Contents

Contents		Page No.
Chapter – 1	Introduction & Literature Survey	1-42
	1.1 General introduction	1
	1.2 Fuel Cells	3
	1.3 History of Fuel Cells	4
	1.4 Type of Fuel Cells	5
	1.4.1 Alkaline Fuel Cells (AFCs)	6
	1.4.2 Polymer Electrolyte Membrane Fuel Cells (PEMFCs)	6
	1.4.3 Molten Carbonate Fuel Cells (MCFCs)	7
	1.4.4 Phosphoric Acid Fuel Cells (PAFCs)	8
	1.4.5 Solid Oxide fuel cells	8
	1.5 Working principle of SOFCs	10
	1.6 Investigation of SOFCs material components	11
	1.7 Cathode Materials	11
	1.7.1 Perovskite Cathode Materials	12
	1.7.2 Cobalt-free Cathode materials	14
	1.7.3 Layered double perovskites	18
	1.7.4 Ruddlesden-Popper perovskites	19
	1.8 Anode materials	20
	1.9 Electrolyte materials	21
	1.9.1 Yttria stabilized zirconia (YSZ)	22
	1.9.2 Doped lanthanum gallate	24
	1.9.3 Bi ₂ O ₃ -based electrolytes	26
	1.9.4 Doped/co-doped ceria based electrolytes	27
	1.9.5 Carbonate/oxide electrolytes	33
	1.10 Charge conduction Mechanisms in ceria-carbonate solid	39
	electrolytes	
	1.11 Motivation and objective of the thesis	41

Chapter – 2	Experimental Techniques	43-65
	2.1 Sample Synthesis	43
	2.1.1 Glycine-nitrate auto Combustion method	43
	2.1.2 Solid state reaction method	45
	2.2 Characterization techniques	48
	2.2.1 Density measurement	48
	2.2.2 Powder X-ray diffraction (XRD)	48
	2.2.3 Scanning Electron Microscopy (SEM)	54
	2.2.4 Transmission Electron Microscopy (TEM)	56
	2.2.5 TG-DTA Thermal characterization	58
	2.2.6 Raman spectroscopy study	60
	2.2.7 Electrochemical impedance spectroscopy	61
	2.2.7.1 Sample preparation for EIS	62
	2.2.7.2 Set up for electrical measurement	62
	2.2.7.3 Complex Impedance Spectroscopy Analysis	63
	2.3 Conclusions	65
Chapter – 3	Studies on Structural, Morphological, and Electrical Properties of Ga ³⁺ and Cu ²⁺ co-doped Ceria Ceramics as Solid Electrolyte for IT-SOFCs	67-95
	3.1 Introduction	67
	3.2 Experimental Section	68
	3.2.1 Materials Preparation	68
	3.2.2 Characterization	69
	3.3 Results and Discussion	70
	3.3.1 Powder X-ray Diffraction	70
	3.3.2 TG/DTA Analysis of the Electrolytes	79
	3.3.3 Raman Spectroscopic Analysis of Electrolytes	80
	3.3.4 SEM Analysis of Microstructure	82

-

	3.3.5 TEM Analysis of the Electrolytes	85
	3.3.6 Electrical Characterization of electrolytes	87
	3.3.7 Thermal Expansion behavior	93
	3.4 Conclusion	94
Chapter – 4	Space Charge Layer Induced Superionic Conduction and Charge Transport Behaviour of "Alkali Carbonates and tri- doped Ceria Nanocomposites" for LT-SOFCs Applications	97-126
	4.1 Introduction	97
	4.2 Experimental details	99
	4.2.1 Synthesis of samples	99
	4.2.2 Characterizations	100
	4.3 Results and Discussion	101
	4.3.1 Thermal Analysis	101
	4.3.2 X-ray diffraction studies	102
	4.3.3 Microstructure analysis	105
	4.3.4 TEM analysis	108
	4.3.5 Thermal expansion behaviour	110
	4.3.6 Dielectric loss behaviour	112
	4.3.7 ac conductivity analysis	114
	4.3.8 Impedance analysis	118
	4.3.9 Dielectric permittivity	123
	4.4 Conclusions	124

Chapter – 5	Synthesis	and	Characterization	of	Cobalt-free	127-145
	SrFe _{0.8} Mo _{0.1}	W _{0.1} O ₃ Pe	erovskite Structured	Cathod	e for SOFCs	
	applications					

5.1 Introduction 1	.27
5.2 Experimental details	.29
5.2.1 Sample preparation	.29

xiii

	5.2.2 Characterizations	131
	5.3 Results and discussion	132
	5.3.1 Phase structure	132
	5.3.2 Microstructure	134
		125
	5.3.3 Chemical compatibility with SDC and BCS electrolytes	135
	5.3.4 Thermal expansion behavior	137
	5.3.5 ac impedance analysis	140
	5.3.6 Electrochemical performance of single cell	142
	5.4 Conclusions	145
Chapter – 6	Summary and Future Work	147-151
	6.1 Summary	147
	6.2 Suggestions for future work	149
References		153-183
List of Public	cations	184-185
List of Conferences/Workshops/Seminars/Symposium		

-

List of figures

Figure No.	Figure Caption	Page No.	
Figure 1.1	Numerous energy source consumption in Worldwide	3	
	by 2040.		
Figure 1.2	Demonstration of operating principle of solid oxide fuel cells.	10	
Figure 1.3	Properties of cathode materials for SOFCs application.	12	
Figure 1.4	Representation of ABO ₃ perovskite, lattice structure oxide.	13	
Figure 1.5	Schematic interpretations of the crystal structures of: a) Simple		
	Cubic perovskite, b) Layered double perovskite oxide and c)		
	Ruddlesden-Popper perovskite oxide Water		
	insertion sites are displayed: oxygen ion vacancies for the		
	cubic perovskites and interstitials for Ruddlesden-Popper		
	$Ln_2MO_{4+\delta}$ structure.		
Figure 1.6	Maximum ion conductivity in the mixture of binary systems	24	
	ZrO_2 - Ln_2O_3 at 1273 K and the association enthalpies and ion		
	migration enthalpy with ionic radius of Ln^{3+} dopant cations.		
Figure 1.7	Variation of conductivity of LaGaO3-based solid electrolytes	25	
	with temperature in air.		
Figure 1.8	Total oxide ion conductivity of various Bi2O3-based solid	27	
	oxide electrolytes.		
Figure 1.9	(a) Illustration of fluorite structure of Ceria (b) position of M^{3+}	28	
	dopant ions and resulting oxygen ion vacancy (c) location of		
	D^{2+} doped positive ions and resulting oxygen vacancy.		
Figure 1.10	Plot of Elastic strain for $Nd_xCe_{1-x}O_{2-\delta}$ against the Mol. dopant	29	
	concentration.		
Figure 1.11	Plot of lattice parameter mismatch between CeO_2 and	30	
	$A_{0.10}Ce_{0.90}O_{2\text{-}\delta}$ against the ionic radius of positive cation $(A^{3\text{+}})$		
	dopant at temperature 500°C. The bulk (grain) ion conductivity		
	of $A_{0.10}Ce_{0.90}O_{2-\delta}$ at temperature 500°C is also presented.		
Figure 1.12	The FE-SEM image of SDC and Li/Na_2CO_3 composite sintered	38	
	sample at temperature 650°C for 2 h (b) The image of HRTEM		
	of SDC/Na ₂ CO ₃ nanocomposite.		
Figure 1.13	Two percolative interpenetrated phases with an oxide as oxide	39	

ion conductor and a carbonate salt as proton conductor.

Figure 1.14 Interfacial charge conduction pathway based on space charge 41 layer theory. Figure 2.1 Flow chart of glycine-auto-combustion method. 45 Figure 2.2 Mechanism of working principle of ball milling. 47 Figure 2.3 Flow chart of solid state reaction method 47 Schematic representation of X-ray beam incident on a crystal lattice Figure 2.4 50 plane of material Figure 2.5 X-Ray diffraction facility 51 Figure 2.6 Image of structural refinement of XRD data using FullProf software. 53 Figure 2.7 Schematic representation of SEM 55 SEM facility. 56 Figure 2.8 Figure 2.9 TEM schematic diagram. 57 Figure 2.10 TEM facility. 58 Figure 2.11 Schematic diagram of TGA 59 Figure 2.12 **TG-DTA** facility 60 Graphic arrangement of the main apparatuses of a Raman Figure 2.13 61 microspectrometer. Figure 2.14 Raman spectroscopy facility 61 Figure 2.15 ac impedance measurement facility 63 Figure 2.16 The typical Nyquist plot. The inset figure denotes the 64 equivalent electronic circuit mode. **Figure 2.17** Fitting of impedance data using Z-Simpwin software. 65 (a) Powder X-Ray diffraction patterns of the Ce_{0.8}Ga_{0.2-x}Cu_xO_{2-δ} Figure 3.1 72 (x=0, 0.05, 0.1, 0.15, 0.2) samples at room temperature. The reference peak positions for pure CeO₂ are also marked at the bottom (b) Variation of lattice parameter and crystallite size with Cu 73 concentration for various compositions. Figure 3.2 (a) Rietveld fits of the X-Ray diffraction patterns of Ce_{0.8}Ga_{0.2}-74 $_{x}Cu_{x}O_{2-\delta}$ (x=0, 0.05, 0.10, 0.15, 0.20). The red dots denote experimentally observed data; overlapping black line curve is the Rietveld calculated profile while bottom blue curve denotes

the difference plot. Vertical green bars mark the positions of Bragg peaks.

(b) Rietveld fits of the X-Ray diffraction patterns of $Ce_{0.8}Ga_{0.2}$ - $_xCu_xO_{2-\delta}$ (x=0, 0.05, 0.10, 0.15, 0.20). The red dots denote experimentally observed data; overlapping black line curve is the Rietveld calculated profile while bottom blue curve denotes the difference plot. Vertical green bars mark the positions of Bragg peaks.

(c) Rietveld fits of the X-Ray diffraction patterns of $Ce_{0.8}Ga_{0.2-x}Cu_xO_{2-\delta}$ (x=0, 0.05, 0.10, 0.15, 0.20). The red dots denote experimentally observed data; overlapping black line curve is the Rietveld calculated profile while bottom blue curve denotes the difference plot. Vertical green bars mark the positions of Bragg peaks.

(d) Rietveld fits of the X-Ray diffraction patterns of $Ce_{0.8}Ga_{0.2}$ -_xCu_xO_{2- δ} (x=0, 0.05, 0.10, 0.15, 0.20). The red dots denote experimentally observed data; overlapping black line curve is the Rietveld calculated profile while bottom blue curve denotes the difference plot. Vertical green bars mark the positions of Bragg peaks.

(e) Rietveld fits of the X-Ray diffraction patterns of $Ce_{0.8}Ga_{0.2-x}Cu_xO_{2-\delta}$ (x=0, 0.05, 0.10, 0.15, 0.20). The red dots denote experimentally observed data; overlapping black line curve is the Rietveld calculated profile while bottom blue curve denotes the difference plot. Vertical green bars mark the positions of Bragg peaks.

76

75

77

Figure 3.4	Raman spectra of Ce _{0.8} Ga _{0.2-x} Cu _x O _{2-δ} (x=0, 0.05, 0.10, 0.15,	82
	0.20) calcined at 700°C for 2 hours. Inset gives the FWHM	
	value of strongest line and magnified image of weak bands	
	around 580 cm^{-1} and 1160 cm^{-1} for various compositions	
Figure 3.5	SEM images of the Ce _{0.8} Ga _{0.2-x} Cu _x O ₂₋₈ (x=0, 0.05, 0.1, 0.15,	84
	0.2) solid electrolytes, (f) schematic micrograph showing CuO	
	precipitates around grain boundaries and	
Figure 3.6	(g,h) SEM images of $Ce_{0.8}Ga_{0.05}Cu_{0.15}O_{1.825}$ and (i,j)	85
	corresponding EDS spectrum.	
Figure 3.7	TEM micrograph of $Ce_{0.8}Ga_{0.05}Cu_{0.15}O_{1.825}$ (b) high	86
	magnification TEM micrograph of the lattice planes, (c) SAED	
	image, and (d) histogram of the distribution of crystallite size	
	of $Ce_{0.8}Ga_{0.05}Cu_{0.15}O_{1.825}$ sample calcined at 700°C for 2 hr.	
Figure 3.8	(a) Fitted ac impedance spectra of $Ce_{0.8}Ga_{0.2}Cu_{0.0}O_{1.9.}$	90
	(b) Fitted ac impedance spectra of $Ce_{0.8}Ga_{0.15}Cu_{0.05}O_{1.875}$.	90
	(c) Fitted ac impedance spectra of $Ce_{0.8}Ga_{0.10}Cu_{0.10}O_{1.85}$.	91
	(d) Fitted ac impedance spectra of $Ce_{0.8}Ga_{0.05}Cu_{0.15}O_{1.825}$.	91
	(e) Fitted ac impedance spectra of $Ce_{0.8}Ga_{0.0}Cu_{0.2}O_{1.8}$.	92
Figure 3.9	(a) Temperature dependence of Ionic conductivity results and	93
	(b) Arrhenius plots for $Ce_{0.8}Ga_{0.2-x}Cu_xO_{2-\delta}$ (x=0, 0.05, 0.1,	
	0.15, 0.2) solid electrolytes in the temperature range 200 to	
	700 °C.	
Figure 3.10	Thermal expansion plot of $Ce_{0.8}Ga_{0.05}Cu_{0.15}O_{1.825}$ solid	94
	electrolyte.	
Figure 4.1	DTA profiles of the CPGS, CPGS/20LNC, CPGS/30LNC and	102
	CPGS/35LNC nanocomposite electrolytes.	
Figure 4.2	Powder X-ray diffraction patterns of the CPSG, CPSG/20LNC,	103
	CPSG/30LNC and CPSG/35LNC nanocomposites. Vertical	
	bars at the bottom mark the reference peak positions of pure	
	CeO _{2.}	

-

Figure 4.3	(a-d) Rietveld fits for the X-ray diffraction patterns of CPSG,	105
	CPSG/20LNC, CPSG/30LNC and CPSG/35LNC. The	
	experimentally observed data is represented by red dots; the	
	calculated XRD profile is black line curve overlapping on the	
	observed data while bottom blue curve represent their	
	difference. The positions of Bragg peaks are marked by	
	vertical green bars.	
Figure 4.4	(a-d) SEM images of the of CPSG, CPSG/20LNC, CPSG/30LNC	107
	and CPSG/35LNC nanocomposite electrolytes.	
Figure 4.5	Elemental mapping of CPGS/35LNC nanocomposite electrolyte.	108
Figure 4.6	TEM images of CPSG/35LNC with core-shell morphology (b)	109
	high resolution TEM image of CPSG/35LNC, (c) SAED	
	pattern of CPSG/35LNC sample (d) histogram with Gaussian	
	distribution of crystallite size of CPSG/35LNC sample.	
Figure 4.7	(a) Evolution of XRD patterns with temperature for	111
	CPSG/35LNC solid electrolyte	
	(b) Thermal expansion plot of CPSG/35LNC solid electrolyte	112
Figure 4.8	Plots of frequency dependent dielectric tangent loss for CPSG,	114
	CPSG/20LNC, CPSG/30LNC and CPSG/35LNC	
	nanocomposite electrolytes at various temperatures.	
Figure 4.9	The frequency variation of complex ac conductivity for CPGS,	117
	CPSG/20LNC, CPSG/30LNC and CPSG/35LNC nanocomposite	
	electrolytes at various temperature in the range of 300-500°C at	
	an interval of 10 $^{\circ}\mathrm{C}$ (increasing temperature from bottom to top	
	curve).	
Figure 4.10	The temperature variation of frequency exponent (n) for	118
	CPSG/LNC nanocomposite samples.	
Figure 4.11	(a-b) ac impedance spectra of CPSG/20LNC, CPSG/30LNC and	121
	CPSG/35LNC nanocomposite electrolytes at 350° C and 550° C	
	temperatures. (c-d) Typical equivalent electrical circuits for	
	impedance plot of CPSG/35LNC	
Figure 4.12	Temperature dependence of Ionic conductivity of CPSG,	122
	CPSG/20LNC, CPSG/30LNC and CPSG/35LNC nanocomposite	
		х

xix

electrolytes in the temperature range 200 to 650°C.

The frequency variation of real part of dielectric permittivity

- Figure 4.13 for CPSG, CPSG/20LNC, CPSG/30LNC and CPSG/35LNC
 124 nanocomposite electrolytes in the range of 300-500°C at an interval of 10 °C (increasing temperature from bottom to top curve).
- Figure 5.1 (a) Room temperature XRD patterns of the sintered sample of 133
 SFMW. (b) Rietveld XRD profiles for the SFMW sample at room temperature Calculated (solid line), observed (circles), calculated (solid line), difference (bottom) and the tick marks correspond to the permitted Bragg reflections.
- Figure 5.2(a-d) SEM and EDX images of SFMW cathode material134The room temperature XRD patterns of SFMW-SDC and
- SFMW-BCS mixture sintered at 1200°C for 6 h Figure 5.3 136 Figure 5.4 (a) Variation of lattice constant with temperature 138 (b) Evolution of thermal expansion coefficient with 138 temperature. (c) Evolution of XRD patterns with temperature for SFMW 139 sample Figure 5.5 Evaluation of Thermal expansion coefficient of cathode 140 materials with SDC electrolyte.
- Figure 5.6
 (a) Impedance spectra of SFMW cathode
 142

 (b) Arrhenius conductivity-temperature plot of SFMW cathode
 sample.
- Figure 5.7(a) Impedance spectra of single cell of SFMW cathode144corresponding to the oxide ion conductor SDC electrolyte. (b)Arrhenius plot of the ASRs of SFMW/SDC/SFMW cathode.145(c, d) SEM images of cross section of SFMW/SDC/SFMW145interface

List of tables

Table No.	Table Caption	Page No.
Table 1.1	Different fuel cell types and their characteristics.	5
Table 1.2	Various Perovskite based cathode materials.	14
Table 1.3	List of materials developed as anode and their dc conductivities at 800°C	21
Table 1.4	Conductivity with different composition of ceria-carbonate composite electrolyte from literature.	35
Table 3.1	Crystallographic and micro-structural information of $Ce_{0.8}Ga_{0.2-x}Cu_xO_{2-\delta}$ samples.	79
Table 3.2	List of FWHM value of strongest peak for all compositions	82
Table 3.3	Activation energy and total ionic conductivity for $Ce_{0.8}Ga_{0.2}$. _x $Cu_xO_{2-\delta}$ samples.	92
Table 4.1	Values of elements of equivalent circuit for samples CPSG/35LNC at 350 °C and 550 °C	122
Table 4.2	Total ionic conductivity for CPSG, CPSG/20LNC, CPSG/30LNC and CPSG/35LNC nanocomposite electrolytes.	123