) At 60 | | | | electrical degree | 48 | | 3.10 | Equivalent cicuits of PMBLDC motor using three-switch strategy at 30 | | | | and 60 electrical degree (a) ON state at 30° , (b) OFF state at 30° , (c) ON | | | | state at 60° and (d) OFF state at 60° | 40 | | 5.11 | Magnitude and Phase plot obtained from CLIF | 97 | |--------|--|----| | 3.12 | Inductor currents I_{L1} and I_{L2} with switching PWM during boost mode | 58 | | 3.13 | Output voltage V_o , Capacitor Voltage V_{c1} and Battery voltage V_i during | | | | boost mode | 58 | | 3.14 | Battery voltage and %SOC during motoring and regenerative braking | 59 | | 3.15 | Inductor current I_{L1} and I_{L2} with switching PWM during regenerative | | | | braking | 60 | | 3.16 | Voltage stress on switches S_1 and S_2 during boost mode operation of con- | | | | verter | 60 | | 3.17 | Motor speed characteristics during motoring and regenerative braking | 61 | | 3.18 | Hardware Setup | 62 | | 3.19 | System voltages in steady state boost operation of converter; capacitor C_1 | | | | (V_{c1}) , battery voltage (V_i) , and output voltage (V_o) | 62 | | 3.20 | Boost mode operation of the converter; output voltage (V_o) , I_{L2} , switching | | | | PWM, and I_{L1} | 63 | | 3.21 | Switching PWM, Voltage stress on switches S_1 (V_{S1}), S_2 (V_{S2}), and output | | | | voltage (V_o) in boost mode operation of converter | 63 | | 3.22 | Transition of motor from motoring mode to regenerative braking mode; | | | | V_{c1} , I_{L1} , V_o , and I_{L2} | 64 | | 3.23 | Buck mode operation of converter; switching PWM, I_{L1} , V_o , and I_{L2} | 64 | | 3.24 | Armature current, battery current, battey voltage, command signal at | | | | different braking duty (a) $\delta = 0.4$ (b) $\delta = 0.5$ (c) $\delta = 0.6$ and (d) $\delta = 0.7$. | 65 | | 3.25 | The curve between $\%$ Efficiency and output Power during boost mode | 66 | | Chapte | er 4 | | | 4.1 | The topology of modified quadratic gain bidirectional DC-DC Converter | 70 | | 4.2 | Current flowing path during step-up mode operation of converter in stage-I. | 71 | | 4.3 | Current flowing path during step-up mode operation of converter in stage-II. | 71 | | 4.4 | The working waveform of converter's operation in step-up mode | 72 | | 4.5 | Current flowing path during step-down operation of the converter in stage-I. | 73 | | 4.6 | Current flowing path during step-down operation of the converter in stage-II. | 73 | | 4.7 | The working waveform of converter's operation in step-down mode | 74 | |------|--|------| | 4.8 | Working waveform of converter at boundary condition mode during step- | | | | up operation | 75 | | 4.9 | Working waveform of converter at DCM during step-up operation | 78 | | 4.10 | Mganitude and phase plot is obtained from CLTF | 82 | | 4.11 | The PWM signal for switches of the proposed converter in MATLAB/Simulink | . 84 | | 4.12 | The PWM signal of VSI for PMBLDC motor in MATLAB/Simulink | 85 | | 4.13 | The steady-state inductor currents I_{L1} and I_{L2} with switching PWM in | | | | step-up operation of the converter | 85 | | 4.14 | The steady-state inductor currents I_{L1} and I_{L2} with switching PWM in | | | | step-down operation of the converter | 86 | | 4.15 | The steady-state output voltage, input voltage and capacitor voltage dur- | | | | ing step-up operation of the converter | 87 | | 4.17 | PMBLDC motor speed characteristics during motoring and regenerative | | | | braking | 87 | | 4.16 | Voltage stress on switches S_1 and S_2 in step-up operation of the converter. | 88 | | 4.18 | Three phase stator current of PMBLDC motor in motoring mode | 89 | | 4.19 | Three phase stator current of PMBLDC motor in regenerative braking mode. | 89 | | 4.20 | Capacitor Voltage V_c , output voltage V_o and input voltage V_s during step- | | | | up operation | 90 | | 4.21 | Inductors current I_{L1} , I_{L2} with switching PWM under steady-state during | | | | step-up operation | 91 | | 4.22 | Voltage stress on switches S_1 (V_{s1}) and S_2 (V_{s2}) during step-up operation. | 92 | | 4.23 | Inductor current I_{L1} , I_{L2} with switching PWM during step-down operation | | | | of converter. | 92 | | 4.24 | PMBLDC motor speed characteristics | 93 | | 4.25 | Experimental setup | 94 | | 4.26 | The capacitor voltage V_c , ouput voltage V_o , and battery voltage V_s during | | | | step-up operation | 94 | | 4.27 | The output voltage (V_o) , Inductor's current I_{L1} , and I_{L2} | 95 | | 4.28 | Inductor's current I_{L1} , I_{L2} , and output voltage V_o in discontinuous con- | | | | duction mode. | 96 | | 4.29 | Output voltage V_o , inductor's current I_{L1} , and I_{L2} in boundary condition | |--------|--| | | mode | | 4.30 | Steady-state three phase stator current of PMBLDC machine in motoring | | | mode | | 4.31 | Plot of voltage stress on Switches S_1 (V_{s1}) and S_2 (V_{s2}) | | 4.32 | The transition of output voltage V_o , battery voltage (V_s) , inductor currents | | | I_{L1} , and I_{L2} when RB is applied | | 4.33 | Steady-state inductor currents I_{L1} and I_{L2} during step-down operation of | | | converter | | 4.34 | Three phase stator current I_a , I_b , I_c , and output voltage V_o during regen- | | | erative braking | | 4.35 | Armature current, battery current, battey voltage, command signal at | | | different braking duty (a) $\delta = 0.4$ (b) $\delta = 0.5$ (c) $\delta = 0.6$ and (d) $\delta = 0.7$. 100 | | 4.36 | Capacitor voltage (V_c) , output voltage (V_o) , input current (I_s) and input | | | voltage (V_s) during step-up operation | | 4.37 | Inductors current (I_{L1}, I_{L2}) , output voltage (V_o) , and switching PWM | | | during step-up operation | | 4.38 | Voltage stress V_{s1} , V_{s2} , input current I_s with PWM during step-up operation. 102 | | 4.39 | Inductors current (I_{L1}, I_{L2}) , output voltage (V_o) , and switching PWM | | | during step-down operation | | 4.40 | Armature current, battery current, battery voltage, command signal at | | | different braking duty (a) $\delta = 0.4$ (b) $\delta = 0.5$ (c) $\delta = 0.6$ and (d) $\delta = 0.7$. 103 | | 4.41 | Converter efficiency during step-up operation with input voltage V_s =48 V. 104 | | Chapte | \mathbf{r} 5 | | | | | 5.1 | The topology of coupled inductor based QGBC | | 5.2 | The current conduction path of the converter during mode I operation 109 | | 5.3 | Current conduction path of the converter in mode II operation | | 5.4 | The working waveform of current and voltage of the converter during step- | | | up operationi CCM | | 5.5 | The working waveform of current and voltage of the converter during step- | |------|---| | | up operation in DCM | | 5.6 | The current conduction path of the converter during step-up in mode III | | | operation | | 5.7 | Current conduction path of the converter during step-down in mode I | | | operation | | 5.8 | Current conduction path of the converter during step-down in mode II | | | operation | | 5.9 | The working current and voltage waveform of the converter during step- | | | down in CCM operation | | 5.10 | The working current and voltage waveform of the converter during step- | | | down in DCM operation | | 5.11 | The current flowing path of the converter during step-down in mode III of | | | DCM operation | | 5.12 | Bidirectional DC-DC converter and VSI with equivalent circuit of a PMBLDC | | | motor | | 5.13 | Back-EMF and armature current of PMBLDC motor with the switching | | | signal for single-switch strategy | | 5.14 | Current flowing path of single-switch control (solid line: OFF state; dotted | | | line: On state) | | 5.15 | Mganitude and phase plot is obtained from CLTF | | 5.16 | Switching PWM for switches S_1 and S_2 during step-up operation of the | | | converter | | 5.17 | Gate signal of voltage source inverter for PMBLDC motor in motoring mode. 130 | | 5.18 | Steady-state inductor currents I_{L1},I_{L2} and switching PWM during step-up | | | operation of the converter | | 5.19 | Steady-state input and output voltage during step-up operation | | 5.20 | Voltage stress on switches S_1 and S_4 during step-up operation of the con- | | | verter | | 5.21 | Motor speed characteristics | | 5.22 | Output voltage V_o , capacitor voltage V_c and input voltage V_s during step- | | | up operation 134 | | 5.23 | Steady-state inductor currents I_{L1} , I_{L2} and switching PWM during step-up | | |------|--|-----| | | operation | 134 | | 5.24 | Voltage stress on switches S_1 and S_2 during step-up operation of the con- | | | | verter | 135 | | 5.25 | Inductor current I_{L1} , I_{L2} with switching PWM during step-down operation | | | | of the converter | 136 | | 5.26 | PMBLDC motor speed characteristics | 136 | | 5.27 | Experimental setup | 137 | | 5.28 | Steady-state output voltage V_o , input voltage V_s , inductor current I_{L1} , and | | | | inductor current I_{L2} in step-up operation | 138 | | 5.29 | Output voltage V_o , inductor current I_{L1} , inductor current I_{L2} , and switch- | | | | ing PWM of switch in step-up operation | 138 | | 5.30 | The voltage stress on switches S_1 and S_2 during step-up operation of the | | | | converter | 139 | | 5.31 | The steady-state output voltage V_o , output current I_o , input voltage V_s , | | | | and input current I_s in step-up operation of the converter | 139 | | 5.32 | Steady-state output voltage V_o , inductor currents I_{L1} , and I_{L2} with switch- | | | | ing PWM during step-down operation | 140 | | 5.33 | Armature current, battery current, battey voltage, command signal at | | | | different braking duty (a) $\delta = 0.4$ (b) $\delta = 0.5$ (c) $\delta = 0.6$ and (d) $\delta = 0.7$. | 141 | | 5.34 | Output voltage (V_o) , capacitor voltage (V_c) , input current (I_s) and input | | | | voltage (V_s) during step-up operation converter | 142 | | 5.35 | The inductor current I_{L1} , I_{L2} , output voltage V_o with switching PWM | | | | during step-up operation pf converter | 143 | | 5.36 | The voltage stress on switches S_1 , S_2 , output voltage and input current | | | | during step-up operation of converter | 143 | | 5.37 | Inductor currents I_{L1} , I_{L2} and output voltage with switching PWM during | | | | regenerative braking or step-down operation of converter | 144 | | 5.38 | Armature current, battery current, battey voltage, command signal at | | | | different braking duty (a) $\delta = 0.4$ (b) $\delta = 0.5$ (c) $\delta = 0.6$ and (d) $\delta = 0.7$. | 145 | | 5.39 | The efficiency curve of the converter in step-up operation | 146 |