Dedicated to my Beloved

Grandparents and Family

CERTIFICATE

It is certified that the work contained in the thesis titled "CVD GROWN THERMAL CONDUCTING 2D-MoS₂ NANOSTRUCTURES FOR PHOTODETECTION AND SERS APPLICATIONS" by "BISHNU PADA MAJEE" has been carried out under my supervision and that this work has not been submitted elsewhere for a degree.

It is further certified that the student has fulfilled all the requirements of Comprehensive, Candidacy and SOTA for the award of the Ph.D. degree.

Date:

Place: Varanasi

Dr. Ashish Kumar Mishra (Supervisor) School of Materials Science & Technology Indian Institute of Technology (Banaras Hindu University) Varanasi

DECLARATION BY THE CANDIDATE

I, *BISHNU PADA MAJEE*, certify that the work embodied in this Ph.D. thesis is my own bonafide work carried out by me under the supervision of **Dr. ASHISH KUMAR MISHRA** for a period from **JULY 2016** to **JUNE 2021** at the **SCHOOL OF MATERIALS SCIENCE AND TECHNOLOGY**, Indian Institute of Technology (Banaras Hindu University), Varanasi, India. The matter embodied in this Ph.D. thesis has not been submitted for the award of any other degree/diploma. I declare that I have faithfully acknowledged and given credits to the research workers wherever their works have been cited in my work in this thesis. I further declare that I have not wilfully copied any other's work, paragraphs, text, data, results, *etc.*, reported in journals, books, magazines, reports dissertations, thesis, *etc.*, or available at websites and have not included them in this thesis and have not cited as my own work.

Date.....

Place: Varanasi

(BISHNU PADA MAJEE)

CERTIFICATE BY THE SUPERVISOR

This is to certify that the above statement made by the candidate is correct to the best of my knowledge.

Dr. Ashish Kumar Mishra (Supervisor) School of Materials Science & Technology Indian Institute of Technology (Banaras Hindu University) Varanasi Dr. (Mrs.) Chandana Rath (Coordinator) School of Materials Science & Technology Indian Institute of Technology (Banaras Hindu University) Varanasi

COPYRIGHT TRANSFER CERTIFICATE

Title of the Thesis: "CVD Grown Thermal Conducting 2D-MoS₂ Nanostructures for Photodetection and SERS Applications"

Candidate's Name: Mr. Bishnu Pada Majee

Copyright Transfer

The undersigned hereby assigns to the Indian Institute of Technology (Banaras Hindu University), Varanasi all rights under copyright that may exist in and for the above thesis submitted for the award of the *Doctor of Philosophy*.

Date:

Place: Varanasi

(Bishnu Pada Majee)

Note: However, the author may reproduce or authorize others to reproduce materials extracted verbatim from the thesis or derivative of the thesis for author's personal use provided that the source and the Institute's copyright notice is indicated.

Acknowledgements

First and foremost, I wish to express my sincere gratitude to my esteemed supervisor, **Dr. Ashish Kumar Mishra**, for his trust, nice guidance, support and valuable suggestions throughout my Ph.D. work. His constant monitoring and interest in my work over the last five year will always remain as a happy memory in my life. His helping nature has been one of the key factors for my motivation in work. His patient and enthusiastic approach for my training cannot be expressed in words and I will always remain thankful to him.

I would also like to express my sincere thanks to RPEC member's Prof. Rajiv Prakash, School of Materials Science & Technology, IIT (BHU) and Dr. Mohammad Imteyaz Ahmad, Department of Ceramic Engineering, IIT (BHU), for their stimulating help and criticism which incented me to widen my research from various perspectives. I would like to thank present and previous coordinators of School of Materials Science and Technology, IIT (BHU), for providing instrumental facility and cooperation during my Ph.D. I would like to express my sincere gratitude to Dr. Sanjay. Singh (DPGC convener) for his valuable inputs, suggestions and affectionate attitude.

I wish to express deep regards to all the teachers of the Department Prof. D. Pandey, Prof. R. Prakash, Prof. P. Maiti, Dr. (Mrs.) C. Rath (Coordinator), Dr. A. K. Singh, Dr. C. Upadhyay, Dr. S. K. Mishra, Dr. S. R. Singh, Dr. N. Kumar, Prof. J. Kumar, and Dr. Ashish Kumar Singh, Department of Chemistry, Guru Ghasidas University, Bilaspur for their kind support at all moment during the progress of my research. I would like to specially thank to Dr. Abhishek Sanskrityan, Department of Mathematics, Post-Graduate College, Ghazipur for his scientific support in my research work.

With a deep sense of gratitude, I express my sincere thanks to CIFC, IIT (BHU), Varanasi for help in carrying characterization of the synthesized samples. I am also grateful to all the technical and non-teaching staff of the school and authorities of IIT (BHU), for their kind help during the period of my stay to complete the thesis work. With a special thanks to my lab mates (Ph.D. Junior) Ms. Shanu Mishra, Mr. Prince kumar Maurya, Mr. Vishal Srivastav, Mrs. Ankita Singh, Mr. Jai Prakash Yadav and Mr. Jay Deep Gupta, (Junior M.Tech. and IDD) Mahendra, Nilesh, Vishal, Shweta, Somesh, Yogesh, Himanshu for their cooperation, suggestion and healthy discussion of my research issues, and as well as for making my stay here enjoyable and for their time to time encouragement during my bad situations. I am extremely thankful to friends Subhajit, Anupam, Shyam, Deepti, Ravi, Pragyan, Nikhil, Anirudh, Ajoy, Debarati, Puja, Krishna, Nisha, Labyna, Nila, Arka, Rakesh, Dibya for providing pleasant, encouragement and friendly environment. I hope to cherish this friendship forever. Friends make life easy I am fortunate enough to have good people around me. I am extremely thankful to seniors, Dr. A. Vishvash, Dr. U.P. Azad, Dr. D. Kumar, Dr. R. Mishra, Dr. A. Mahanta, Dr. M. K. Singh, Dr. S. Veer Singh, Dr. P. Tiwari, Dr. R. Pandey, Dr. B. Bharti, Dr. N. Verma, Gaurav Pandey, Keshav Kumar for their cooperation and sincere help in many ways.

It fills me with a deep sense of reverence when I think about my grandparents Mr. Ajit Kumar Majee and Late Smt. Basanti Majee for their constant encouragement for study, blessing and they make me a better person. I would also like to express my heart-felt gratitude towards my parents Sri Goutam Majee and Smt. Joytsna for their constant encouragements, moral support and blessing at every step of my life cannot be expressed in words. I am greatly thankful to my family member Sukla, Susmita, Biplab, Somnath for their constant support at every stage of my life. I am also thankful to relatives (mama-Ashis, Ashim and Ashok, pisimoni-Bhanumati, Uma and Namita) for their constant support.

I would like to thank everyone, who was help me directly and indirectly during the course of Ph.D. work, as well as expressing my apology that I could not mention personally one by one.

Finally, I thank **GOD** for giving me strength to complete my thesis successfully.

Date:

Place: Varanasi

(Bishnu Pada Majee)

Acknow	vledgem	ntsi
Table o	f Conte	isiii
List of	Figures	vü
List of	Tables.	xi
List of A	Abbrevi	ionsxiii
List of	Symbol	xv
Preface	2	xvii
Chapte	er 1 I	roduction and Literature Survey1-26
1.1	Introd	tion1
1.2	Overv	w of 2D TMDs2
	1.2.1	Structure of MoS ₂
	1.2.2	Different Phase of MoS ₂ 4
	1.2.3	Raman Study of MoS ₂ 5
1.3	Synth	is of MoS ₂ Nanostructures6
	1.3.1	Top-down Approach for MoS ₂ Synthesis6
		1.3.1.1 Mechanical Exfoliation7
		1.3.1.2Liquid Exfoliation7
		1.3.1.3 Lithium Ion Intercalation
	1.3.2	Bottom-up Approach for MoS2 Synthesis8
		1.3.2.1 Physical Vapor Deposition (PVD)8
		1.3.2.2 Chemical Vapor Deposition (CVD)9
		1.3.2.3 Solution Chemical Process
1.4	Prope	es and Applications of MoS ₂ Nanostructures9
	1.4.1	Electronic Properties10
	1.4.2	Optical Properties10
	1.4.3	Thermal Properties11
	1.4.4	Applications of 2D MoS ₂ Nanomaterials12
1.5	Thern	Conductivity of 2D MoS ₂ Nanostructure13

Table of Contents

	1.5.1	Different Technique to Determine Thermal Conductivity13
	1.5.2	Literature Survey on Thermal Conductivity of MoS ₂ Nanostructures by OTR Method16
1.6	Photo	detection Applications of MoS ₂ Nanostructure17
	1.6.1	Basic Principle of Photodetection Process
	1.6.2	Literature Survey on Photodetection Application of MoS ₂ Nanostructure
1.7	Surfac	e Enhanced Raman Spectroscopy22
	1.7.1	Theories for SERS Enhancement
	1.7.2	Literature Survey on SERS Application of MoS ₂ Nanostructures24
1.8	Scope	and Objective of the Present Work25
Chapte	er 2 S	ynthesis and Characterization Techniques
2.1	Mater	ials Synthesis27
	2.1.1	CVD Synthesis of MoS ₂ Nanostructures
		2.1.1.1 Horizontally Grown Interconnected Network Few-Layer MoS ₂ Nanostructure
		2.1.1.2 Horizontally Grown Triangular Bi-Layer MoS ₂ Nanostructure
		2.1.1.3 Vertically Grown Few-Layer MoS ₂ Nanostructure
2.2 Characterization Techniques		cterization Techniques33
	2.2.1	X-ray Diffraction (XRD)
	2.2.2	Scanning Electron Microscope (SEM)
	2.2.3	Transmission Electron Microscope (TEM)
	2.2.4	Atomic Force Microscopy (AFM)
	2.2.5	Raman Spectroscopy
	2.2.6	Photoluminescence (PL) Spectroscopy42
	2.2.7	UV-Visible Spectrophotometer
	2.2.8	Current Voltage (IV) Measurement
	2.2.9	SERS Measurement

Chapte	er 3 T	hermal Co	onductivity of MoS ₂ Nanostructures using Optothermal
	R	aman Spe	ctroscopy Technique45-66
3.1	Introd	uction	45
3.2	Result	s and Discu	ussion48
	3.2.1	Thermal	Conductivity of Triangular Supported Bi-Layer MoS ₂ 48
		3.2.1.1	Characterization of Triangular Bi-Layer MoS ₂ 48
		3.2.1.2 M	Calculation of Thermal Conductivity of Supported Bi-Layer IoS ₂ Film
	3.2.2		Conductivity of Vertically Oriented Few-Layer MoS ₂
		3.2.2.1	Characterization of VFL-MoS ₂ Film58
		3.2.2.2	Calculation of Thermal Conductivity of VFL-MoS ₂ Film60
3.3 (Conclusi	ons	
Chapte			nsitive Quantum Confinement of MoS2 Ires67-80
4.1	Introd	uction	
	4.1.1	-	Photoluminescence and Variation of Bandgap in 2D
4.2	Resul	ts and Disc	pussion71
	4.2.1	Origin of	Photoluminescence in MoS ₂ Nanostructures71
	4.2.2	-	ure Dependent PL Study of Horizontally Grown Triangular i-Layer MoS ₂ 73
	4.2.3	-	ture Dependent PL Study of Vertically Grown Few-Layer
4.3	Conclu	sions	
Chapte	er 5 P	hotodetect	ion Application of MoS2 Nanostructures
5.1	Introd	uction	
5.2	Result	s and Discu	ussion
	5.2.1	Photodete	ction Behaviour of Horizontally Grown Interconnected
		Network of	of Few-Layer MoS ₂ 83
		5.2.1.1	Characterization of Horizontally Grown Interconnected Few- Layer MoS ₂

		5.2.1.2	Photoresponse of Few-Layer MoS ₂ /Si Heterojunction	85
	5.2.2		tection Behaviour of Vertically Oriented Few-Layer Mo	
		5.2.2.1	Characterization of Vertically Oriented Few-Layer Mo	\mathbf{S}_2
		5.2.2.2	Photoresponse of Vertically Oriented Few-Layer MoS Heterojunction	
5.3	Concl	usions		95
Chapte	er 6 S	ERS App	lication of MoS ₂ Nanostructures	97-116
6.1	Introd	uction		97
	6.1.1	Enhance	ment Factor (EF)	99
	6.1.2	Mechani	ism for SERS Signal using MoS ₂ Substrates	100
6.2	Result	ts and Disc	cussion	103
	6.2.1	Characte	erization of Dye Molecules	103
	6.2.2		pplication of Horizontally Grown Interconnected Netwo	
	6.2.3		pplication of Horizontally Grown Triangular Bi-Layer	108
	6.2.4		pplication of Vertically Oriented Few-layer MoS ₂	111
6.3	Conclu	isions		116
Chapte	er7 C	Conclusion	and Scope for Future Work	.117-119
7.1	Concl	usions		117
7.2	Future	Future Scope of the Work119		119
Refere	nces	• • • • • • • • • • • • •		121
List of	Publica	tions		141

List of Figures

Figure 1.1 Schematic diagram of periodic table with highlighted transition metals (green in colour) and three chalcogen elements (yellow in colour) [21]2
Figure 1.2 Schematic diagram of (a) Side view of MoS ₂ and (b) Top view of MoS ₂ 3
Figure 1.3 Schematic diagram of MoS ₂ polytypes (a) 1T phase (tetragonal symmetry, one layer per repeat unit, octahedral coordination) (b) 2H phase (hexagonal symmetry, two layers per repeat unit, trigonal prismatic coordination) (c) 3R phase (rhombohedral symmetry, three layers per repeat unit, trigonal prismatic coordination) [11]4
Figure 1.4 Schematic representation of different Raman active modes of MoS ₂ [31]5
Figure 1.5 Applications of 2D MoS ₂ nanostructures
Figure 1.6 Schematic diagram of optothermal Raman technique. Black arrow shows the direction of heat flow [72]
Figure 1.7 The electromagnetic spectrum of 2D TMDs [91]18
Figure 1.8 Band alignment of p-n junction under photoconductive mode [92]19
Figure 1.9 Band alignment of p-n junction under photovoltaic mode [92]20
Figure 1.10 Hypothetical example of the spectral dependence of SERS [119]24
Figure 2.1 Schematic diagram of synthesis process for 2D-MoS ₂ nanostructures
Figure 2.2 Schematic diagram of MoS ₂ growth via CVD method
Figure 2.3 Schematic diagram of experimental condition of synthesis of different morphologies of 2D-MoS ₂ nanostructures
Figure 2.4 Schematic diagram of growth mechanism of triangular bi-layer MoS ₂ nanostructure over SiO ₂ /Si substrate
Figure 2.5 Schematic diagram of growth mechanism of vertically oriented few-layer MoS ₂ nanostructure over Si substrate. 33
Figure 2.6 Schematic diagram of incident and diffracted X-rays from the crystal
Figure 2.7 Schematic diagram of core component of SEM microscope [138]

Figure 2.8 (a) Schematic diagram of core component of TEM microscope. Transmitted and diffracted electrons for (b) Bright field and (c) Dark field imaging in TEM [138]
Figure 2.9 Schematic diagram of the atomic force microscope [141]
Figure 2.10 Schematic representation of the scattering process in Raman scattering (Rayleigh, stokes and anti-stokes line) [119]40
Figure 2.11 Schematic diagram of Raman spectrometer. 41
Figure 2.12 Schematic representation of the photoluminescence spectroscopy [119]42
Figure 2.13 Schematic diagram of UV-Visible spectrometer [145]43
Figure 3.1 Schematic representation of optothermal Raman technique
Figure 3.2 (a) Optical image, (b) Raman spectrum (Lorentzian fitting of A_{1g} and E_{2g}^{1} as inset, (c) AFM image and (d) Corresponding height profile of triangular bi-layer MoS ₂ over SiO ₂ /Si substrate
Figure 3.3 (a) Schematic diagram of temperature dependent Raman study. (b) Temperature dependent Raman spectra of triangular bi-layer MoS ₂ on SiO ₂ /Si substrate using LWD 50x. Variations of (c) Peak position and (d) FWHM with respect to temperature of triangular bi-layer MoS ₂ on SiO ₂ /Si substrate
Figure 3.4 (a) Schematic diagram of power dependent Raman study. (b) Power dependent Raman spectra of triangular bi-layer MoS ₂ on SiO ₂ /Si substrate using LWD 50x lens. Variations of (c) Peak position and (d) FWHM with incident laser power for triangular bi-layer MoS ₂ .
Figure 3.5 (a) Temperature dependent Raman spectra of triangular bi-layer MoS_2 on SiO_2/Si substrate using 100x objective lens. (b) Variation of peak position with respect to temperature. (c) Power dependent Raman spectra of triangular bi-layer MoS_2 on SiO_2/Si substrate using 100x objective lens. (d) Variation of peak position with respect to laser power
Figure 3.6 (a) HRSEM (b) AFM (2D view) and (c) Height profile of VFL-MoS ₂ over Si- substrate. (d) HRTEM image of edge cross sectional view of VFL-MoS ₂ (e) XRD pattern and (f) Raman spectrum of VFL-MoS ₂
Figure 3.7 (a) Schematic of temperature dependent Raman study of VFL-MoS ₂ (b) Raman spectra of VFL-MoS ₂ at different temperatures (c) Raman shifts and (d) FWHM of E^{1}_{2g} and A_{1g} modes as a function of temperature

Figure 3.8 (a) Schematic of heat conduction through VFL-MoS₂ (b) Raman spectra of VFL-MoS₂ at different laser powers (c) Raman shifts and (d) FWHM of E^{1}_{2g} and A_{1g} modes as a Figure 4.1 Schematic diagram of the temperature dependent PL measurement process. **Figure 4.3** A schematic representation of A and B excitons in 2D materials......72 **Figure 4.4** (a) Optical image of triangular bi-layer MoS_2 over SiO_2/Si substrate. (b) Room temperature PL spectra (Gaussian fitted) of triangular bi-laver MoS₂ over SiO₂/Si substrate (c) SEM image of vertically oriented few-layer MoS₂ nanosheets (d) Room temperature PL **Figure 4.5** (a) Optical image of triangular bi-layer MoS_2 over SiO_2/Si substrate. (b) Gaussian fitted PL spectra of triangular bi-layer MoS₂ on SiO₂/Si substrate at different temperatures. Variation of (c) Total PL intensity (d) FWHM for A exciton with temperature. (e) Variation of spin-orbit splitting between A and B exciton with temperature. (f) Fitting of variation in Figure 4.6 (a) SEM image of VFL-MoS₂ (b) Gaussian fitted PL spectra of VFL-MoS₂ on Si substrate at different temperatures. Variation of (c) Total PL intensity (d) FWHM for A exciton with temperature for VFL-MoS₂. Variation of (e) Spin-orbit splitting between A and B exciton with temperature of VFL-MoS₂. (f) Fitting of variation in bandgap with Figure 5.2 (a) SEM image (b) AFM image (c) Corresponding height profile and (d) Raman **Figure 5.3** (a) Photoluminescence spectrum of interconnected network of few-layer MoS_2 grown over Si substrate (b) Current-Voltage (I-V) characteristics curve of few-layer MoS₂/Si heterojunction at dark conditions. (c) Current-Voltage (I-V) curve under dark and white light Figure 5.4 Schematic band diagram of p-type Si and n-MoS₂ (a) Before contact (b) Equilibrium (c) Forward bias and (d) Reverse bias conditions. E_C , E_V , and E_F denote the

 Figure 6.7 Raman spectra of R6G molecules (10⁻³ M) on Si substrates.107

Figure 6.8 (a) Optical image, (b) AFM image and (c) Corresponding height profile of triangular bi-layer MoS₂. (d) Full range SERS spectrum of R6G on bi-layer MoS₂ over SiO₂/Si substrate. (e) Raman spectra of R6G molecules on triangular bi-layer MoS₂ over SiO₂/Si substrates with different concentrations from 10^{-6} to 10^{-9} M (f) Raman intensity of 612 and 1365 cm⁻¹ peaks for R6G as a function of the concentration of R6G.109

Figure 6.9 Raman spectra of R6G molecules (10⁻³ M) on SiO₂/Si substrates.110

Figure 6.10 (a) SEM image, (b) Le-Bail fitting of XRD pattern, (c) Raman spectrum and (d) Room temperature PL spectrum (Gauss fitted) of VFL-MoS₂.....112

List of Tables

Table 3.1 Thermal Conductivity of MoS_2 Nanostructure with First-Order TemperatureCoefficients (χ_T) using OTR Technique.	.65
Table 5.1 Comparison of Responsivity of MoS ₂ /Si Heterojunction Photodiodes.	.95
Table 6.1 Comparison of the SERS Detection Limit of Pristine MoS ₂ Nanostructures	115

List of Abbreviations

AEF	Analytical enhancement factor
AFM	Atomic force microscopy
СМ	Chemical enhancement
CVD	Chemical vapor deposition
СВМ	Conduction band minima
CuPc	Copper phthalocyanine
CV	Crystal Violet
DI	Distilled water
EM	Electromagnetic enhancement
eV	Electron volt
LWD	Long working distance
MW	Mega watt
MB	Methylene blue
МО	Methyl orange
MEMS	Microelectrochemical system
MoS_2	Molybdenum disulphide
NA	Numerical aperture
1D	One dimensional
OTR	Optothermal Raman
ppm	Parts per million
PL	Photoluminescence
PVD	Physical vapor deposition
R6G	Rhodamine 6G

RT	Room temperature
SEM	Scanning electron microscope
SThM	Scanning thermal microscope
SAED	Selected area electron diffraction
Si	Silicon
SiO ₂	Silicon dioxide
Ag	Silver
SERS	Surface enhanced Raman spectroscopy
SPR	Surface plasmon resonance
TEC	Thermal expansion coefficient
TDTR	Time domain thermo reflectance
TEM	Transmission electron microscopy
TMD	Transition metal dichalcogenide
2D	Two dimensional
UV	Ultraviolet
VBM	Valence band maxima
VFL	Vertically oriented few-layer
Vis	Visible
XRD	X-ray diffraction

List of Symbols

α	Absorption coefficient
ω	Angular frequency
Eg	Bandgap
k _b	Boltzmann's constant
Ec	Conduction band
I-V	Current voltage
ρ	Density of material
q	Electronic charge
E _F	Fermi energy
Xp	First order power coefficient
Χτ	First order temperature coefficient
η	Ideality factor
S	Illuminated area
Pinc	Incident light intensity
g	Interfacial thermal conductance
Р	Laser power
μ	Mobility
I _{Ph}	Photocurrent
R	Photoresponsivity
h	Planck's constant
C _P	Specific heat capacity
Т	Temperature
k	Thermal conductivity

ks	Thermal conductivity of supported film
R _m	Thermal resistance
E_{v}	Valence band
V	Voltage
W	Watt
λ	Wavelength

Preface

Molybdenum disulfide (MoS₂) is a layered transition metal dichalcogenide, which shows tunable bandgap and good thermal transport behaviour along with high absorption coefficient and mechanically flexible nature. These features of MoS₂ make it suitable for use in next generation electronic and optoelectronic devices. This thesis entitled "CVD Grown Thermal Conducting 2D-MoS₂ Nanostructures for Photodetection and SERS Applications" is focused on the synthesis of thermal conducting and semiconducting MoS₂ nanostructures via chemical vapour deposition (CVD) technique and their photodetection and Surface-Enhanced Raman Scattering (SERS) applications. We have prepared three different morphologies of MoS₂ nanostructures- horizontally grown interconnected network of few-layer MoS₂ over Si substrate, horizontally grown triangular bi-layer MoS₂ over SiO₂/Si substrate and vertically oriented few-layer (VFL) MoS₂ over Si substrate. We have characterized prepared MoS_2 films by optical microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM) techniques. To confirm the phase and the semiconducting nature of prepared MoS₂, X-ray diffraction (XRD) and Raman spectroscopy techniques have been performed. The semiconducting nature of prepared MoS₂ nanostructures have been confirmed via Photoluminescence (PL) spectroscopy. In the present work, thermal transport behaviour of triangular bi-layer MoS₂ and VFL-MoS₂ has been investigated using optothermal Raman technique. We have calculated the thermal conductivity (k_s) of ~ 42 \pm 8 W m⁻¹ K⁻¹ and interfacial thermal conductance (g) of ~ 1.264 ± 0.128 MW m⁻² K⁻¹ for triangular bi-layer MoS₂ supported over SiO₂/Si substrate. Higher thermal conductivity of ~ 100 ± 14 W m⁻¹ K⁻ ¹ has been found for VFL-MoS₂ nanostructure, which can be associated with reduced

phonon-defect scattering due to fewer defects and minimal strain in grown VFL-MoS₂ nanostructure. Further, thermal sensitive quantum confinement phenomenon has been observed in above samples by performing temperature dependent PL study, which provides the information about the tunable nature of their bandgap suitable for optoelectronics application.

Based on the thermal conducting and semiconducting nature of prepared MoS₂ nanostructures, we have used these films for photodetection and SERS applications. The CVD grown MoS_2 nanostructures are n-type in nature and hence they form p-n heterojunction with p-type Si substrate. We have successfully demonstrated the photodetection application of interconnected few-layer MoS₂/Si heterojunction and VFL-MoS₂/Si heterojunction. We have observed the photoresponsivity of ~0.1413 A W⁻¹ for fewlayer MoS₂/Si heterojunction under white light illumination (0.15 mW cm⁻²) at -2 V bias. Higher photoresponsivity of ~7.37 A W⁻¹ has been obtained for VFL-MoS₂/Si heterojunction under green light illumination (0.15 mW cm⁻²) at -2 V bias, which can be attributed to the strong light absorption, intralayer carrier transport speed, and effective charge separation. Further, SERS application of prepared MoS₂ nanostructures has been investigated to detect organic pollutants- Rhodamine 6G (R6G) and Methyl orange (MO). We have successfully detected R6G dye using all the prepared MoS₂ nanostructures, while MO dye was detected using VFL-MoS₂ nanostructure. The highest detection limit (10⁻¹⁰ M concentration for both the dyes) has been observed for VFL-MoS₂ nanosheets over Si as SERS substrate. This high detection limit can be attributed to the enhanced light trapping and effective dye adsorption due to vertical morphology and vibronic-coupling-enabled charge transfer between MoS_2 and organic dyes.

The present thesis has been organized into seven chapters. The consecutive chapters are organized as follows-

Chapter 1 gives a brief introduction to 2D MoS_2 nanostructure along with an overview of the current literature on thermal conductivity measurement, photodetection and SERS applications of MoS_2 nanostructure.

Chapter 2 describes the synthesis process of three different morphologies of MoS_2 nanostructures. A concise overview of the characterization instruments like XRD, SEM, TEM, Raman, PL and AFM, is provided for structural and morphological studies of MoS_2 . This chapter also describes the current voltage measurement process and the preparation method of SERS substrate.

Chapter 3 discusses the temperature and power-dependent Raman studies of horizontally grown triangular bi-layer MoS₂ nanosheets over SiO₂/Si substrate and vertically oriented few-layer (VFL) MoS₂ nanosheets over Si substrate. Thermal conductivity calculation using Optothermal Raman technique has been described in detail.

Chapter 4 discusses the thermal sensitive quantum confinement behaviour of triangular bilayer MoS₂ and VFL-MoS₂ nanostructures. Tunability of bandgap with temperature has been discussed using appropriate models.

Chapter 5 describes the photodetection application of horizontally grown interconnected network of few-layer MoS₂ and VFL-MoS₂ over Si substrate using p-n junction mode under visible light illumination. Different optoelectronic parameters have been obtained and photodetection mechanism has been discussed in this chapter.

Chapter 6 discusses the SERS detection of R6G and MO molecules using prepared different MoS₂ nanostructures. The mechanisms like molecular resonance, excitonic resonance and vibronic coupling enable charge transfer have been discussed in detail.

Chapter 7 thesis work has been summarized and the scope for the future work related to this field has been discussed.