TABLE OF CONTENTS

Chapter 1: Introduction and literature survey

1.1 Introduction:	1
1.2 Polymeric membrane:	2
1.3 Nanohybrid membrane (NH):	3
1.4 PVDF and its copolymers:	4
1.5 Ions exchange membrane:	6
1.5.1 Cationic exchange membranes (CEMs):	7
1.5.2 Anion Exchange membranes (AEMs):	9
1.5.3 Bipolar membranes (BPMs):	10
1.6 Various Techniques used for the Fabrications of the Ionic membrane:	11
1.6.1 Functionalized membrane preparation via radiation induced grafting:	11
1.6.2 Functionalized to prepare chemical modified membrane:	13
1.6.3 Blend /composites membrane:	14
1.7 Swift Heavy ions (SHI):	16
1.7.1 Physical changes after the SHI:	17
1.7.2 Chemical changes after the SHI:	18
1.7.3 Chemical etching and formations of the Latent track:	19
1.7.4 Fabrications of the conducting nanochannels:	20
1.8 Applications of the ionic membrane:	21
1.8.1 Fundamentals of Fuel cell Technology and working Principle:	21
1.8.2 Polymer Electrolytes fuel cell membrane:	24
1.8.3 Direct Methanol fuel cell (DMFCs)	25
1.9 Nafion membrane (Commercial)	26
1.9.1 Advantages:	27
1.9.2 Disadvantages:	28
1.9.3 Developments:	28
1.10 Ionic membrane in field of the nuclear waste management's:	28
1.11 Literature survey on uniform latent track fabrication:	29
1.12 Literature survey on Ionic Membrane characteristics:	33
1.13 Literature survey for Polymer electrolytes membrane and fuel cell efficiency:	35
1.14 Literature survey on the Radionuclide managements and tracing:	36

1.15 Motivation of the works and objective of the present work:
Chapter 2: Materials, Experiments and Characterization
2.1 Materials
2.1.1 Polymers:
2.1.2 Organically modified Nanoclay and monomer solutions:
2.1.3 Regents and Solvents:
2.2 Experiments
2.2.1 Preparation of pristine membrane and Nanohybrid:
2.2.2 Direct Functionalization of the Pristine Polymer:
2.2.3 Fabrication of the Nanochannel via the Particle radiation swift Heavy ions:43
2.2.4 Functionalization of the nanochannel formed by Swift Heavy ions:
2.3 Characterizations Techniques
2.3.1 Field emission scanning electron microscopy (FE-SEM):45
2.3.2 Atomic Force Microscopy (AFM):
2.3.3 Polarizing Optical microscope (POM):46
2.3.4 Ultra-violet visible (UV-vis) spectroscopy:
2.3.5 Fourier-transform infrared (FTIR) spectroscopy:
2.3.6 Nuclear Magnetic resonance (NMR):
2.3.7 XRD for structural modifications:
2.3.8 Thermogravimetric analysis (TGA):
2.3.9 Differential scanning calorimetry (DSC):
2.3.10 Ion exchange capacity of the membranes using radionuclide tracer:
2.3.11 Water uptake (WU):
2.3.12 Mechanical Testing:
2.4 Quantification of Radionuclide Waste
2.4.1 Sorption studies:
2.4.2 Alpha spectrometry study:
2.4.3 Alpha track radiography:
2.5 Electrochemical Analysis
2.5.1 Electrochemical impedance spectroscopy (EIS):
2.5.2 Activation energy:
2.5.3 Linear Polarization Studies:
2.5.4 Methanol Permeability:

2.5.4 Membrane Electrode Assembly (MEA):	53
Chapter 3: Functionalization poly(vinylidene fluoride-co-hexafluor Membrane for Fuel cell	ro propylene)
3.1 Introduction:	55
3.2 Experimental	57
3.2.1 Materials:	57
3.2.2 Functionalization of the membrane:	57
3.3 Results and discussion	58
3.3.1 Ionomer preparation:	58
3.2.2 Structure and morphological changes due to functionalization:	62
3.3.3 Thermal, mechanical and electrical properties:	63
3.3.4 Proton conductivity and methanol permeability of functionalized	membrane:.65
3.3.5 Fuel cell efficiency using functionalized membrane:	68
3.4 Conclusion:	69
4.1 Introduction:	71 74
4.2 Experimental	74
4.2.1 Materials:	74
4.2.2 Functionalization of the membrane:	
4.3 Results and discussion	
4.3.1 Nanochannel fabrication: $(1 - 1)^{-1}$	
4.3.2 Gratting of PVDF and functionalization within the hanochannel:	۰،
4.3.5 Structural modifications:	
4.3.5 Proton conductivity and methanol permeability of the functionaliz	zed
membrane:	
4.3.6 Fuel cell efficiency in MEA stack:	91
4.4 Conclusion	
Chapter 5: Fabrication of Conducting Nanochannels using Acceler cell Membrane and Removal of Radionuclide's: Role of Nanoparticle	cator for Fuel s
5.1 Introduction:	95
5.2 Experimental	97
5.2.1 Materials:	97

5.2.2 Functionalization of the membrane:
5.4 Results and discussion:
5.3.1 Nanochannel fabrication using swift heavy ions:
5.3.2 Functionalization of nanochannels:102
5.3.3 Functionalization induced structural change:
5.3.4 Electrochemical analysis and functionalized material as corrosion inhibitor:. 109
5.3.5 Separation of radionuclide from waste and fundamentals:
5.3.6 Fuel cell performance using functionalized membranes:
5.4 Conclusions
Chapter 6: Lithium Irradiated poly (vinylidene fluoride) Nanohybrid Membran for radionuclide Waste Management and Tracing
6.1 Introduction:
6.2 Experimental

6.2.1 Materials:	
6.2.2 Functionalization of the membrane:	
6.3 Results and discussion:	
6.3.1 Fabrication of nanochannels using SHI:	
6.3.2 Functionalization and evolving of interactive system:	
6.3.3 Structural modifications and thermal properties:	
6.3.4 Membrane characteristics and electrochemical analysis:	140
6.3.5 Radionuclide uptake	
6.3.6 Depth profiling of radionuclide within nanochannels:	145
6.3.7 Sensing of radionuclide using functionalized film:	149
6.4 Conclusions:	
Chapter 7: Conclusions and Scope of the work	

7.1 Conclusions:1537.2 Scope for future work:156References.157List of Publications181

LIST OF FIGURE

Figure 1.1: Various membranes based on the pore size2
Figure 1.2: Preparation of Nanohybrid membrane4
<i>Figure 1.3:</i> Schematic representation of the (a) α -trans gauche conformation; (b) β -all
trans conformation of crystalline PVDF, while the black, pink and yellow spheres
represent carbon, hydrogen and fluorine atoms, respectively. The arrows signify -CF $_2$
dipole directions
Figure1.4: Cation exchange membrane9
Figure1.5: Anion Exchange membrane9
Figure 1.6: Schematic Presentation of BPM10
Figure 1.7: Schematic of the chemical changes after the Swift Heavy Ions
bombardments19
<i>Figure 1.8:</i> Schematic presentation of a fuel cell set-up22
Figure 1.9: Working principle and cell reaction based Schematic of the
DMFCs
<i>Figure 1.10</i> Chemical structure of the Nafion27
Figure 1.11: Morphological studies (a) SEM mages of the HFP and its nanohybrid

Figure 1.12: Surface latent track after the variation of the temperature keeping the ions $(^{129}$ Xe) and fluence is constant and chemical etchant used alkaline KMnO₄ (a) 120 0 C

channel dimensions ~ 180 nm (b) 25 0 C channel dimension ~ 120 nm (c) -84 0 C
channel dimension ~ 100 nm 32
Figure 2.1: Structure of (a) organic modifier used in 30B; (b) styrene monomer; (c) 3-
hexyl thiophene monomer40
Figure 2.2: Nanohybrid preparation by solution route41
Figure 2.3: Schematic of the direct Functionalization
Figure 2.4: Schematic of the Radiation induced grafting44
Figure 3.1: (a) ¹ H NMR spectra of HFP and sulfonated membranes with the assignment
of their characteristic peaks position; (b) FTIR spectra of pure HFP and its
functionalized membranes and indicate the extra peak arises after the sulphonation
using vertical lines; (c) UV-visible absorption spectra of the HFP, HFP-12 and HFP-18
indicating the peak position; and (d-f) are overlay EDS mapping of the HFP, HFP-12,
and HFP-18, respectively (from left to right), the red spot indicate the position of
sulphur atom; (g) EDX spectra of the HFP, HFP-12 and HFP-18 are
respectively60
Figure 3.2: (a) XRD spectra of HFP, HFP-12 and HFP-18 indicating the crystalline
planes; (b) polarizing optical images of spherulitic morphology of HFP and HFP-18
membrane indicating the position γ -spherulite by arrows; (c) AFM images for surface
morphology of HFP and HFP-18; (d) average height profile of HFP and HFP-18
membranes

Figure 3.3: (a) Thermo-gravimetric analysis (TGA) of pristine HFP and functionalized HFP-12, and HFP-18 membranes; (b) differential scanning calorimetric (DSC) thermogrammes of HFP, HFP-12, and HFP-18 for the determination of melting point; (c) stress-strain curves of pristine HFP and functionalized HFP-18 membrane showing

their relative ductility and mechanical strength; and (d) I-V characteristics of HFP and

Figure 4.2: (a)¹H-spectra of pristine PVDF, PVDF-g-s and NH-g-s measured using 500 MHz magnetic field NMR. Respective proton positions are indicated in the chemical structure (inset) and spectrum; (b) FTIR spectra of the pristine PVDF, PVDF-g-s, NH and NH-g-s indicating various peak assigned peak positions; (c) FTIR -spectra of PVDF, NH, PVDF-g-s, and NH-g-s functionalize membrane and indicate the stretching vibration frequency of hydrophilic group (-OH) through the vertical line. (d) UV-vis absorption spectra of PVDF, NH, PVDF-g-s and NH-g-s showing the peak position by vertical lines; and (e) SEM images of PVDF-g-s and NH-g-s showing filling up of channels after grafting; and (f) AFM image after grafting of indicate specimens showing filling up after grafting and

Figure 5.1: (a) Details schematic presentation of ion bombardment followed by their functionalization (physical representations); and (b) reaction scheme of the PVDF and

nanohybrid	grafting	followed	by	the	sulphonation	(chemical
representation)						100

Figure 5.4: (a) XRD patterns of PVDF, PVDF-g-s, NH and NH-g-s membranes showing crystalline planes; (b) deconvulation of the functionalized nanohybrid membrane indicating various phases; (c) Bar diagram of piezoelectric β -phase content of PVDF, PVDF-g-s, NH and NH-g-s membranes;(d) DSC thermograms of the indicated specimens mentioning the melting temperature through vertical lines; (e) Polarizing optical microscopic images of PVDF, PVDF-g-s, NH and NH-g-s

Figure 5.7: Complete fuel cell experiment using the developed membranes. (a) Proton conductivity of the indicated membranes as function of temperature; (b) water uptake of the functionalized membranes (PVDF, PVDF-g-s, NH, and NH-g-s); (c) Schematic presentation of membrane electrode assembly using developed membranes; (d)

Figure 6.4: The evidence of the grafting (using styrene monomer) followed by their sulphonation confirmed through different NMR nuclei studies, (a) the NMR spectra of

Figure 6.6: Characterization of membrane materials and to provide evidence of the formation of the electro active (piezoelectric) β -phase and thermal stability. (a) XRD patterns of PVDF, NH, PVDF-6, NH-6, PVDF-7 and NH-7; (b) Deconvolution of a representative XRD spectra of NH-7 showing different phase fraction; (c) Piezoelectric β -content of the different membranes, calculated from the respective deconvulated patterns; (d) DSC thermograms of PVDF, NH, PVDF-6, NH-6, PVDF-7 and NH-7 showing the respective melting temperatures; (e) Polarizing optical microscopic images of PVDF, NH, PVDF-7 and NH-7; and (f) TGA thermograms of PVDF, NH, PVDF-6, NH-6, PVDF-7 NH-7, indicate respective and their degradation

Figure 6.7: Characteristic parameters of the hydrophilic membranes as developed (a) Water uptake of the indicated membranes; (b)Ion exchange capacity, mmoles/g of the functionalized membranes estimate using the radioactive nuclide CsCl; (c) Nyquist Plot

LIST OF TABLE

Table 1.1: Classification of the fuel cell devices based on fuel, electrolytes and operating
temperature
Table 1.2: Channel diameter after etching process of Sn exposed on the piezoelectric β -
phase PVDF thin foils at oxidizing agent 0.25 mol L ⁻¹ aqueous KMnO4 solutions with
various alkaline conc
Table 1.3: Results of the etching of the PVDF films which were irradiated with various
ions and fluence
Table 1.4: Ionic membrane characteristics of the various functionalized membrane
materials
Table 1.5: Comparative Fuel cell efficiency of the various membrane electrodes
stack
Table 3.1: Comparison of proton conductivity (K ^m), methanol permeability (P), Activation
Energy (Ea) and selectivity parameter (SP) of HFP-12 and HFP-18 with the
standardNafion117 membrane at 25°C and 50% water-methanol
mixture
Table 4.1: Conductivities ($\kappa^m \times 10^{-2}$ S cm ⁻¹) of indicated membranes (functionalized PVDF
and nanohybrid) at different temperatures
Table 4.2: Membrane conductivity (k ^m), methanol permeability (P) at 30 °C, energy of
activation (E _a) and power density values for different membranes measured at 30 $^{\rm o}{\rm C}$ using
30% methanol water mixture

LIST OF SCHEMES