Acknov	vledgen	ntsi		
Table o	of Conte	tsüi		
List of	Figures	vii		
List of	Tables.	xi		
List of .	Abbrevi	tionsxiii		
List of	Symbol	xv		
Preface	2	xvii		
Chapte	er 1 I	roduction and Literature Survey1-26		
1.1	Introd	ction1		
1.2	ew of 2D TMDs2			
	1.2.1	Structure of MoS ₂		
	1.2.2	Different Phase of MoS ₂ 4		
	1.2.3	Raman Study of MoS ₂ 5		
1.3	Synth	Synthesis of MoS ₂ Nanostructures		
	1.3.1	Top-down Approach for MoS ₂ Synthesis6		
		1.3.1.1 Mechanical Exfoliation7		
		1.3.1.2 Liquid Exfoliation7		
		1.3.1.3 Lithium Ion Intercalation8		
	1.3.2	Bottom-up Approach for MoS ₂ Synthesis8		
		1.3.2.1 Physical Vapor Deposition (PVD)8		
		1.3.2.2 Chemical Vapor Deposition (CVD)9		
		1.3.2.3 Solution Chemical Process		
1.4	Properties and Applications of MoS ₂ Nanostructures			
	1.4.1	Electronic Properties10		
	1.4.2	Optical Properties10		
	1.4.3	Thermal Properties11		
	1.4.4	Applications of 2D MoS ₂ Nanomaterials12		
1.5	Thern	l Conductivity of 2D MoS ₂ Nanostructure13		

Table of Contents

	1.5.1	Different Technique to Determine Thermal Conductivity13	3
	1.5.2	Literature Survey on Thermal Conductivity of MoS ₂ Nanostructures by OTR Method	5
1.6	Photo	detection Applications of MoS ₂ Nanostructure17	7
	1.6.1	Basic Principle of Photodetection Process	3
	1.6.2	Literature Survey on Photodetection Application of MoS ₂ Nanostructure)
1.7	Surfac	e Enhanced Raman Spectroscopy22)
	1.7.1	Theories for SERS Enhancement	3
	1.7.2	Literature Survey on SERS Application of MoS ₂ Nanostructures24	ŀ
1.8	Scope	and Objective of the Present Work25	5
Chapte	er 2 S	ynthesis and Characterization Techniques27-44	ŀ
2.1	Mater	ials Synthesis27	,
	2.1.1	CVD Synthesis of MoS ₂ Nanostructures28	
		2.1.1.1 Horizontally Grown Interconnected Network Few-Layer MoS ₂ Nanostructure	l
		2.1.1.2 Horizontally Grown Triangular Bi-Layer MoS ₂ Nanostructure	
		2.1.1.3 Vertically Grown Few-Layer MoS ₂ Nanostructure32	•
2.2	Chara	cterization Techniques33	3
	2.2.1	X-ray Diffraction (XRD)	ŀ
	2.2.2	Scanning Electron Microscope (SEM)	j
	2.2.3	Transmission Electron Microscope (TEM)	,
	2.2.4	Atomic Force Microscopy (AFM)	3
	2.2.5	Raman Spectroscopy)
	2.2.6	Photoluminescence (PL) Spectroscopy42	2
	2.2.7	UV-Visible Spectrophotometer43	3
	2.2.8	Current Voltage (IV) Measurement	3
	2.2.9	SERS Measurement	ŀ

Chapte	er 3 T	hermal Co	onductivity of MoS ₂ Nanostructures using Optothermal		
	R	aman Spe	ctroscopy Technique45-66		
3.1	Introd	uction			
3.2	Result	Results and Discussion48			
	3.2.1	Thermal	Conductivity of Triangular Supported Bi-Layer MoS ₂ 48		
		3.2.1.1	Characterization of Triangular Bi-Layer MoS ₂ 48		
		3.2.1.2 M	Calculation of Thermal Conductivity of Supported Bi-Layer IoS ₂ Film		
	3.2.2	Thermal (Film	Conductivity of Vertically Oriented Few-Layer MoS ₂		
		3.2.2.1	Characterization of VFL-MoS ₂ Film58		
		3.2.2.2	Calculation of Thermal Conductivity of VFL-MoS ₂ Film60		
3.3 (Conclusi	ons			
Chapte	er4 T N	hermal Se anostructu	nsitive Quantum Confinement of MoS2 Ires67-80		
4.1	Introd	uction			
	4.1.1	Origin of Materials.	Photoluminescence and Variation of Bandgap in 2D		
4.2	Resul	ts and Disc	pussion71		
	4.2.1	Origin of	Photoluminescence in MoS ₂ Nanostructures71		
	4.2.2	Temperat Shaped Bi	ure Dependent PL Study of Horizontally Grown Triangular -Layer MoS ₂ 73		
	4.2.3	Tempera MoS ₂	ture Dependent PL Study of Vertically Grown Few-Layer		
4.3	Conclu	sions			
Chapte	er 5 P	hotodetect	ion Application of MoS2 Nanostructures		
5.1	Introd	uction			
5.2	Result	s and Discu	ussion		
	5.2.1	Photodete	ction Behaviour of Horizontally Grown Interconnected		
		Network of	of Few-Layer MoS ₂ 83		
		5.2.1.1	Characterization of Horizontally Grown Interconnected Few- Layer MoS ₂		

		5.2.1.2	Photoresponse of Few-Layer MoS ₂ /Si Heterojunction	85
	5.2.2	Photode	tection Behaviour of Vertically Oriented Few-Layer Mo	S ₂ 90
		5.2.2.1	Characterization of Vertically Oriented Few-Layer Mo	oS ₂ 90
		5.2.2.2	Photoresponse of Vertically Oriented Few-Layer MoS Heterojunction	⁵ 2/Si 92
5.3	Concl	usions		95
Chapte	er 6 S	ERS App	lication of MoS ₂ Nanostructures	97-116
6.1	Introd	uction		97
	6.1.1	Enhance	ement Factor (EF)	99
	6.1.2	Mechani	ism for SERS Signal using MoS ₂ Substrates	100
6.2	Result	ts and Disc	cussion	103
	6.2.1	Characte	erization of Dye Molecules	103
	6.2.2	SERS A Few-Lay	pplication of Horizontally Grown Interconnected Netwo	ork of 105
	6.2.3	SERS A MoS ₂	pplication of Horizontally Grown Triangular Bi-Layer	108
	6.2.4	SERS A	pplication of Vertically Oriented Few-layer MoS ₂	111
6.3	Conclu	isions		116
Chapte	er7C	Conclusion	and Scope for Future Work	.117-119
7.1	Conclusions117			117
7.2	Future	e Scope of	the Work	119
Refere	nces	•••••		121
List of	Publica	tions		141

List of Figures

Figure 1.1 Schematic diagram of periodic table with highlighted transition metals (green in colour) and three chalcogen elements (yellow in colour) [21]2
Figure 1.2 Schematic diagram of (a) Side view of MoS ₂ and (b) Top view of MoS ₂ 3
Figure 1.3 Schematic diagram of MoS ₂ polytypes (a) 1T phase (tetragonal symmetry, one layer per repeat unit, octahedral coordination) (b) 2H phase (hexagonal symmetry, two layers per repeat unit, trigonal prismatic coordination) (c) 3R phase (rhombohedral symmetry, three layers per repeat unit, trigonal prismatic coordination) [11]4
Figure 1.4 Schematic representation of different Raman active modes of MoS ₂ [31]5
Figure 1.5 Applications of 2D MoS ₂ nanostructures
Figure 1.6 Schematic diagram of optothermal Raman technique. Black arrow shows the direction of heat flow [72]
Figure 1.7 The electromagnetic spectrum of 2D TMDs [91]18
Figure 1.8 Band alignment of p-n junction under photoconductive mode [92]19
Figure 1.9 Band alignment of p-n junction under photovoltaic mode [92]20
Figure 1.10 Hypothetical example of the spectral dependence of SERS [119]24
Figure 2.1 Schematic diagram of synthesis process for 2D-MoS ₂ nanostructures
Figure 2.2 Schematic diagram of MoS ₂ growth via CVD method
Figure 2.3 Schematic diagram of experimental condition of synthesis of different morphologies of 2D-MoS ₂ nanostructures
Figure 2.4 Schematic diagram of growth mechanism of triangular bi-layer MoS ₂ nanostructure over SiO ₂ /Si substrate
Figure 2.5 Schematic diagram of growth mechanism of vertically oriented few-layer MoS ₂ nanostructure over Si substrate. 33
Figure 2.6 Schematic diagram of incident and diffracted X-rays from the crystal
Figure 2.7 Schematic diagram of core component of SEM microscope [138]

Figure 2.8 (a) Schematic diagram of core component of TEM microscope. Transmitted and diffracted electrons for (b) Bright field and (c) Dark field imaging in TEM [138]
Figure 2.9 Schematic diagram of the atomic force microscope [141]39
Figure 2.10 Schematic representation of the scattering process in Raman scattering (Rayleigh, stokes and anti-stokes line) [119]40
Figure 2.11 Schematic diagram of Raman spectrometer. 41
Figure 2.12 Schematic representation of the photoluminescence spectroscopy [119]42
Figure 2.13 Schematic diagram of UV-Visible spectrometer [145]43
Figure 3.1 Schematic representation of optothermal Raman technique
Figure 3.2 (a) Optical image, (b) Raman spectrum (Lorentzian fitting of A_{1g} and E^{1}_{2g} as inset, (c) AFM image and (d) Corresponding height profile of triangular bi-layer MoS ₂ over SiO ₂ /Si substrate
Figure 3.3 (a) Schematic diagram of temperature dependent Raman study. (b) Temperature dependent Raman spectra of triangular bi-layer MoS ₂ on SiO ₂ /Si substrate using LWD 50x. Variations of (c) Peak position and (d) FWHM with respect to temperature of triangular bi-layer MoS ₂ on SiO ₂ /Si substrate
Figure 3.4 (a) Schematic diagram of power dependent Raman study. (b) Power dependent Raman spectra of triangular bi-layer MoS_2 on SiO_2/Si substrate using LWD 50x lens. Variations of (c) Peak position and (d) FWHM with incident laser power for triangular bi-layer MoS_2 .
Figure 3.5 (a) Temperature dependent Raman spectra of triangular bi-layer MoS_2 on SiO_2/Si substrate using 100x objective lens. (b) Variation of peak position with respect to temperature. (c) Power dependent Raman spectra of triangular bi-layer MoS_2 on SiO_2/Si substrate using 100x objective lens. (d) Variation of peak position with respect to laser power
Figure 3.6 (a) HRSEM (b) AFM (2D view) and (c) Height profile of VFL-MoS ₂ over Si- substrate. (d) HRTEM image of edge cross sectional view of VFL-MoS ₂ (e) XRD pattern and (f) Raman spectrum of VFL-MoS ₂
Figure 3.7 (a) Schematic of temperature dependent Raman study of VFL-MoS ₂ (b) Raman spectra of VFL-MoS ₂ at different temperatures (c) Raman shifts and (d) FWHM of E^{1}_{2g} and A_{1g} modes as a function of temperature

Figure 3.8 (a) Schematic of heat conduction through VFL-MoS₂ (b) Raman spectra of VFL-MoS₂ at different laser powers (c) Raman shifts and (d) FWHM of E¹_{2g} and A_{1g} modes as a Figure 4.1 Schematic diagram of the temperature dependent PL measurement process. **Figure 4.3** A schematic representation of A and B excitons in 2D materials......72 **Figure 4.4** (a) Optical image of triangular bi-layer MoS_2 over SiO_2/Si substrate. (b) Room temperature PL spectra (Gaussian fitted) of triangular bi-laver MoS₂ over SiO₂/Si substrate (c) SEM image of vertically oriented few-layer MoS₂ nanosheets (d) Room temperature PL **Figure 4.5** (a) Optical image of triangular bi-layer MoS_2 over SiO_2/Si substrate. (b) Gaussian fitted PL spectra of triangular bi-layer MoS₂ on SiO₂/Si substrate at different temperatures. Variation of (c) Total PL intensity (d) FWHM for A exciton with temperature. (e) Variation of spin-orbit splitting between A and B exciton with temperature. (f) Fitting of variation in Figure 4.6 (a) SEM image of VFL-MoS₂ (b) Gaussian fitted PL spectra of VFL-MoS₂ on Si substrate at different temperatures. Variation of (c) Total PL intensity (d) FWHM for A exciton with temperature for VFL-MoS₂. Variation of (e) Spin-orbit splitting between A and B exciton with temperature of VFL-MoS₂. (f) Fitting of variation in bandgap with Figure 5.2 (a) SEM image (b) AFM image (c) Corresponding height profile and (d) Raman **Figure 5.3** (a) Photoluminescence spectrum of interconnected network of few-layer MoS_2 grown over Si substrate (b) Current-Voltage (I-V) characteristics curve of few-layer MoS₂/Si heterojunction at dark conditions. (c) Current-Voltage (I-V) curve under dark and white light Figure 5.4 Schematic band diagram of p-type Si and n-MoS₂ (a) Before contact (b) Equilibrium (c) Forward bias and (d) Reverse bias conditions. E_C , E_V , and E_F denote the

 Figure 6.7 Raman spectra of R6G molecules (10⁻³ M) on Si substrates.107

Figure 6.8 (a) Optical image, (b) AFM image and (c) Corresponding height profile of triangular bi-layer MoS₂. (d) Full range SERS spectrum of R6G on bi-layer MoS₂ over SiO₂/Si substrate. (e) Raman spectra of R6G molecules on triangular bi-layer MoS₂ over SiO₂/Si substrates with different concentrations from 10^{-6} to 10^{-9} M (f) Raman intensity of 612 and 1365 cm⁻¹ peaks for R6G as a function of the concentration of R6G.109

Figure 6.9 Raman spectra of R6G molecules (10⁻³ M) on SiO₂/Si substrates.110

Figure 6.10 (a) SEM image, (b) Le-Bail fitting of XRD pattern, (c) Raman spectrum and (d) Room temperature PL spectrum (Gauss fitted) of VFL-MoS₂.....112

List of Tables

Table 3.1 Thermal Conductivity of MoS_2 Nanostructure with First-Order TemperatureCoefficients (χ_T) using OTR Technique.	.65
Table 5.1 Comparison of Responsivity of MoS ₂ /Si Heterojunction Photodiodes.	.95
Table 6.1 Comparison of the SERS Detection Limit of Pristine MoS ₂ Nanostructures	115