List of Tables | 2.1 Outline of lipid suspension-based phantoms | |--| | 3.1 Different constituents of 10% Intralipid TM suspension | | 3.2 Significant literature on biomedical research application of 20-40 kHz for selection of ultrasound frequency | | 3.3 Absorption features dependent stretch and vibration patterns of the glucose molecule | | 3.4 Researchers using 940 nm wavelength for measuring glucose non-invasively60 | | 3.5 Sensitivity analysis of glucose molecule at 940 nm | | 3.6 Amplitude modulated signal characteristics | | 3.7 Waveform characteristics as generated by the USR unit | | 3.8 Square wave signal characteristics | | 3.9 The output signal parameters as acquired from the human blood plasma sample mixed with Intralipid TM phantom medium | | 3.10 Showing the volume of reagent and sample into test tubes | | 3.11 Performance evaluation parameters | | 4.1 A summary of the effect of glucose upon the basic optical properties of a tissue phantom and the light transport within this tissue phantom98 | | 4.2 Showing mathematical function values of blank with Intralipid TM phantom (tissue based) | | 4.3 Showing mathematical function values of 500 mg dextrose with Intralipid TM phantom (tissue based) | | 4.4 Showing mathematical function values of 1000 mg dextrose with Intralipid TM phantom (tissue based) | | 4.5 Showing mathematical function values of 1500 mg dextrose with Intralipid TM phantom (tissue based) | | 5.1 Clarke error grid analysis of reference and predicted blood glucose levels as | |---| | acquired during OGTT over 03 human subject's blood plasma mixed with Intralipid TM | | phantom samples116 | | 5.2 Parkes Error Grid analysis of reference and predicted blood glucose levels as | | acquired during OGTT over 03 human subject's blood plasma mixed with Intralipid TM | | phantom samples117 | | 5.3 Statistical parameters utilized for accuracy assessment and the results comparison | | with the published data ranges of other developing glucose monitoring techniques 118 | | 5.4 Clarke Error Grid analysis of reference and predicted blood glucose levels as | | acquired during OGTT over 30 human subject's blood plasma mixed with Intralipid TM | | phantom samples126 | | 5.5 Parkes Error Grid analysis of reference and predicted blood glucose levels as | | acquired during OGTT over 30 human subject's blood plasma mixed with Intralipid TM | | phantom samples127 | | 5.6 Statistical parameters utilized for accuracy assessment and the results comparison | | with the published data ranges of other developing glucose monitoring techniques 129 | | 5.7 Clarke Error Grid analysis of reference and predicted blood glucose levels as | | acquired during fasting, postprandial and random stage examination over 30 human | | subject's blood plasma mixed with Intralipid TM phantom samples131 | | 5.8 Parkes Error Grid analysis of reference and predicted blood glucose levels as | | acquired during fasting, postprandial and random stage examination over 30 human | | subject's blood plasma mixed with Intralipid TM phantom samples132 | | 5.9 Statistical parameters utilized for accuracy assessment and the results comparison | | with the published data ranges of other developing glucose monitoring techniques 133 | | 5.10 Clarke Error Grid analysis of reference and predicted blood glucose levels as | | acquired from 15 normal and 15 diabetic human subject's blood serum mixed with | | Intralipid TM phantom samples | | 5.11 Parkes Error Grid analysis of reference and predicted blood glucose levels as | | acquired from 15 normal and 15 diabetic human subject's blood serum mixed with | | Intralipid TM phantom samples | | 5.23 Parkes Error Grid analysis of reference and predicted blood glucose levels as | |--| | acquired during Category I: random stage based examination over 10 human subject's | | whole blood mixed with Intralipid TM phantom samples168 | | 5.24 Clarke Error Grid analysis of reference and predicted blood glucose levels as | | acquired during Category II: random stage based examination over 10 human subject's | | whole blood mixed with Intralipid TM phantom samples170 | | 5.25 Parkes Error Grid analysis of reference and predicted blood glucose levels as | | acquired during Category II: random stage based examination over 10 human subject's | | whole blood mixed with Intralipid TM phantom samples171 | | 5.26 Clarke Error Grid analysis of reference and predicted blood glucose levels as | | acquired during Category III: random stage based examination over 10 human subject's | | whole blood mixed with Intralipid TM phantom samples172 | | 5.27 Parkes Error Grid analysis of reference and predicted blood glucose levels as | | acquired during Category III: random stage based examination over 10 human subject's | | whole blood mixed with Intralipid TM phantom samples173 | | 5.28 Clarke Error Grid analysis of reference and predicted blood glucose levels as | | acquired during Category I, II and III: random stage based examination over 30 human | | subject's whole blood mixed with Intralipid TM phantom samples175 | | 5.29 Parkes Error Grid analysis of reference and predicted blood glucose levels as | | acquired during Category I, II and III: random stage based examination over 30 human | | subject's whole blood mixed with Intralipid TM phantom samples176 | | 5.30 Statistical parameters utilized for accuracy assessment and the results comparison | | with the published data ranges of other developing glucose monitoring techniques 177 | | 5.31 <i>In-vitro</i> experiments performed and measured by the MUS-IR Unit on Distilled | | Water treated as a phantom by adding different concentration of dextrose (glucose) | | solutions | | 5.32 In-vitro experiments performed and measured by the MUS-IR Unit on | | Commercialized Milk solution treated as an optical tissue phantom by adding different | | concentration of dextrose (glucose) solutions | | 5.33 <i>In-vitro</i> experiments performed and measured by the MUS-IR Unit on Chicken | |---| | Breast Tissue sample treated as a phantom by adding different concentration of dextrose | | (glucose) solutions | | 5.34 In-vitro experiments performed and measured by the MUS-IR Unit on Human | | Whole Blood sample treated as a phantom by adding different concentration of dextrose | | (glucose) solutions | | 6.1 Deming Regression based analysis | | 6.2 Linear model validity | | 6.3 Paired samples t-test | | 6.4 Mountain Plot based analysis | | 6.5 Bland-Altman Plot based analysis | | 6.6 Pearson correlation coefficient (r) analysis | | 6.7 Rank Correlation Coefficients analysis | | 6.8 Total Error Limits: ISO 15197-2013 | | 6.9 Clarke Error Grid analysis of reference and predicted blood glucose levels as acquired during <i>in-vitro</i> examination of overall human subject's blood samples mixed with Intralipid TM phantom | | 6.10 Parkes Error Grid analysis of reference and predicted blood glucose levels as | | acquired during In-vitro examination of overall human subject's blood samples mixed | | with Intralipid TM phantom | | 6.11 Statistical parameters utilized for accuracy assessment and the results comparison | | with published data ranges of other developing glucose monitoring techniques208 |