Contents

		Pa	age
A	bstra	${f ct}$	\mathbf{v}
C	onter	ats	ix
Li	st of	Tables	xiii
Li	st of	Figures	$\mathbf{x}\mathbf{v}$
Li	${ m st}$ of	Abbreviations	xii
1	Intr	oduction	1
	1.1	Motivation	1
	1.2	Research Background	2
	1.3	Electric Motor for EVs	4
	1.4	Permanent Magnet Brushless DC Motor	8
	1.5	Traction effort for vehicle movement	10
	1.6	Regenerative braking of electric vehicle	12
	1.7	Organization of the Thesis	16
2	Rev	iew of High Gain Bidirectional Converters	19
	2.1	Introduction	19
	2.2	Classification of bidirectional DC-DC converter	20
		2.2.1 Isolated bidirectional DC-DC converter	21
		2.2.2 Non-isolated bidirectional DC-DC converter	25
	2.3	Conclusion	38
3	Qua	dratic Gain Bidirectional DC-DC Converter	39
	3.1	Introduction	39

	3.2	Step-up or Motoring mode of operation
		3.2.1 Mode 1 $(0, T_{on})$
		3.2.2 Mode 2 (T_{on}, T_s)
	3.3	Step-down or Regeneartive braking mode of operation
		3.3.1 Mode 1 $(0, T_{ON})$
		3.3.2 Mode 2 (T_{ON}, T_s)
		3.3.3 Regenerative braking commutation by three switch strategy 40
	3.4	Converter Design and Stability Analysis
		3.4.1 Converter Design
		3.4.2 Small-signal Analysis
	3.5	Simulation Results
	3.6	Validation through developed prototype
	3.7	Conclusion
4	Mo	dified Quadratic Gain Bidirectional DC-DC Converter 69
	4.1	Introduction
	4.2	Operation of the converter
		4.2.1 Step-up or Motoring Mode Operation
		4.2.2 Step-down or Regenerative Braking Mode Operation
		4.2.3 Commutation strategy of VSI during regenerative braking 74
	4.3	Converter Design and Stability Analysis
		4.3.1 Converter Design
		4.3.2 Stability Analysis
	4.4	Computational and Experimental results
		4.4.1 Computational Results
		4.4.2 Hardware Results
	4.5	Conclusion
5	Cou	pled Inductor Based Quadratic Gain Bidirectional DC-DC Con-
	vert	ter 10'
	5.1	Introduction
	5.2	Step-up or Motoring Operation
		5.2.1 Step-up in CCM

		5.2.2	Step-up in DCM	. 112
	5.3	Step-c	lown or Regenerative braking Operation	. 115
		5.3.1	Step-down in CCM	. 116
		5.3.2	Step-down in DCM	. 119
		5.3.3	Regenerative braking commutation by single-switch strategy	. 122
	5.4	Small-	signal Analysis of the Converter	. 125
	5.5	Simula	ation and Experimental Results	. 128
		5.5.1	Simulation Results	. 128
		5.5.2	Experimental Results	. 137
	5.6	Concl	usion	. 147
6	Con	clusio	ns and Future Scope	149
	6.1	Concl	usions	. 149
	6.2	Future	e Scope	. 151
$\mathbf{R}\epsilon$	efere	nces		153
Lis	st of	Public	cation	169

List of Tables

Chapte	er 1
1.1	Comparison of five most widely used electric motors for EV application
1.2	PMBLDC motor specification
Chapte	er 2
2.1	Comparison of performance parameters of different isolated bidirectional
	converter
2.2	Comparison of performance parameters of different non-isolated bidirec-
	tional converter
Chapte	er 3
3.1	Converter specifications
3.2	Converter passive components
3.3	Comparison of simulation and experimental results
3.4	Comparision of different bidirectional converters with proposed converter . 67
Chapte	er 4
4.1	Converter specifications
4.2	Converter specifications
4.3	Comparison of simulation and experimental results for output voltage 200
	V and operating frequency 20 kHz
4.4	Comparison of simulation and experimental results for output voltage 98
	V and operating frequency 15 kHz

Chap	ter 5
5.1	Converter specifications
5.2	Converter specifications
5.3	Comparison of simulation and experimental results for output voltage 200
	V and operating frequency 40 kHz
5.4	Comparison of simulation and experimental results for output voltage 98
	V and operating frequency 15 kHz
5.5	Comparision of different bidirectional converters with proposed converter . 147

Comparision of different bidirectional converters with proposed converter . $105\,$

4.5

List of Figures

Chapter 1

1.1	Typical performance characteristics of electric motors for traction	5
1.2	Types of motors for EV application	6
1.3	PMBLDC motor drive system	Ö
1.4	PMBLDC motor armature current, back-EMF waveform and switching	
	PWM	10
1.5	Forces acting on a vehicle	11
1.6	Belt-drum arrangement system	12
1.7	Current flowing path single-switch control strategy when (a) switch S_4 ON	
	(b) switch S_4 OFF during RB of PMBLDC motor	13
1.8	Current flowing path of two-switch control strategy when (a) switch S_4	
	and S_3 ON (b) switch S_4 and S_3 OFF during RB of PMBLDC motor	14
1.9	Current flowing path of three-switch control strategy when (a) switch S_4 ,	
	S_6 and S_3 ON (b) switch S_4 , S_6 and S_2 OFF during RB of PMBLDC motor.	15
$\operatorname{Chapt}_{f \epsilon}$	er 2	
2.1	The structure of bidirectional DC-DC converter	20
2.2	The classification of bidirectional DC-DC converters	20
2.3	Soft-switched bidirectional dual half-bridge dc-dc converter [1]	21
2.4	Isolated bidirectional converter [2]	22
2.5	Isolated bidirectional full-bridge converter with a flyback snubber [3]	22
2.6	Z-source isolated bidirectional full-bridge converter [4]	23
2.7	High-conversion-ratio isolated bidirectional dc–dc converter [5]	23
2.8	Isolated bidirectional interleaved converter [6]	24

2.9	High voltage gain isolated bidirectional converter $[7]$	25
2.10	The circuit configurations of conventional converter (a) Buck (b) Boost (c)	
	Buck-Boost presented in 1972 [8]	26
2.11	Non-isolated bidirectional converter proposed in [9]	27
2.12	Basic bidirectional SC structures of (a) two-time and (b) three-time con-	
	version ratio [10]	29
2.13	Interleaved switched-capacitor bidirectional converter proposed in [11]	30
2.14	Interleaved coupled-inductor bidirectional converter proposed in [12]	30
2.15	Coupled-inductor based high voltage gain bidirectional converter [13]	31
2.16	A new cascaded buck-boost bidirectional converter [14]	32
2.17	A new interleaved bidirectional converter with built-in transformer [15]	33
2.18	A multi-port bidirectional converter proposed in [16]	34
Chapte	or 3	
3.1	The topology of quadratic gain bidirectional DC-DC converter	40
3.2	Converters' boost mode operation in Mode-1	41
3.3	Converters' boost mode operation in Mode-2	42
3.4	Converter's voltage and current waveforms in boost mode	
3.5	Convers' buck mode operation in Mode-1	
3.6	Converter's buck mode operation in Mode-2	
3.7	Converter's voltage and current waveform in buck mode	46
3.8	The working waveform of PMBLDC motor and Equivalent circuit for	
	three-switch strategy (a) Back-EMF, armature current and switching sig-	
	nal of PMBLDC motor (b) Bidirectional VSI with equivalent circuit of a	
	PMBLDC motor	47
3.9	Current flowing path of three-switch strategy (solid line: switches are ON;	
	dotted line: switches are OFF) (a) At 30 electrical degree and (b) At 60	
	electrical degree	48
3.10	Equivalent cicuits of PMBLDC motor using three-switch strategy at 30	
	and 60 electrical degree (a) ON state at 30° , (b) OFF state at 30° , (c) ON	
	state at 60° and (d) OFF state at 60°	40

5.11	Magnitude and Phase plot obtained from CLIF	97
3.12	Inductor currents I_{L1} and I_{L2} with switching PWM during boost mode	58
3.13	Output voltage V_o , Capacitor Voltage V_{c1} and Battery voltage V_i during	
	boost mode	58
3.14	Battery voltage and %SOC during motoring and regenerative braking	59
3.15	Inductor current I_{L1} and I_{L2} with switching PWM during regenerative	
	braking	60
3.16	Voltage stress on switches S_1 and S_2 during boost mode operation of con-	
	verter	60
3.17	Motor speed characteristics during motoring and regenerative braking	61
3.18	Hardware Setup	62
3.19	System voltages in steady state boost operation of converter; capacitor C_1	
	(V_{c1}) , battery voltage (V_i) , and output voltage (V_o)	62
3.20	Boost mode operation of the converter; output voltage (V_o) , I_{L2} , switching	
	PWM, and I_{L1}	63
3.21	Switching PWM, Voltage stress on switches S_1 (V_{S1}), S_2 (V_{S2}), and output	
	voltage (V_o) in boost mode operation of converter	63
3.22	Transition of motor from motoring mode to regenerative braking mode;	
	V_{c1} , I_{L1} , V_o , and I_{L2}	64
3.23	Buck mode operation of converter; switching PWM, I_{L1} , V_o , and I_{L2}	64
3.24	Armature current, battery current, battey voltage, command signal at	
	different braking duty (a) $\delta = 0.4$ (b) $\delta = 0.5$ (c) $\delta = 0.6$ and (d) $\delta = 0.7$.	65
3.25	The curve between $\%$ Efficiency and output Power during boost mode	66
Chapte	er 4	
4.1	The topology of modified quadratic gain bidirectional DC-DC Converter	70
4.2	Current flowing path during step-up mode operation of converter in stage-I.	71
4.3	Current flowing path during step-up mode operation of converter in stage-II.	71
4.4	The working waveform of converter's operation in step-up mode	72
4.5	Current flowing path during step-down operation of the converter in stage-I.	73
4.6	Current flowing path during step-down operation of the converter in stage-II.	73

4.7	The working waveform of converter's operation in step-down mode	74
4.8	Working waveform of converter at boundary condition mode during step-	
	up operation	75
4.9	Working waveform of converter at DCM during step-up operation	78
4.10	Mganitude and phase plot is obtained from CLTF	82
4.11	The PWM signal for switches of the proposed converter in MATLAB/Simulink	. 84
4.12	The PWM signal of VSI for PMBLDC motor in MATLAB/Simulink	85
4.13	The steady-state inductor currents I_{L1} and I_{L2} with switching PWM in	
	step-up operation of the converter	85
4.14	The steady-state inductor currents I_{L1} and I_{L2} with switching PWM in	
	step-down operation of the converter	86
4.15	The steady-state output voltage, input voltage and capacitor voltage dur-	
	ing step-up operation of the converter	87
4.17	PMBLDC motor speed characteristics during motoring and regenerative	
	braking	87
4.16	Voltage stress on switches S_1 and S_2 in step-up operation of the converter.	88
4.18	Three phase stator current of PMBLDC motor in motoring mode	89
4.19	Three phase stator current of PMBLDC motor in regenerative braking mode.	89
4.20	Capacitor Voltage V_c , output voltage V_o and input voltage V_s during step-	
	up operation	90
4.21	Inductors current I_{L1} , I_{L2} with switching PWM under steady-state during	
	step-up operation	91
4.22	Voltage stress on switches S_1 (V_{s1}) and S_2 (V_{s2}) during step-up operation.	92
4.23	Inductor current I_{L1} , I_{L2} with switching PWM during step-down operation	
	of converter.	92
4.24	PMBLDC motor speed characteristics	93
4.25	Experimental setup	94
4.26	The capacitor voltage V_c , ouput voltage V_o , and battery voltage V_s during	
	step-up operation	94
4.27	The output voltage (V_o) , Inductor's current I_{L1} , and I_{L2}	95
4.28	Inductor's current I_{L1} , I_{L2} , and output voltage V_o in discontinuous con-	
	duction mode.	96

4.29	Output voltage V_o , inductor's current I_{L1} , and I_{L2} in boundary condition
	mode
4.30	Steady-state three phase stator current of PMBLDC machine in motoring
	mode
4.31	Plot of voltage stress on Switches S_1 (V_{s1}) and S_2 (V_{s2})
4.32	The transition of output voltage V_o , battery voltage (V_s) , inductor currents
	I_{L1} , and I_{L2} when RB is applied
4.33	Steady-state inductor currents I_{L1} and I_{L2} during step-down operation of
	converter
4.34	Three phase stator current I_a , I_b , I_c , and output voltage V_o during regen-
	erative braking
4.35	Armature current, battery current, battey voltage, command signal at
	different braking duty (a) $\delta = 0.4$ (b) $\delta = 0.5$ (c) $\delta = 0.6$ and (d) $\delta = 0.7$. 100
4.36	Capacitor voltage (V_c) , output voltage (V_o) , input current (I_s) and input
	voltage (V_s) during step-up operation
4.37	Inductors current (I_{L1}, I_{L2}) , output voltage (V_o) , and switching PWM
	during step-up operation
4.38	Voltage stress V_{s1} , V_{s2} , input current I_s with PWM during step-up operation. 102
4.39	Inductors current (I_{L1}, I_{L2}) , output voltage (V_o) , and switching PWM
	during step-down operation
4.40	Armature current, battery current, battery voltage, command signal at
	different braking duty (a) $\delta = 0.4$ (b) $\delta = 0.5$ (c) $\delta = 0.6$ and (d) $\delta = 0.7$. 103
4.41	Converter efficiency during step-up operation with input voltage V_s =48 V. 104
Chapte	\mathbf{r} 5
5.1	The topology of coupled inductor based QGBC
5.2	The current conduction path of the converter during mode I operation 109
5.3	Current conduction path of the converter in mode II operation
5.4	The working waveform of current and voltage of the converter during step-
	up operationi CCM

5.5	The working waveform of current and voltage of the converter during step-
	up operation in DCM
5.6	The current conduction path of the converter during step-up in mode III
	operation
5.7	Current conduction path of the converter during step-down in mode I
	operation
5.8	Current conduction path of the converter during step-down in mode II
	operation
5.9	The working current and voltage waveform of the converter during step-
	down in CCM operation
5.10	The working current and voltage waveform of the converter during step-
	down in DCM operation
5.11	The current flowing path of the converter during step-down in mode III of
	DCM operation
5.12	Bidirectional DC-DC converter and VSI with equivalent circuit of a PMBLDC
	motor
5.13	Back-EMF and armature current of PMBLDC motor with the switching
	signal for single-switch strategy
5.14	Current flowing path of single-switch control (solid line: OFF state; dotted
	line: On state)
5.15	Mganitude and phase plot is obtained from CLTF
5.16	Switching PWM for switches S_1 and S_2 during step-up operation of the
	converter
5.17	Gate signal of voltage source inverter for PMBLDC motor in motoring mode. 130
5.18	Steady-state inductor currents I_{L1},I_{L2} and switching PWM during step-up
	operation of the converter
5.19	Steady-state input and output voltage during step-up operation
5.20	Voltage stress on switches S_1 and S_4 during step-up operation of the con-
	verter
5.21	Motor speed characteristics
5.22	Output voltage V_o , capacitor voltage V_c and input voltage V_s during step-
	up operation 134

5.23	Steady-state inductor currents I_{L1} , I_{L2} and switching PWM during step-up	
	operation	134
5.24	Voltage stress on switches S_1 and S_2 during step-up operation of the con-	
	verter	135
5.25	Inductor current I_{L1} , I_{L2} with switching PWM during step-down operation	
	of the converter	136
5.26	PMBLDC motor speed characteristics	136
5.27	Experimental setup	137
5.28	Steady-state output voltage V_o , input voltage V_s , inductor current I_{L1} , and	
	inductor current I_{L2} in step-up operation	138
5.29	Output voltage V_o , inductor current I_{L1} , inductor current I_{L2} , and switch-	
	ing PWM of switch in step-up operation	138
5.30	The voltage stress on switches S_1 and S_2 during step-up operation of the	
	converter	139
5.31	The steady-state output voltage V_o , output current I_o , input voltage V_s ,	
	and input current I_s in step-up operation of the converter	139
5.32	Steady-state output voltage V_o , inductor currents I_{L1} , and I_{L2} with switch-	
	ing PWM during step-down operation	140
5.33	Armature current, battery current, battey voltage, command signal at	
	different braking duty (a) $\delta = 0.4$ (b) $\delta = 0.5$ (c) $\delta = 0.6$ and (d) $\delta = 0.7$.	141
5.34	Output voltage (V_o) , capacitor voltage (V_c) , input current (I_s) and input	
	voltage (V_s) during step-up operation converter	142
5.35	The inductor current I_{L1} , I_{L2} , output voltage V_o with switching PWM	
	during step-up operation pf converter	143
5.36	The voltage stress on switches S_1 , S_2 , output voltage and input current	
	during step-up operation of converter	143
5.37	Inductor currents I_{L1} , I_{L2} and output voltage with switching PWM during	
	regenerative braking or step-down operation of converter	144
5.38	Armature current, battery current, battey voltage, command signal at	
	different braking duty (a) $\delta = 0.4$ (b) $\delta = 0.5$ (c) $\delta = 0.6$ and (d) $\delta = 0.7$.	145
5.39	The efficiency curve of the converter in step-up operation	146