It is certified that the work contained in the thesis titled "Denoising, Segmentation and

Classification of Medical Images Using Enhanced Deep Learning-Based Methods" by

"Mr. Sumit Tripathi " has been carried out under our supervision and that this work has not

been submitted elsewhere for a degree.

It is further certified that the student has fulfilled all the requirements of Comprehensive

Examination, Candidacy and SOTA for the award of Ph.D. Degree.

Weerij Sharma

Prof. Neeraj Sharma (**Supervisor**) School of Biomedical Engineering Indian Institute of Technology (Banaras Hindu University) Varanasi - 221005, (U.P.), India.

DECLARATION BY THE CANDIDATE

I, *Sumit Tripathi*, certify that the work embodied in this Ph.D. thesis is my own bonafide work and carried out by me under the supervision of *Prof. Neeraj Sharma* from "17 July 2017" to "30 June 2021" at School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi. The matter embodied in this thesis has not been submitted for the award of any other degree/diploma. I declare that I have faithfully acknowledged and given credit to the research workers wherever their works have been cited in my work in this thesis. I further declare that, I have not wilfully copied any other's work, paragraphs, text, data, results, etc. reported in the journals, books, magazines, reports, dissertations, thesis, etc., or available at websites and have not included them in this Ph.D. thesis and have not cited as my own work.

Date: 07/07/2021

Place: IIT (BHU), Varanasi

Sumit Tripathi

CERTIFICATE BY THE SUPERVISOR

It is certified that the above statement made by the student is correct to the best of our knowledge.

Weerij Sharma

Prof. Neeraj Sharma (Supervisor)

for

Weerij Sharma

Signature of Head of Department/Coordinator of School
"SEAL OF THE DEPARTMENT/SCHOOL"

COPYRIGHT TRANSFER CERTIFICATE

Title of the Thesis : Denoising, Segmentation and Classification of Medical Images

Using Enhanced Deep Learning-Based Methods

Candidate's Name : Mr. Sumit Tripathi

Copyright Transfer

The undersigned hereby assigns to the Indian Institute of Technology (Banaras Hindu University) Varanasi all rights under copyright that may exist in and for the above thesis submitted for the award of the *"DOCTOR OF PHILOSOPHY"*.

Date: 07/07/2021

Place: Varanasi

Sumit Tripathi

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for author's personal use provided that the source and University's copyright notice are indicated. First and above all, I praise God, the almighty, for providing me with this opportunity and granting me the capability to proceed successfully. This thesis appears in its current form due to the assistance and guidance of several people. I would therefore like to offer my sincere thanks to all of them.

I would like to express my immense gratitude to my supervisor **Prof. Neeraj Sharma** for his excellent guidance and motivation. The completion of this work is the outcome of his warm encouragement, thoughtful guidance, critical comments, and thesis correction. I would like to express my appreciation to my research progress evaluation committee (RPEC) member, **Prof. S. K. Singh**, Department of Computer Science and Engineering, IIT (BHU) Varanasi and **Dr Shiru Sharma**, School of Biomedical Engineering, IIT (BHU) Varanasi for their kind cooperation during this work. Their comments and suggestions during my work progress presentation improved the quality of research work. Further, I am very thankful to Prof. Ashish Verma, Senior Radiologist at the Institute of Medical Sciences, Banaras Hindu University. He has helped to explore the fundamental challenges in the diagnosis. He was always available for discussion, even in his busy hours at the hospital and medical school.

I gratefully acknowledge **Prof. P. K. Roy**, Coordinator, and **Dr S K Rai**, DPGC Convener of the School, to smooth out all official documents. I would like to sincerely thank all the supporting staff of the School for their kind help whenever I required.

I would like to thank a special group Dr Munendra Singh, Mr Uvanesh K., Mr Romel Bhattacharjee and Mr Taresh Sarvesh Sharan, for sharing their fruitful knowledge and support. I also recognize the support from Mr Alok Tiwari and Mr Chranjeev Sagar. I would also like to thank my colleagues and seniors Dr R. Gowri, Dr Rishi Prakash, Dr Anurag Vidyarthi, Ms. Sribidhya Mohanty and Lt. Dinesh Chandra Pandey for their support and encouragement.

Finally, I would like to thank my family for all their love, encouragement and trust. I would like to remember and thank my dear sister Late Ms Pragya Tripathi, who left the immortal frame during my PhD. I would like to express my sincerest regards and love for my father, Mr P.M. Tripathi, who supported me in all my pursuits. I thank my father in law Mr. O.P. Trigunait for his support and encouragement. I would like to express special thanks to my wife, Mrs Roma Tripathi, for her unconditional support during my PhD. She is always a source of inspiration for me. My daughter Ms Shivanya Tripathi needs a special thanks who was always there to entertain me during my work.

Thank you all.

Date : 07/07/2021

Place : Varanasi

(Sumit Tripathi)

Dedicated To My Family

S. No.	Description	Page No.
a)	List of Tables	xiii
b)	List of Figures	xv
c)	List of Abbreviations	xviii
d)	Preface	ХХ
1.0	Chapter 1: Introduction	1
1.1	Challenges in the Medical Imaging	2
1.2	Motivation for MR imaging	3
1.3	Objective of the Thesis	5
1.4	Contribution of the Thesis	6
1.5	Organisation of the Thesis	6
2.0	Theoretical Background	9
2.1	Segmentation using deep learning based methods	9
2.2	Denoising using deep learning based methods	13
2.3	Classification using deep learning based methods	16
2.4	Transfer learning for image processing	18
3.0	Automatic Segmentation of Brain Tumour in Magnetic Resonance Images using an Enhanced Deep Learning Approach	21
3.1	Introduction	22
3.2	Methodology	24

3.3	Clinical external validation of the segmented data and acquisition of dataset	28
3.4	Dataset Acquisition	28
3.5	Results	29
3.5.1	Results obtained when network was trained and tested on the Kaggle data	29
3.5.1.1	Results obtained from 50 epochs of training	29
3.5.1.2	Results obtained from100 epochs of training	30
3.5.2	Results obtained when network was trained on Kaggle data and tested fig share dataset	31
3.6	Discussion	33
3.7	Conclusion	36
4.0	Computer Based Segmentation of Cancerous Tissues in Biomedical Images using Enhanced Deep Learning Model	37
4.1	Introduction	38
4.2	Methodology	40
4.2.2	External clinical validation of the segmented result:	45
4.2.3	Dataset acquisition	45
4.3	Results	46
4.3.1	Results obtained for Brain Tumour Datasets	46
4.3.2	Results obtained for Skin Cancer Datasets	48
4.4	Discussion	49
4.4.1	Quantitate Analysis	49
4.4.2	Performance Analysis	50
4.4.3	Qualitative Analysis	51
4.5	Conclusion	52

5.0	An Augmented Deep Learning Network with Noise Suppression feature for Efficient Segmentation of Cardiac MR Images	53
5.1	Introduction	54
5.2	Methodology	56
5.2.1	Experimental Setup	61
5.2.2	Datasets and Evaluation Metrics	62
5.3	Results	63
5.3.1	Results obtained from heart segmentation ACDC dataset	64
5.3.2	Results obtained from heart segmentation SCD dataset	65
5.3.3	Ablation Study	67
5.4	Discussion	69
5.5	Conclusion	70
6.0	Denoising of Magnetic Resonance Images Using Discriminative Learning-Based Deep Convolutional Neural Network	71
6.1	Introduction	72
6.1.1	Nature of Rician noise	73
6.2	Methodology	74
6.2.1	Clinical external validation of the denoised data	79
6.2.2	Testing the applicability of denoised data by segmentation	79
6.2.3	Comparison with other methods	79
6.2.3.1	Weighted Nuclear Norm Minimization (WNNM) Method	80
6.2.3.2	Non-local Means (NLM) Denoising Method	80
6.2.3.3	Denoising Convolutional Neural Network (DnCNN)	80
6.3	Dataset acquisition	80
6.4	Results	81

6.4.1	Results of Brain web dataset	81
6.4.2	Results from IXI-Guys dataset	82
6.4.3	Results of denoised segmented images	84
6.5	Discussion	85
6.6	Conclusion	108
7.0	Deep Learning and Transfer Learning based Approaches for Classification of Medical Images.	89
7.1	Introduction	90
7.2	Methodology	93
7.3	Dataset Acquisition and Evaluation Metrics	100
7.3.1	Dataset Used	100
7.3.2	Evaluation of dataset	100
7.4	Results	102
7.5	Discussion	105
7.6	Transfer Learning Based Approach for Classification of Covid-19 infected images	108
7.6.1	Methodology	108
7.6.2	Transfer Learning	109
7.6.3	MobileNet V2 architecture	110
7.6.4	Dataset Used	113
7.6.4.1	X-ray Dataset	113
7.6.4.2	CT Dataset	113
7.6.5	Results	113
7.6.6	Discussion	154
7.6.6.1	Quantitative Analysis	154
7.6.7	Conclusion	158

8.0	Conclusion and Future scope	123
8.1	Conclusion	123
8.2	Future Scope	124
	References	127
	Author's List of Publications (on PHD Work)	157

Table No.	Description	Page No.
2-1	Selected previous significant work for segmentation of medical images.	12
2-2	Selected previous significant work for image denoising	14
2-3	Selected previous significant work for classification of images	17
2-4	Selected previous significant work on Transfer Learning.	19
3-1	Parameter comparison of the networks for 50 epochs of training	30
3-2	Parameter comparison of the networks for 100 epochs of training	31
3-3	Parameter comparison of the networks for 50 epochs of training when network is trained on kaggle dataset and tested on figshare dataset	33
3-4	Parameter comparison of the networks for 100 epochs of training when network is trained on kaggle dataset and tested on figshare dataset.	33
4-1	Comparison of evaluation metrics when the network was trained and tested on Kaggle dataset.	47
4-2	Comparison of evaluation metrics when the network was trained on Kaggle dataset and tested on Figshare dataset.	47
4-3	Comparison of evaluation metrics when the network was trained on Kaggle dataset and tested on IMS-BHU dataset.	47
4-4	Comparison of evaluation metrics when the network was trained and tested on ISIC 2016 dataset.	48
4-5	Comparison of evaluation metrics when the network was trained on ISIC 2016 dataset and tested on ISIC 2018 dataset.	49
5-1	Evaluation Metrics Comparison for ACDC dataset.	65
5-2	Evaluation Metrics Comparison for SCD dataset.	67
5-3	Ablation Study: Evaluation Metrics Comparison of SCD dataset for noise free original images.	68

5-4	Ablation Study: Evaluation Metrics Comparison of SCD dataset for 7% noise corrupted images	68
6-1	Results of Friedman Test showing the mean ranks of the methods.	84
6-2	Statistical analysis results using Wilcoxon signed rank test with $\alpha = 0.05$.	84
6-3	Comparison of segmentation evaluation metrics.	85
7-1	The PCC values for GLCM.	99
7-2	The PCC values for LBP.	99
7-3	Global Accuracies of the classifiers	103
7-4	Mean ranks determined using Friedman Test.	105
7-5	Results of Wilcoxon signed rank test with $\alpha = 0.05$.	105
7-6	Evaluation metric comparison of CT images.	114
7-7	Evaluation metric comparison of X-Ray images.	114
7-8	Evaluation metric comparison of CT images with expected low values.	114
7-9	Evaluation metric comparison of X-Ray images with expected low values.	115

Figure No.	Description	Page No.
2.1 (a) (b) (c)	Block diagram for the flow of Segmentation Process. Block diagram for the flow of Denoising Process. Block diagram for the flow of Classification Process.	20
3.1	The architecture of CCN-PR-Seg-net segmentation network.	25
3.2	Segmentation results when network was trained on Kaggle dataset and tested on same dataset (a) original image, (b) segmentation mask, (c) seg-net output, (d) u-net output, (e) CCN-PR-seg-net output for 50 epochs of training.	29
3.3	Segmentation results when network was trained on Kaggle dataset and tested on same dataset (a) original image, (b) segmentation mask, (c) seg-net output, (d) u-net output, (e) CCN-PR-seg-net output for 100 epochs of training.	30
3.4	Segmentation results when the network was trained on Kaggle dataset and tested on figshare dataset (a) original image, (b) segmentation mask, (c) seg-net output, (d) u-net output, (e) CCN-PR-seg-net output for 50 epochs of training.	32
3.5	Segmentation results when network was trained on Kaggle dataset and tested on figshare dataset (a) original image, (b) segmentation mask, (c) seg-net output, (d) u-net output, (e) CCN-PR-seg-net output for 100 epochs of training.	32
4.1	Architecture of the proposed network.	41
4.2	Depth wise Separable block with bottleneck connection	42
4.3	Functioning of layers in depthwise separable convolution block.	43
4.4	Depth wise Separable Convolution Functioning.	43
4.6	4.6 Results obtained when the network was trained and tested on kaggle dataset, (a) original image, (b) corresponding mask, (c) seg-net output, (d) u-net output, (e) proposed network output.	
4.7 Results obtained when the network was trained on kaggle datas and tested on Figshare dataset, (a) original image, (corresponding mask, (c) seg-net output, (d) u-net output, (proposed network output.		46

4.8	Results obtained when the network was trained on kaggle dataset and tested on IMS-BHU dataset, (a) original image, (b) corresponding mask, (c) seg-net output, (d) u-net output, (e) proposed network output.	47
4.9	Results obtained when the network was trained and tested on ISIC 2016 dataset, (a) original image, (b) corresponding mask, (c) seg-net output, (d) u-net output, (e) proposed network output.	48
4.10	Results obtained when the network was trained on ISCI 2016 dataset and tested on ISCIC 018 dataset, (a) original image, (b) corresponding mask, (c) seg-net output, (d) u-net output, (e) proposed network output.	48
5.1	Modified Depth wise Separable block.	57
5.2	Architecture of the proposed network.	58
5.3	Segmentation results of ACDC dataset. First column (a)-(s)presents the mask of the image being segmented, first row (b)- (f) presents the original image and noisy version (1%,3%,5% and 7%) of the original image. Second, third and fourth rows presents the segmented results for Seg-Net (h)-(l), U-net (n)-(r) and proposed network (t)-(x) . Second, third, fourth, fifth and sixth column presents the segmented results for original (h)-(t), 1% (i)-(u), 3% (j)-(v), 5% (k)-(w) and 7%(l)-(x) noise corrupted images.	64
5.4	Segmentation results of SCD dataset. First column (a)-(s)presents the mask of the image being segmented, first row (b)- (f) presents the original image and noisy version $(1\%,3\%,5\%)$ and 7%) of the original image. Second, third and fourth rows presents the segmented results for Seg-Net (h)-(l), U-net (n)-(r) and proposed network (t)-(x) . Second, third, fourth, fifth and sixth column presents the segmented results for original (h)-(t), 1% (i)- (u), 3% (j)-(v), 5% (k)-(w) and 7% (l)-(x) noise corrupted images.	66
5.5	Comparison of Specificity, Sensitivity and Precision for the networks. First to fifth bars of each metric presents results for original image, 1%, 3%, 5% and 7% noise corrupted images respectively.	66
5.6	Layout plan of Ablation study.	67
6.1	Depthwise Separable block with LRN	75
6.2	Architecture of the proposed denoising model.	77

6.3	Denoising results of network trained on Brainweb dataset (a) SSIM and (b) PSNR.	82
6.4	BrainWeb dataset denoising example: (a) original image, (b) with noise (c) NLM, (d) WNNM, (e) DnCNN, and (f) Proposed Model.	82
6.5	Denoising results of IXI-Guys dataset with network trained on IXI Guys dataset: (a) SSIM and (b) PSNR	83
6.6	IXI Guys dataset denoising example: (a) original image, (b) image with noise, the corresponding denoised image from (c) NLM, (d) WNNM, (e) DnCNN, and (f) Proposed Model.	83
6.7	The segmentation results of denoised images (a) noisy image (15%), (b) NLM, (c) WNNM, (d) DnCNN, (e) Proposed Model.	85
7.1	Architecture of proposed network.	93
7.2	Schematic pipeline of proposed network	96
7.3	Metrics comparison of covid-19 class (a) Accuracy, (b) F1- Score, (c) F0.5-score,(d) MCC,(e) FM Index and (f) BCR	103
7.4	Metrics comparison of normal class (a) Accuracy, (b) F1-Score, (c) F0.5-score,(d) MCC,(e) FM Index and (f) BCR.	104
7.5	Metrics comparison of viral pneumonia class (a) Accuracy, (b) F1-Score, (c) F0.5-score,(d) MCC,(e) FM Index and (f) BCR.	104
7.6	Pipeline of the proposed work	109
7.7	Feature transfer using transfer learning	110
7.8	Depth wise Separable convolution block.	111
7.9	Functioning of Mobile Net V2 model.	112
7.10	Mobile Net V2 architecture for classification.	112
7.11	Evaluation Metrics comparison of CT images.	115
7.12	Evaluation Metrics comparison of X-Ray images.	116

Abbreviation	Details
MRI	Magnetic Resonance Imaging
СТ	Computed Tomography
US	Ultrasound
PET	Positron Emission Tomography
LRN	Local Response Normalization
CCN	Cross Channel Normalization
FCN	Fully Convolutional Neural Network
CNN	Convolutional Neural Network
DL	Deep Learning
RELU	Rectified Linear Units
PRELU	Parametric Rectified Linear Units
mIoU	Mean of Intersection over Union
BF score	Berkley First score
BN	Batch Normalization
GN	Group Normalization
CMRI	Cardiac Magnetic Resonance Imaging
GAN	Generative Adversarial Network
SELU	Scaled exponential Linear Unit
NSB	Noise Stifler Block
NIFTI	Neuroimaging Informatics Technology Initiative

Matthews correlation coefficient
Structural Similarity Index Measure
Peak Signal to Noise Ratio
Probability Distribution Function
Mean Squared Error
Weighted Nuclear Norm Minimization
Non-local Means
Denoising Convolutional Neural Network
Local Binary patterns
Gray Level Co-occurrence Matrix
Random Forest
Support Vector Machine
Pearson correlation coefficient
Fowlkes-Mallows Index
Balanced Classification Rate
Severe Acute Respiratory Syndrome Coronavirus 2
False Positive Rate
False Negative Rate
Positive prediction value
True negative rate
True Positive Rate
Geometric Mean
Youden's index

Biomedical imaging has revolutionized the healthcare system as it helps in analysing the complications in the human body. The advent of computational science and its combination with medical imaging has enabled medical practitioners to provide the best diagnoses. The recent advancement in this combination has proved to be a boon for human lives as complex inner structures of the body can be analysed using these methods. A lot of non-invasive techniques has been devised in the recent past for serving humanity. MRI, Ultrasound, X-ray, Computed Tomography (CT) are the example of such techniques. MRI is an important modality that focuses on providing structural information and detailed characterization of disease. The MR images are further analyzed for finding the diseases such as brain tumour, heart vessel structures etc. For inspecting the pathological and anatomical structural changes in the body, the images are further segmented. The image segmentation aims to present the desired region of interest to the clinical practitioners to diagnose the disease. The advantages of this imaging technique are its non-ionization behaviour and better image quality with high tissue contrast resolution, but it is corrupted with the artefacts. These artefacts result from noise, patient body movement etc., which needs to be removed before analysing the images for the disease diagnosis. The MR images are corrupted with Rician noise, which gets induced because of magnetic coils of the receiver circuitry. Noise removal in MRI is of prime importance as it enhances the visual quality of the images. Biomedical image classification is another important task in the field of biomedical imaging. The image classification task allows the medical practitioner to identify different but related symptoms of the disease. It helps in identifying the features of the diseases in various modalities.

Computer-aided methods play a crucial role in biomedical image processing. The evolution of deep learning has facilitated this analysis by providing accurate and precise results automatically. Deep learning-based techniques have presented the state of the art performance in biomedical image processing. The self-learning property of these methods has eliminated the need for handcrafted features. In such a way, it has provided outstanding solution with reliable results in medical image processing.

The present work is carried out to address the critical issues as stated above that helps in better diagnosis. In this view, the research work has considered the deep learning-based methods for the segmentation and denoising the Magnetic Resonance Images. The methods proposed in this work archives remarkable improvement over their conventional counterparts. This thesis contributes to the necessary theory and implementations to improve biomedical image processing applications such as segmentation, denoising, and classification using deep learning-based methods. Chapter 1 is the introduction of the thesis, which states the current issues, objectives, and thesis contribution. Chapter 2 discusses the theoretical background of image segmentation, denoising and classification. This chapter also gives a brief outline of deep learning and transfer learning-based approaches for various applications of biomedical image image processing.

Chapter 3 introduces an enhanced deep learning approach for the segmentation of brain tumour in MR images. This method was implemented using cross-channel normalization, residual connections and parametric RELU in a conventional segmentation network. The obtained results best-preserved the boundary details by explicitly delineating the contour of the tumour region. It produced exceedingly satisfactory results without retraining the network on the different dataset. Chapter 4 presents an end to end trainable segmentation network incorporated using depthwise separable convolution and group normalization for segmentation of public as well as real-time MR images. Moreover, this network also segmented the skin cancer images with good accuracy and precision. Chapter 5 introduces a deep learning-based approach for the segmentation of real-time noise MR images. In this view, a noise stifler block is introduced between the encoder and decoder of the network. This method produced precise results in the segmentation of cardiac MR images.

Chapter 6 presents an approach for reducing the noisy components in the Magnetic Resonance Image. The motive of the presented approach is to preserve the boundary details while reducing the noisy components. In this regard, a modified deep learning-based approach is presented using depth wise separable convolution instead of regular convolution and local response normalization. This method produced good results without retraining it on other datasets. The proposed method preserved the spatial resolution to a large extent. Chapter 7 introduces a deep learning-based architecture for the classification of covid-19 infected images. Moreover, it also proposes a transfer learning-based approach for efficient classification of covid-19 infection in CT and X-ray images. The features of infection are captured using the well-known deep learning-based models, and these features are further used to train the SVM classifier. The method produced fast and reliable results. In Chapter 8, the thesis's overall contribution and its future directions have been enlisted, which might be of interest for further research in this area.