List of Tables

2.1 Outline of lipid suspension-based phantoms
3.1 Different constituents of 10% Intralipid TM suspension
3.2 Significant literature on biomedical research application of 20-40 kHz for selection of ultrasound frequency
3.3 Absorption features dependent stretch and vibration patterns of the glucose molecule
3.4 Researchers using 940 nm wavelength for measuring glucose non-invasively60
3.5 Sensitivity analysis of glucose molecule at 940 nm
3.6 Amplitude modulated signal characteristics
3.7 Waveform characteristics as generated by the USR unit
3.8 Square wave signal characteristics
3.9 The output signal parameters as acquired from the human blood plasma sample mixed with Intralipid TM phantom medium
3.10 Showing the volume of reagent and sample into test tubes
3.11 Performance evaluation parameters
4.1 A summary of the effect of glucose upon the basic optical properties of a tissue phantom and the light transport within this tissue phantom98
4.2 Showing mathematical function values of blank with Intralipid TM phantom (tissue based)
4.3 Showing mathematical function values of 500 mg dextrose with Intralipid TM phantom (tissue based)
4.4 Showing mathematical function values of 1000 mg dextrose with Intralipid TM phantom (tissue based)
4.5 Showing mathematical function values of 1500 mg dextrose with Intralipid TM phantom (tissue based)

5.1 Clarke error grid analysis of reference and predicted blood glucose levels as
acquired during OGTT over 03 human subject's blood plasma mixed with Intralipid TM
phantom samples116
5.2 Parkes Error Grid analysis of reference and predicted blood glucose levels as
acquired during OGTT over 03 human subject's blood plasma mixed with Intralipid TM
phantom samples117
5.3 Statistical parameters utilized for accuracy assessment and the results comparison
with the published data ranges of other developing glucose monitoring techniques 118
5.4 Clarke Error Grid analysis of reference and predicted blood glucose levels as
acquired during OGTT over 30 human subject's blood plasma mixed with Intralipid TM
phantom samples126
5.5 Parkes Error Grid analysis of reference and predicted blood glucose levels as
acquired during OGTT over 30 human subject's blood plasma mixed with Intralipid TM
phantom samples127
5.6 Statistical parameters utilized for accuracy assessment and the results comparison
with the published data ranges of other developing glucose monitoring techniques 129
5.7 Clarke Error Grid analysis of reference and predicted blood glucose levels as
acquired during fasting, postprandial and random stage examination over 30 human
subject's blood plasma mixed with Intralipid TM phantom samples131
5.8 Parkes Error Grid analysis of reference and predicted blood glucose levels as
acquired during fasting, postprandial and random stage examination over 30 human
subject's blood plasma mixed with Intralipid TM phantom samples132
5.9 Statistical parameters utilized for accuracy assessment and the results comparison
with the published data ranges of other developing glucose monitoring techniques 133
5.10 Clarke Error Grid analysis of reference and predicted blood glucose levels as
acquired from 15 normal and 15 diabetic human subject's blood serum mixed with
Intralipid TM phantom samples
5.11 Parkes Error Grid analysis of reference and predicted blood glucose levels as
acquired from 15 normal and 15 diabetic human subject's blood serum mixed with
Intralipid TM phantom samples

5.23 Parkes Error Grid analysis of reference and predicted blood glucose levels as
acquired during Category I: random stage based examination over 10 human subject's
whole blood mixed with Intralipid TM phantom samples168
5.24 Clarke Error Grid analysis of reference and predicted blood glucose levels as
acquired during Category II: random stage based examination over 10 human subject's
whole blood mixed with Intralipid TM phantom samples170
5.25 Parkes Error Grid analysis of reference and predicted blood glucose levels as
acquired during Category II: random stage based examination over 10 human subject's
whole blood mixed with Intralipid TM phantom samples171
5.26 Clarke Error Grid analysis of reference and predicted blood glucose levels as
acquired during Category III: random stage based examination over 10 human subject's
whole blood mixed with Intralipid TM phantom samples172
5.27 Parkes Error Grid analysis of reference and predicted blood glucose levels as
acquired during Category III: random stage based examination over 10 human subject's
whole blood mixed with Intralipid TM phantom samples173
5.28 Clarke Error Grid analysis of reference and predicted blood glucose levels as
acquired during Category I, II and III: random stage based examination over 30 human
subject's whole blood mixed with Intralipid TM phantom samples175
5.29 Parkes Error Grid analysis of reference and predicted blood glucose levels as
acquired during Category I, II and III: random stage based examination over 30 human
subject's whole blood mixed with Intralipid TM phantom samples176
5.30 Statistical parameters utilized for accuracy assessment and the results comparison
with the published data ranges of other developing glucose monitoring techniques 177
5.31 <i>In-vitro</i> experiments performed and measured by the MUS-IR Unit on Distilled
Water treated as a phantom by adding different concentration of dextrose (glucose)
solutions
5.32 In-vitro experiments performed and measured by the MUS-IR Unit on
Commercialized Milk solution treated as an optical tissue phantom by adding different
concentration of dextrose (glucose) solutions

5.33 <i>In-vitro</i> experiments performed and measured by the MUS-IR Unit on Chicken
Breast Tissue sample treated as a phantom by adding different concentration of dextrose
(glucose) solutions
5.34 In-vitro experiments performed and measured by the MUS-IR Unit on Human
Whole Blood sample treated as a phantom by adding different concentration of dextrose
(glucose) solutions
6.1 Deming Regression based analysis
6.2 Linear model validity
6.3 Paired samples t-test
6.4 Mountain Plot based analysis
6.5 Bland-Altman Plot based analysis
6.6 Pearson correlation coefficient (r) analysis
6.7 Rank Correlation Coefficients analysis
6.8 Total Error Limits: ISO 15197-2013
6.9 Clarke Error Grid analysis of reference and predicted blood glucose levels as acquired during <i>in-vitro</i> examination of overall human subject's blood samples mixed with Intralipid TM phantom
6.10 Parkes Error Grid analysis of reference and predicted blood glucose levels as
acquired during In-vitro examination of overall human subject's blood samples mixed
with Intralipid TM phantom
6.11 Statistical parameters utilized for accuracy assessment and the results comparison
with published data ranges of other developing glucose monitoring techniques208