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Chapter 5 

 

An Augmented Deep Learning Network with Noise Suppression 

feature for Efficient Segmentation of Cardiac MR Images                                                                                                      

Highlights of the Chapter    

• Deep Learning method for segmentation of noisy CMRI images. 

• Incorporation of noise stifler block. 

 

Contribution of the chapter 

The segmentation of cardiac MR images requires extensive attention as it needs a high level of 

care and analysis for the diagnosis of affected part. The advent of deep learning technology has 

paved the way for efficient, automatic and reliable segmentation of medical images for proper 

diagnosis. This chapter presents a deep learning based model for effective  segmentation of 

noisy MR images. The model incorporates the depth wise separable convolution and group 

normalization as basic building blocks. Moreover, a noise stifler block is also induced between 

the encoder and decoder to counter the noise in the medical images. This path helps in 

delineating the precise boundary contours as the noise often reduces the boundary segmentation 

capability of the segmentation network. The network trained once produces exceedingly good 

results for the images of other datasets. An improvement of above (5 ± 0.03)% and (3.5 ± 

0.02)% was observed in the Jaccard index and Dice score for cardiac MR images. The results 

are statistically validated as p < 0.05. The automatic computer investigated approach can help 

in reducing the burden on the medical system by producing accurate and reliable results. The 

algorithmic results were clinically verified by the senior radiologists by comparison with the 

manually segmented images. The training time of the network was about 30% less than U-net. 
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5.1 Introduction: 

Image segmentation is a process that subdivides an image into its constituent parts or region of 

interest. The problem under analysis determines the level of subdivision in the image. It is a 

low-level operation as it operates pixel-wise. A corresponding category label is provided to 

each pixel in the image by the image segmentation operation. The basic requirement for 

medical image segmentation is to study the changes in pathological and anatomical structures 

for analysis of the problem. The accurate and precise extraction of features forms the area being 

segmented is reasonably necessary for the medical experts to provide the correct diagnosis. 

The primary medical image segmentation task includes segmentation of brain tumour, skin 

cancer tissues segregation, cardiac image segmentation, analysis of ventricle cavities by image 

segmentation, outlining of liver tumour, optical disc segmentation, pulmonary nodules, cell 

segmentation etc. The advancement in medical imaging technology has paved the way for 

efficient analysis of the disease affected regions. X-Ray [128], Computed Tomography (CT) 

[129], MRI [111] and Ultrasound [130] are the main modalities in the medical imaging domain, 

which are widely used for the detection and analysis of diseases. Thus extreme attention is 

given to the images of these modalities for segmentation and other imaging domain 

applications.  

The primitive approaches for the medical image segmentation were dependent on active 

contour matching, statistical models, edge locations template matching. Basically, image 

segmentation is categorized into manual, semi-automatic, and fully automatic segmentation. 

Manual segmentation requires the experience and expertise of radiologists and doctors to draw 

a precise region of interest (ROI) which is time-consuming, often impractical for a large 

dataset, and involves significant variabilities as well. The semi-automatic methods require 

handcrafted features as well as manual interference for the processing steps [86]. The fully 

automatic methods which are gaining importance has to lead the way for the computer-based 
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approaches to fully take over the feature extraction as well as segmentation process. With the 

advent in the field of deep learning, fully automatic methods are producing reliable and 

accurate results. These methods are self-capable in feature extraction and learning. Deep 

learning-based architectures use supervised learning techniques for the processing of images. 

The revolutionary work in the field of medical image segmentation was presented by Olaf 

Ronneberger in the form of U-net [30]. The end to end trainable U-net architecture is capable 

of producing very accurate results while getting trained on very few images. The advantage of 

U-net is that input uses data patches which solves the problem of fewer data as the patches are 

equivalent to the data augmentation. Moreover, the target category can be located by the output 

results. Other end to end trainable image segmenting network includes Fully Convolutional 

Networks (FCN) [109] [131], Deeplab [132], SegNet [94] etc. The pixel-level segmentation 

was achieved using the SegNet model as it incorporates the symmetric structured encoder-

decoder network, which is based on the semantic segmentation concept of FCN. The FCN 

deploys locally connected layers and avoids the use of dense layers. The down sampling path 

in FCN extracts the features while the up-sampling path localizes the object. The deeplab was 

developed by Google as an open source model for image segmentation. It upsamples the output 

of the last convolutional layer and evaluates pixel-wise loss. The FCN was used by Zhou et al. 

for the segmentation of nineteen organs in CT images [133]. A cascaded FCN was proposed 

by Christ et al. [36], which was incorporated using the superposition of a series of FCN. In this 

approach, context features were extracted from the prediction map. The adversarial network 

proposed by Goodfellow et al. [134] were used by Luc et al. [135] to segment the images by 

training a CNN based segmentation network and an adversarial network. Segmentation 

Adversarial Network (SegAN) [136] proposed by Xue et al. used the U-net model as the 

generator for GAN. This network is subdivided into segmentor network and critic network. 

These two are trained alternately to finally produce a good segmentation model. A high-level 
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3D semantics capturing network names as Projective Adversarial Network (PAN) [137] was 

proposed by Khosravan et al. PAN uses a segmentor and two adversarial networks as the basic 

constituents of the architecture. 2D projection is used to integrate high-level 3D information 

without increasing the complexity in the segmentation process. Deep contour network (DCAN) 

[110] proposed by Hao Chen et al. generates the predictions of both objects and contours for 

the segmentation process. Peter Naylor et al. [113] developed a method by replacing binary 

annotation with a distance map to train the network to predict pixel by pixel segmentation. 

The presented research's motivation is to develop an efficient deep learning-based architecture 

to segment the noisy MR images for reliable analysis of the disease [127]. The primary source 

of noise in MR images is thermal in nature, which originates from the stochastic motion of free 

electrons. Thermal noise is a white additive and follows Gaussian distribution having variance 

(σ) and zero mean (µ). The raw data for MR images is K-space data which is corrupted by 

Gaussian noise. The noise distribution of data changes when the magnitude of data is computed 

as this process is non-linear. The Gaussian noise distribution of data is converted to Rician after 

this process. This noise creates problems in the proper segmentation of the boundary of the 

objects. The main objective of this work is to effectively segment the MR images corrupted 

with the Rician noise as the real-time MR images contain some percentage of unwanted Rician 

distributed noise. The proposed is integrates noise stifler block for noise suppression at the time 

of segmentation. The accurate diagnosis of the disease is dependent on the perfection in 

interpretability of the image. Thus precise and accurate segmentation is quite helpful for the 

medical practitioner to plan the diagnosis. The proposed model produces more and accurate 

results in comparison to its conventional counterpart. 

5.2 Methodology: 

This section presents the methodology of the proposed architecture, which is incorporated 

using U-net architecture as the backbone. The proposed network comprises depth wise 
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separable convolution, group normalization, Scaled exponential Linear Unit (SELU) and noise 

stifler block. The depth wise separable convolution [74]  with bottleneck connections [96]  is 

used in this end to end trainable segmentation network, as shown in figure 5.1. The in-between 

inputs are encoded by the bottleneck connections. The transformation from lower-level units 

such as pixels to higher-level illustration such as image is performed by the middle layers. It 

consists of three convolution layers in the block. The layers are named as 1) Expansion Layer, 

2) Depth wise convolutional Layer and, 3) Projection Layer. For each input channel, a 

dedicated single filter is incorporated. A pointwise 1×1 convolution is used for the process of 

combining the outputs of depth wise separable convolution. Filtering and combining is 

collectively termed as depth wise separable convolution. This process is split into two parts, a 

different layer for filtering and a different layer for combining, as shown in figure 5.1.  Figure 

5.2 shows the overall architecture of the network. 

 

Figure 5.1: Modified Depth wise Separable block. 
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                Figure 5.2: Architecture of the proposed network. 
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Depth wise convolution with one filter per input channel (input depth) can be written as:      

𝐺̂𝑘.𝑙,𝑚 =  𝐾̂𝑖,𝑗,𝑚. 𝐹𝑘+𝑖−1,𝑙+𝑗−1,𝑚                                                                        (5.1) 

Where is the depth wise convolutional kernel of size DK × DK × M where the mth filter is applied 

to the mth channel to produce the mth channel of the filtered output feature map. The following 

equation gives the cost of convolution for depth wise separable convolution: 

DK. DK.M. DF. DF + M.N. DF. DF                                                                                                     (5.2) 

Equation 2 is the sum of depth wise convolution and 1×1 pointwise convolution. This 1×1 

pointwise convolution layer causes the number of channels to be lower and is also known as 

the Projection Layer and Bottleneck. The projection layer projects the data with higher 

dimensions into a tensor with a lower number of dimension. The first layer in figure 5.1 is 

named the expansion layer, which possesses the opposite characteristics of the projection layer. 

It has less number of input channels than the output channels. The hyperparameter expansion 

factor determines how much the data will be expanded. Each layer incorporates group 

normalization and Scaled exponential Linear Unit (SELU) as activation function. The use of 

non-linearity may destroy meaningful information, so the use of activation function is avoided 

in the projection layer. The overall cost of the computation is reduced by the incorporation of 

depth wise separable convolution because of the reduction in the number of multiplications. 

The training parameters are also less as compared to standard convolution. Thus overfitting 

issues are reduced to a large extent. The image is transformed once, so the computation 

complexity is reduced. The boundary and object-related information are precisely captured in 

the case of depth wise separable convolution. This is because, in the case of regular 

convolution, an image is transformed m times where m denotes the number of channels, while 

in the case of depth wise separable convolution, the image is transformed only once and 

elongated to m channels. Scaled exponential unit (SELU) is used instead of RELU as the former 

shows robust performance than the latter. The SELU cannot die because of the negative slope, 

and thus it removes the problem of vanishing gradient in deep neural networks. It possesses the 
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self-normalization property. SELU [138] is a trade-off between RELU and Leaky RELU as the 

constant slope of the leaky RELU may elevate the risk of vanishing gradient. The SELU is 

given by the following equation: 

𝑓 (𝛼, 𝑥) = 𝜏 {
𝛼𝑒𝑥      𝑓𝑜𝑟 𝑥 < 0
𝑥         𝑓𝑜𝑟 𝑥 ≥ 0

                                                                        (5.3)              

For normalizing the data, group normalization [115] is used, which normalizes the data across 

the groups. The channels is divided into groups before the normalization. The accuracy is stable 

over a wide batch size in case of group normalization as there is no dependence on batch size. 

Thus the main drawback of handling the large batch size of batch normalization is eliminated 

by the use of group normalization. The process of group normalization requires the 

computation of the mean and variance of the inputs over the specified groups of channels. The 

following equation describes group normalization: 

𝑎𝑖̂ =  
𝑎𝑖−𝜇𝑔

√𝜎𝑔 + 𝜀
2

                                                                                                        (5.4)                                                                              

Where ai is the input, µg is the mean and is the variance. ε is the property to improve numerical 

stability for the slight group variance.                              

The max-pooling operation is performed in the subsequent stage with window size 2 × 2 and 

stride 2. The related contents of the features are rejected by this layer, and the features with 

vital information are stored. Translational invariance is achieved over a small spatial shift using 

this max-pooling operator. The SoftMax operator is applied next to the input data, which turns 

the raw score, i.e. logits, into probability which sums to 1. It acts as a multiclass sigmoid 

function. The SoftMax function [101] is used for the determination of probability computed 

once of multiclass. The following equation represents the SoftMax function: 

𝑌𝑟(𝑥) =  
exp(𝑎𝑟(𝑥))

∑ exp(𝑎𝑗(𝑥))𝑘
𝑗=1

                                                                                      (5.5)                
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Where r signifies the class 0 ≤ Yr ≤ 1, and the inputs and outputs of the layer are denoted by x 

and Y, respectively. The segmented result generated by the softmax corresponds to the class 

with the maximum probability for each pixel in the image. Finally, a categorical label is 

provided to every pixel in the image by the pixel classification layer. For optimisation of 

network parameters, the cross-entropy loss function [139] is used in the network. The loss was 

calculated using the following equation: 

𝑙𝑜𝑠𝑠 =  − 
1

𝑁
∑ 𝑇𝑖

𝑀
𝑖=1 log(𝑋𝑖)                                                                           (5.6) 

Where Xi and Ti are the response of network and target value, the total number of responses 

in the image is denoted by M, and N is the total number of response in X. The noise stifler 

block is inserted between the connections from the encoder and decoder. The objective of this 

block is to suppress the noise from the image features. By reducing the noise, the spurious 

signal may be eliminated from the image feature, which is the unwanted property of the real-

time medical images. The noise stifler block is shown in figure 5.3. This block performs 

pointwise multiplication of group normalized depth wise convolved features with the original 

features. The pointwise multiplication reduces the high frequency noise components. Thus the 

noise in the feature maps gets reduced which is quiet desirable for effective segmentation of 

MR images. 

5.2.1 Experimental Setup 

The following steps were followed for performing the experiment: 

Step 1: Rician noise [49]  was added manually in the MR images. The percentages of added 

noise were 1%, 3%, 5% and 7%. (Rician noise was added because the noise corruption follows 

Rician distribution in MR images.) 
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Step 2: The proposed network was implemented using the tensor flow framework on Python 

3.7.      

Step3: The network was supplied with the original images and the noisy images for     

segmentation. 

Step 4: The results were obtained, and evaluation metrics were calculated. 

Step 5: For comparison of results, step 2 to 4 were repeated for other networks. 

Step 6: The comparative study of the results of various methods was performed. 

5.2.2 Datasets and Evaluation Metrics 

In this paper, two datasets were used for segmentation. The heart image segmentation datasets 

used in this paper are Sunny Brook Dataset (SCD) and Automatic Cardiac Diagnosis Challenge 

(ACDC). The Sunnybrook Cardiac MR Left Ventricle Segmentation Challenge (MICCAI 

2009) dataset consists of 45 CMR images from patients having four pathological conditions 

like heart failure with ischemia, heart failure without ischemia, hypertrophic cardiomyopathy 

and normal subjects. Manually drawn contours for the endocardium and epicardium are 

provided in text format, which consists of contour points. The automatic Cardiac Diagnosis 

Challenge (ACDC) dataset contains MR images of the Heart in a Short-axis (SAX) view of 

100 patients with manual segmentation of LV, Myocardium, and RV for End-Systole and End-

Diastole phase in the NIfTI (Neuroimaging Informatics Technology Initiative) image 

format. The network was trained on the ACDC dataset for heart segmentation while tested on 

20% part of the same dataset and full SCD dataset. The results obtained were evaluated using 

the metrics: accuracy, Jaccard Index [140] [105], Dice Score and Matthews correlation 

coefficient (MCC) [141]. Accuracy is given as the ratio of correctly classified pixels, 

irrespective of class, to the total number of pixels in the dataset. Jaccard is defined as the 

fraction of the overlapped area between the predicted segmentation and the ground truth data 
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and the union of the area of segmentation being predicted and ground truth data. The Dice score 

is defined as the harmonic mean (F1-measure) of the precision and recall values with a distance 

error tolerance to decide whether a point on the predicted boundary matches the ground truth 

boundary or not. The Matthews correlation coefficient (MCC) is used to firmly quantitative the 

analysis of classification as the mathematical properties of MCC handles both dataset 

imbalance and their invariants effectively. It gives correct predictions for both majorities of the 

negative cases and positive cases, independently of their ratios in the overall dataset. The 

following equations describe the above stated metrics: 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 (𝑈, 𝑉) =  
𝑈 ⋂ 𝑉

𝑈 ⋃ 𝑉
                                                                                    (5.7) 

Where U is the predicted segmentation data, and V is the ground truth data.  

𝐷𝑖𝑐𝑒 𝑆𝑐𝑜𝑟𝑒 =  
2×𝑃×𝑅

𝑅+𝑃
                                                                                         (5.8) 

Where, P and R denotes the precision and recall values respectively. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                                                (5.9) 

𝑀𝐶𝐶 =  
𝑇𝑃∗𝑇𝑁−𝐹𝑃∗𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
                                                           (5.10)                        

Where TP, TN, FP and FN are the four cardinalities of confusion metrics. 

The proposed Convolutional network was implemented using Keras API in Python 3.6 

configured with TensorFlow library as the backend. The python scripts were executed on 

Python 3 Google compute engine backend provided by Google Collaboratory. It provides a 

virtual machine that has 2 x Intel(R) Xeon(R) @ 2.3 GHz CPUs, 12 GB RAM and an NVIDIA 

K80 GPU with 16 GB GRAM. Training of each model is done for 100 epochs with ADAM 

optimizer [118], and the learning rate is kept at 0.0001.  
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5.3 Results: 

5.4 The results obtained from the experiment are presented in this section. The results are 

divided in two parts: 

5.3.1 Results obtained from heart segmentation ACDC dataset: 

The segmentation results obtained when the network was trained and tested on the ACDC 

dataset are shown in figure 5.4. The 60% data was used for training, 20% data was used for 

validation and rest 20% was used for testing. Table 5-1 shows the comparison of evaluation 

metrics for the various networks in the study, along with the proposed network.  

 

Figure 5.3: Segmentation results of ACDC dataset. First column (a)-(s )presents the mask 

of the image being segmented, first row (b)-(f) presents the original image and noisy version 

(1%,3%,5% and 7%) of the original image. Second, third and fourth rows presents the 

segmented results for Seg-Net (h)-(l), U-net (n)-(r) and proposed network (t)-(x) . Second, 

third,  fourth,  fifth and sixth column presents the segmented results for original (h)-(t), 1% 

(i)-(u), 3% (j)-(v), 5% (k)-(w) and 7%(l)-(x) noise corrupted images. 
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Table 5-8: Evaluation Metrics Comparison for ACDC dataset. 

Evaluat

ion 

Metric 

Images with % noise 

 
Original 

Image 
1% 3% 5% 7% 

  LV MYO RV LV MYO RV LV MYO RV LV MYO RV LV MYO RV 

Jaccard Segnet 0.6108

37 
0.3905

25 
0.4488

98 
0.6686

88 
0.5318

7 
0.4919

62 
0.4783

24 
0.1992

2 
0.2087

84 
0.6208

09 
0.4297

62 
0.3866

98 
0.3549

44 
0.4596

48 
0.4362

  

Unet 0.8293

27 
0.7769

6 
0.7451

8 
0.8572

05  
0.7814

52  
0.7655

46  
0.8379

83  
0.7470

99  
0.7366

81 
0.8486

9 
0.7753

56 
0.7421

75 
0.8446

48 
0.7691

57 
0.7584

87 

Propos

ed 
0.8487

39 
0.8220

56 
 

0.8151

48 

0.8866

03 
0.8174

29 
0.8272

07 
0.8805

81 
0.7841

84 
0.8422

65 
0.8721

42 
0.7954

44 
0.8066

27 
0.8791

48 
0.7938

19 
0.8256

4 

Dice score Segnet 0.7162

76 
0.5257

29 
0.5420

69 
0.7631

85 
0.6545

47 
0.5746

78 
0.5959

65 
0.3055

05 
0.2887

54 
0.7293

6 
0.5672

26 
0.4735

47 
0.4537

06 
0.6389

54 
0.3495

8 

Unet 0.9049

13 
0.8703

24 
0.8401

63 
0.9030

53 
0.8600

88 
0.8240

19 
0.8865

19 
0.8365

51 
0.7953

43 
0.8953

97 
0.8507

41 
0.7977

11 
0.8911

76 
0.8534

84 
0.8186

47 

Propos

ed 
0.9341

88 
0.8974

06 
0.8822

29 
0.9358

23 
0.8871

28 
0.8950

23 
0.9288

57 
0.8721

75 
0.9052

66 
0.9241

01 
0.8763

4 
0.8819

22 
0.9231

1 
0.8816

06 
0.8930

77 

MCC Segnet 0.7608

95 
0.6094  

0.7131

09 

0.8075

58 
0.7431

36 
0.7766

83 
0.6589

09 
0.4021

6 
0.5201

22 
0.7653

88 
0.6433

01 
0.7007

05 
0.6432

41 
0.5390

3 
0/6846

38 

Unet 0.9351

9 
0.8613

42 
0.8503

54 
0.9335

91 
0.8717

55 
0.8839

05 
0.9224

48 
0.8619

6 
0.8791

5 
0.9307

67 
0.8769

9 
0.8922

27 
0.9231

74 
0.8798

01 
0.8946

16 

Propos

ed 
0.9554

98 
0.8974

16 
0.8835

73 
0.9558

37 
0.9043

34 
0.9162

92 
0.9482

68 
0.8908

59 
0.9058

82 
0.9558

53 
0.8932

64 
0.9043

89 
0.9496

82 
0.8989

99 
0.9150

58 

Accuracy Segnet 0.9865

79 
0.9718

01  
0.9829

69 
0.9890

42 
0.9793

66 
0.9856

51 
0.9811

15 
0.9636

49 
0.9715

92 
0.9863

02 
0.9731

86 
0.9810

22 
0.9773

16 
0.9717

5 
0.9846

5  

Unet 0.9908

99 
0.9923

72 
 

0.9919

55 

0.9966

95 
0.9913

59 
0.9943

36 
0.9913

19 
0.9909

9 
0.9934

54 
0.9917

85 
0.9920

51 
0.9901

33 
0.9915

91 
0.9916

66 
0.9900

84 

Propos

ed 
0.9961

85 
0.9986

87 
 

0.9962

25 

0.9961

78 
0.9918

81 
0.9963

74 
0.9962

7 
0.9910

97 
0.9940

06 
0.9954

83 
0.9967

48 
0.9916

2 
0.9959

46 
0.9956

06 
0.9931

31 

 

 

5.3.2 Results obtained from heart segmentation SCD dataset: 

The trained network was tested on the SCD dataset, and the obtained results are shown in figure 

5.4. The comparative study of evaluation metrics is presented in Table 5-2. The comparison of 

sensitivity, specificity and precision is shown in figure 5.5 for the SCD dataset. 
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Figure 5.4: Segmentation results of SCD dataset. First column (a)-(s )presents the mask of 

the image being segmented, first row (b)-(f) presents the original image and noisy version 

(1%,3%,5% and 7%) of the original image. Second, third and fourth rows presents the 

segmented results for Seg-Net (h)-(l), U-net (n)-(r) and proposed network (t)-(x) . Second, 

third,  fourth,  fifth and sixth column presents the segmented results for original (h)-(t), 1% 

(i)-(u), 3% (j)-(v), 5% (k)-(w) and 7%(l)-(x) noise corrupted images. 

 

Figure 5.5: Comparison of Specificity, Sensitivity and Precision for the networks. First to 

fifth bars of each metric presents results for original image, 1%, 3%, 5% and 7% noise 

corrupted images respectively. 



67 
                                                                                               

 

                Table 5-9: Evaluation Metrics Comparison for SCD dataset. 

Evaluation 

Metric 
                                  Images with % noise  

  Original 

Image 

1% 3% 5% 7% 

Jaccard Segnet 0.404762   0.39145  0.414578  0.399341 0.280637  

Unet 0.80289 0.792754   0.781819 0.776972 0.755668 

Proposed 0.840893 0.828769  0.816192  0.81158 0.802293 

Dice score Segnet  0.528635 0.521266 0.561425 0.527443  0.389564 

Unet  0.860453  0.85487 0.845826  0.83031 0.82461  

Proposed  0.894782 0.880821 0.889817 0.875198 0.860907 

MCC Segnet 0.619621  0.602494 0.590257 0.603583  0.546244 

Unet 0.873165  0.869793  0.860283 0.851614   0.832359 

Proposed 0.910548 0.900022  0.89506 0.884658  0.867582 

Accuracy Segnet 0.991418   0.990479  0.989066 0.991015  0.989112  

Unet  0.997342 0.998445  0.996254 0.997285   0.998141 

Proposed 0.997789 0.998946  0.997865 0.998063   0.9941 

 

 

5.3.3 Ablation Study: 

 

 

                                                                   Figure 5.6: Layout plan of Ablation study. 
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Table 5-3: Ablation Study: Evaluation Metrics Comparison of SCD dataset for noise free 

original images. 

Network 

Arrangement 

Jaccard Index Dice Score MCC 

(a) 0.80289 0.860453 0.873165  

(b) 0.81983 0.86886 0.87946 

(c) 0.82974 0.87602 0.88012 

(d) 0.840893 0.894782 0.910548 

 

Table 5-4: Ablation Study: Evaluation Metrics Comparison of SCD dataset for 7% noise 

corrupted images. 

Network 

Arrangement 

Jaccard Index Dice Score MCC 

(a) 0.755668 0.82461  0.832359 

(b) 0.77082 0.83198 0.84054 

(c) 0.78264 0.85035 0.84925 

(d) 0.802293 0.860907  0.867582 

 

The ablation study [142]  was performed to study the network performance. Figure 5.6 shows 

the layout plan for the ablation study. This study was performed on SDC dataset for original, 

and 7% noise corrupted images. Figure 5.6(a) shows the conventional U-net as segmentation 

network, (b) shows U-net with NS block as segmentation network, (c) shows Modified 

proposed encoder-decoder network without NS block and shows Modified proposed encoder-

decoder network with NS block. The changes observed for segmentation of images without 

noise and images with 7% added noise are shown in Table 5-3 and Table 5-4. The rows of 

Table 5-3 and Table 5-4 includes the changes in the network, while columns denote the 

comparison of evaluation metrics. Starting from U-net (Figure 5.6 (a)) to the final proposed 

method (Figure 5.6 (d)), the improvement in the evaluation metrics can be clearly observed. 

With every change in the U-net structure, the metrics tend to improve, which indicates the 

significance of every change made to the structure. The statistical paired t-test [143] was 

performed to validate the statistical significance of the proposed method. The null hypothesis 

was rejected as the value of p was less than 0.05 (with α =0.05), and a confidence level of 95% 

was achieved [144] [145]. 
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5.4 Discussion: 

Real-time cardiac MR images are contaminated with spurious and unwanted Rician noise. 

These signals create issues for the segmentation networks in the segmentation of the boundary 

of the objects [146] [147]. The proposed network eliminates the issue of noise in the 

segmentation process by the incorporation of noise stifler block [24]. This block is inserted 

between the encoder and decoder on the path, which transfers the feature and indices 

information. The noise stifler block (NSB) shown in figure 5.2 performs pixel-wise 

multiplication on the depth wise convolution outputs for the reduction of noise. In NSB, depth 

wise separable convolution reduces the number of extra multiplication and produces strongly 

correlated features, which are group normalized and then the pixel-wise multiplication is 

performed with the original feature maps [114].  

The comparative analysis of Figure 5.3 and figure 5.4 shows the proposed network's 

performance effectiveness. When the network was tested on a different dataset, the Jaccard and 

dice score showed a good improvement of above 5% and  3.5%, respectively for noise-free 

images. For 7% noise, the improvement of above 6% and 4.8% was observed in both the 

metrics, respectively. This performance is achieved because of the incorporation of noise stifler 

block, which is missing in the conventional counterpart of the proposed network. The depth 

wise separable convolution produces enhanced spatial information as compared to the standard 

convolution because of reduced convolution cost. The use of group normalization instead of 

batch normalization gives stable accuracy as the dependence on batch size is eliminated. This 

combination produces robust feature maps with reliable information contents. These maps are 

further applied to NS blocks for suppressing the noise. In the delineation of boundary and 

contour details, the noise is the main disturbing element that is suppressed using the NS blocks. 

The noise suppressed features, when received by the up sampling layers, produces the results 

with accurate boundary and contour details. The use of SELU activation instead of normal 
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RELU gives the added advantage to saving the network from the problem of dying RELU, 

which in turn eliminates the issue of vanishing gradient [125]. The self and internal 

normalization property of the SELU produces reliable normalized data, which produces more 

accurate results in comparison to the conventional counterparts. The prominent figure of merit 

for the proposed network is the ability to produce exceedingly good results without retraining 

the network. The increment in the Jaccard indicates that the amount of overlapping area is more 

between the segmented image and ground truth image for the proposed method as compared 

to the other methods in the study. The increased dice score signifies that the boundary pixels 

are segmented perfectly. As the noise level is increased, the proposed method produces more 

clinically pertinent images as compared to the other methods in the study. This shows the better 

segmentation capability of the proposed network at various noise levels. The statistical analysis 

[148] shows a significant difference in the results obtained. The proposed method can be 

applied to the medical images, even corrupted by noise, for efficient segmentation. 

5.6  Conclusion: 

The network presented in this chapter not only accurately segmented the standard images but 

also effectively segmented the noisy images. Thus it can be seen as the comprehensive 

capability of the network as the images acquired using any method contains noise that is 

unwanted. The region of interest in medical imaging is most important for planning the 

diagnosis of the disease. So, for medical analysis, the segments of the heart are clearly 

delineated by the proposed network, which is having nearly the same contour shape and 

boundary details. The network trained on one dataset produces accurate segmentation results 

for other datasets. This proves the ambient capability of the network, which is helpful in saving 

time and resources. The proposed automatic approach can help in reducing the time and burden 

of the medical system by producing accurate results in less time. 


