# **1.1 Introduction**

Energy harvesting from renewable energy sources is the main objective of the researchers in this time of energy scarcity. Adjacently, researchers are also working on developing new ways to store this energy in the form of electricity using batteries, fuel cell, supercapacitors etc. Among all, supercapacitors are one of the best device for energy storage, serve as a channel between traditional capacitors and batteries. They have number of advantages over batteries and traditional capacitors, such as high power and energy density, long lifetime, fast charging and discharging, easy maintenance and most importantly, no environmental pollution. In this context, over the last few decades, there has been a gradual increase in scientific interest to use of various nanostructured engineering materials for supercapacitors and other applications. These nanostructured materials outperform their bulk counterparts in terms of their chemical kinetics, chemical stability, shorter ionic diffusion path lengths, high surface area, and abundance of active sites for electrochemical reactions. The properties of nanoparticles are strongly influenced by the factors like morphology, crystallinity, crystallographic structure and density [11]. Specifically, transition metal oxides (TMOs) are one of the most intriguing classes of nanostructured materials, with a diverse range of crystal structures, high chemical activity, low production costs and are universally recognized as the foundation of next-generation advanced devices. The

multiple valance states with partially filled outer-d orbitals of TMOs evoke interesting chemical and physical properties which build the interest of researchers to discover their structure property correlation. These are the compounds which form a metal-oxygen bond of various types whose nature varies from ionic to covalent to metallic. For example, while oxides like RuO<sub>2</sub> [12], LaNiO<sub>3</sub> [13] show metallic properties, oxides like BaTiO<sub>3</sub> [14], MnO<sub>3</sub> [15] exhibit highly insulating behaviour. Furthermore, some TMOs, such as TiO<sub>2</sub>, SnO<sub>2</sub>, and MnO<sub>2</sub>, are semiconductors [16]–[18].

Among these nanostructured TMOs, Manganese dioxide (MnO<sub>2</sub>) nanoparticles (NPs) are one of the most interested functional metal oxide, getting attention among researchers because of its economic, nontoxicity, environmentally friendly nature and abundance in comparison to other oxides. It is a dark brown-colored material that occurs naturally as the mineral pyrolusite. MnO<sub>2</sub> NPs are easy to prepare and have good stability due to which it has been applied in various applications such as it is widely used as a catalyst [19], toxic metal absorbent [20], octahedral molecular sieves [21], sensors [22], photocatalysts [23], microbial fuel cells [24], electrodes for Li batteries [25], Na batteries [26], Mg batteries [27] and supercapacitors [28][29]. MnO<sub>2</sub> nanomaterials have large specific surface area and surface defects, implying greater activity and novel properties. These properties can be tuned by varying the synthesis techniques.

#### **1.1.1 Crystal Structure**

The basic framework of  $MnO_2$  crystallographic structure is made up of  $MnO_6$  octahedra, known as octahedral molecular sieves (OMSs) [30]. These OMSs are linked in different ways by sharing their edges and vertices (figure 1.1), resulting in the formation of onedimensional (1D), two-dimensional (2D) and three-dimensional (3D) crystallographic



*Figure 1.1: MnO*<sup>6</sup> octahedral molecular sieve (OMS) and its sharing pattern.

configurations. 1D tunnel structures consists of  $\alpha$ ,  $\beta$  and  $\gamma$ -MnO<sub>2</sub> [31]. 2D and 3D groups are composed of layer structured  $\delta$ -MnO<sub>2</sub> and spinel structured  $\lambda$ -MnO<sub>2</sub>, respectively.  $\alpha$ -,  $\beta$ -,  $\gamma$ -,  $\delta$ - and  $\lambda$ -MnO<sub>2</sub> are formed by interlinking of MnO<sub>6</sub> octahedra, which have tunnels or interlayer gaps of varying magnitude (n x m), as shown in figure 1.2.  $\alpha$ -MnO<sub>2</sub> is made up of two MnO<sub>6</sub> octahedral chains that are connected at the corners and sharing there edges to formulate (1x1) and (2x2) tunnels that runs along the third axis of tetragonal unit cell (figure 1.2a) [32]. The tunnels formed in  $\alpha$ -MnO<sub>2</sub> are of diameter ~4.6 Å, which is appropriate for the intercalation/deintercalation of alkali cations like Li, Na, K, Ba, H<sub>3</sub>O or water molecules [33]. A series of MnO<sub>6</sub> octahedral units share their edges results in the formation of 1D (1x1) tunnel structure pyrolusite,  $\beta$ -MnO<sub>2</sub> of size 1.89 Å (Figure 1.2b) [34]. Because of its narrow size, it cannot accommodate cations. Thermodynamically,  $\beta$ -MnO<sub>2</sub> possesses the most stable structure among all polymorphs of MnO<sub>2</sub>. The uncontrolled growth of ramsdellite, R-MnO<sub>2</sub>, (1x2) and pyrolusite,  $\beta$ -MnO<sub>2</sub>, (1x1) domains leads to the formation of  $\gamma$ -MnO<sub>2</sub> (figure 1.2c) [35]. 2D layers of edge shared MnO<sub>6</sub> octahedra form birnessite,  $\delta$ -MnO<sub>2</sub> with an interlayer spacing of ~7 Å (figure 1.2d) [36]. MnO<sub>2</sub> sheets can be stabilized by inserting adequate number of water (H<sub>2</sub>O) molecules or cations like Na<sup>+</sup> or Li<sup>+</sup> between them.  $\lambda$ -MnO<sub>2</sub> is a usual spinel structure of 3D (1 x 1) tunnels that significantly promotes the transfer of electrons [37]. As a result, it has been widely utilized as an electrode material in electrocatalysis. The structures with various types of tunnels formed as well as their size are illustrated schematically in figure 1.2 and Table 1.1.

| Compound                     | Structure, space group           | Lattice parameters  | Tunnel structure       |
|------------------------------|----------------------------------|---------------------|------------------------|
|                              |                                  | (a, b, c) Å         |                        |
| α- MnO <sub>2</sub>          | Tetragonal, I4/m                 | 9.818 ,9.818, 2.859 | (2 x 2) tunnel         |
| $\beta$ - MnO <sub>2</sub>   | Tetragonal, P4 <sub>2</sub> /mnm | 4.398, 4.399, 2.861 | (1 x 1) tunnel         |
| R- MnO <sub>2</sub>          | Orthorhombic, Pbnm               | 4.53, 9.27, 2.87    | (1 x 2) tunnel         |
| γ- MnO <sub>2</sub>          | Complex tunnel<br>(hexagonal)    |                     | (1 x 1)/(1 x 2) tunnel |
| δ- MnO <sub>2</sub>          | Monoclinic, P6 <sub>3</sub> /mnm | 2.918, 2.931, 7.432 | (1 x ∞) layer          |
| $\lambda$ - MnO <sub>2</sub> | Cubic spinel, Fd3m               | 8.040, 8.040, 8.040 | (1 x 1) tunnel         |

Table 1.1: Crystallographic data of polymorphs of MnO<sub>2</sub>.

The properties of  $MnO_2$  are essentially determined by its crystallographic structure. The exceptional structure flexibility of  $MnO_2$  is appealing because it allows for the creation of

variety of structures, making it a practical tool for studying the effects of dimensionality and crystallographic framework on catalytic, electrochemical, and magnetic properties.



*Figure 1.2:* Arrangement of various  $MnO_2$  framework by forming tunnel (n x m) structures [38].

Since the capacitance is generated by the insertion or deinsertion of ions or electron/proton in the tunnels of  $MnO_2$ , only those crystallographic structures which have enough space to admit these cations are anticipated to be useful for investigations related to its capacitive performance. The significant number of cations or protons inserted/exiled into/from the  $MnO_2$  framework, and thus its capacitive performance is expected to be largely determined by either from tunnel size or interlayer saperation of the layers of  $MnO_6$  octahedral sheets [31]. Structural parameters of all the polymorphs of  $MnO_2$  are illustrated in table 1.1.

# 1.1.2 Magnetic Behaviour

Previously, the majority of MnO<sub>2</sub> research focused on the investigation of electrochemical properties.  $MnO_2$  in bulk is antiferromagnetic [38]. When the size is reduced to the nanometer range, unconventional and intriguing magnetic properties in nanostructured  $MnO_2$  can appear that are completely different from the bulk counterpart. As previously stated that MnO<sub>2</sub> has a high degree of structural flexibility and can exists in a variety of crystallographic forms, influences its physical and chemical properties. The most stable polymorph of MnO<sub>2</sub> is  $\beta$ -phase, while  $\alpha$ ,  $\gamma$ ,  $\delta$ , and  $\lambda$  are metastable states. These metastable compounds acquire an external cation to stabilize their structure, which causes structural changes [33][39]. The complicated magnetic characteristics of  $MnO_2$  are extremely intriguing to study because of their unusual different ordered magnetic phases, which are most likely caused by frustrated magnetic structures and the existence of a significant amount of cations in the tunnels. The presence of different Mn<sup>+4</sup> and Mn<sup>+3</sup> concentrations is also responsible for the variation in magnetic properties of nanostructured MnO<sub>2</sub> [40]. To comprehend the complex magnetic behaviour of MnO<sub>2</sub>, it is necessary to investigate magnetism and possible interactions between the cations present in the compound. The phenomenon of mixed-valence occurs in many transition metal oxides, where the metal is present in more than one oxidation state. The rate of electron transfer between different oxidation states determines the properties of such compounds [41][42]. The nanostructured transition metal oxides such as MnO, MnO<sub>2</sub>, FeO, NiO, and CoO exhibit a magnetic phase transition from paramagnetic to antiferromagnetic upon cooling [43]–[45]. They can also exhibit ferromagnetism or spin-glass behaviour in some cases.

#### Ferromagnetism

Ferromagnetic materials are the materials that possess spontaneous magnetization even though no external magnetic field is present. When a weak external magnetic field is applied, they get strongly magnetized. According to Weiss theory, ferromagnets in a demagnetized state consist of numerous tiny areas known as domains which are spontaneously magnetized. The direction of magnetization of these domains is in such a way that there is no net magnetization. After applying external field, each domain sets magnetized in the direction of field and the magnetic moments are saturated along magnetic field direction. The process of magnetization is demonstrated in figure 1.3. During the entire process, the magnitude of magnetization of domains remain same only the direction changes. Cobalt, iron, nickel, and metals are some of the most frequent examples of these materials. Ferromagnetism exists only below the Curie temperature,  $T_c$  above which the material becomes paramagnetic and its susceptibility then obeys Curie-Weiss law-

$$\chi = C/(T - T_c)$$
[1.1]

#### Chapter 1

Figure 1.4 shows the susceptibility-temperature dependence of a ferromagnetic material. At  $T > T_C$  the  $\chi$  is positive and when T becomes equal to  $T_C$ ,  $\chi$  is infinite, which correlated with the order spontaneous phase [46].



Figure 1.3: The magnetization process in ferromagnets.



**Figure 1.4:** Curie-Weiss law for the ferromagnetic material (a)  $\chi$  Vs T and (b)  $\chi^{-1}$  Vs T above and below  $T_{C.}$ 

One of the significant characteristic properties of the ferromagnetic material below  $T_c$  is the relation between magnetization M and the applied field H. The loop between M and H is called the hysteresis loop as depicted in figure 1.5. Initially, at point O, the ferromagnetic



*Figure 1.5:* Magnetization M versus applied field H for a ferromagnetic material (Hysteresis loop)

material is demagnetized. As the magnetic field increases positively, so does the net magnetization of the sample, until all domains are aligned in the direction of field. On removal of applied field, it gives non-zero magnetization. Certain domain alignment processes are irreversible after saturation, and a finite value of magnetization exists when the magnetic field is reduced to zero. Such magnetization is known as remanent magnetization ( $M_R$ ). When the field is applied in reverse direction, the net moment returns to zero at the point gives coercive field ( $H_C$ ). If the field is swept further, M(H) curve will eventually map out a hysteresis loop [46][47]. The hysteresis loop includes material

information that ranges from microscopic interactions between individual moments to micron-level domain activity to entire size and morphology of the sample.

#### Antiferromagnetism

The molecular field theory developed by Neel is used to describe the principle of antiferromagnetism. The domain structure of antiferromagnetic compounds consists of two interleaved sublattices. Moment of each sublattice is ferromagnetically aligned. The magnetic moment of the first sublattice is polarized in one direction, whereas in the second sublattice the magnetic moment is polarized in opposite direction by an equal number. At temperatures below  $T_N$ , Neel temperature, antiparellelism gets stronger, and at 0K, the antiparallel arrangement is perfect, as illustrated in figure 1.6(a). Antiferromagnetic materials have no net spontaneous magnetization and can only gain a moment in the presence of strong field. Above  $T_N$ , susceptibility follows the equation

$$\chi = C/(T + \theta)$$
 [1.2]

Thermal energy is enough to disrupt individual moments and lead them to become paramagnetic over a Neel temperature,  $T_N$ . When the antiferromagnetic alignment increases below  $T_N$ , the susceptibility starts decreasing. The susceptibility getting close to zero when fields are applied parallel to the ordering vector as shown in Figure 1.6(b) and (c). Unlike the ferromagnetic materials, the antiferromagnetic materials do not show infinite susceptibility at  $T=T_N$ . This type of magnetism was first observed in MnO crystals. The complications of this type of material is that there are several manners of arranging an identical number of up and down spins depending on the type of crystal lattice on which the spins are to be placed. These arrangements of spins result in different types of antiferromagnetic (AFM) ordering such as A, C and G types as shown in figure 1.7. In A- type antiferromagnetism, the coupling between inter-planes is antiferromagnetic and intraplanes are ferromagnetic, while in the case of C-type, intra-plane coupling is AFM and inter-plane coupling is FM. G-type includes both intra- and inter-plane coupling results a material which is AFM in nature [48].



**Figure 1.6:** (a) Outline of magnetic dipoles in antiferromagnetic material aligns in opposite direction, Curie-Weiss law (b)  $\chi$  Vs T and (c)  $\chi^{-1}$  Vs T above and below  $T_{N}$ .



Figure 1.7: Arrangement of spins in different types of antiferromagnetism.

Chapter 1

#### Spin-glass: Experimental Phenomenology

Spin-glasses are the class of disordered magnetic materials. The interaction between magnetic impurities in a non-magnetic matrix makes them become spin-glass. Such magnetic systems have mixed interactions characterized by the freezing of spins at well-defined temperature  $T_f$  called spin freezing temperature. When the interaction is positive, two spins prefer to align in same direction and create a ferromagnetic bond; otherwise, they align in opposite direction to form antiferromagnetic bond. Because magnetic impurities or ions are dispersed randomly, they can have either a positive or negative charge. At low concentration, there is a large distance between the pairs of ions; therefore, the intensity of the positive and negative interactions is approximately same. For example, in CuMn alloy, low Mn concentration results in both ferromagnetic bonds are competing with each other and the system becomes frustrated. Due to the randomness, there is a distribution of the distance between the spins results the frustration and thus shows a spin-glass behavior [49], [50].

Spin-glass samples have irreversible behaviour below  $T_f$  and reversible behaviour above  $T_f$ . Field cooling (FC) produces smooth reversible curves below  $T_f$ , whereas zero-field cooling (ZFC) produces irreversible behaviour that gradually relaxes to FC behaviour. The main experimental signs of spin-glasses are as follows:

• At zero-field cooling, the specific heat exhibits a wide maximum of around  $1.4T_{\rm f}$ , followed by a gradual decline at high temperature. The peak becomes flat on the application of external magnetic field.

- At T<sub>f</sub>, the dc susceptibility curve shows a sharp peak that is highly influenced by magnetic fields, and even a slight increase in magnetic field can smooth it down.
- In comparison to the behaviour of traditional ferromagnets or antiferromagnets, the AC magnetic susceptibility peak shifts with frequency.

#### Magnetic Interactions

The magnetic behaviour of a magnetic system is determined based on the different exchange interactions among the different atoms. These interactions are categorized into two categories: direct interaction and indirect exchange interaction between spins.

#### **Direct Interaction**

Heisenberg's exchange integral is often used to explain such interactions.

$$H = -\frac{1}{\hbar^2} J_{ij.} \hat{s}_{1.} \hat{s}_j$$
 [1.3]

where, J is the exchange integral and  $\hat{s}_1$  and  $\hat{s}_j$  represent the electronic spin of i<sup>th</sup> and j<sup>th</sup> atomic sites, respectively with values +1/2 and -1/2. If J<sub>ij</sub> is positive, the parallel orientation of spins is preferred, indicating that the material is FM in nature [51][52]. If J is negative then material is antiferromagnetic in nature. Direct exchange interaction can be explained through Pauli's Exclusion Principle. Let us take two atoms, each have only one electron. Columbic interaction is minimal when two atoms are brought closer to one another and the electrons may travel in between the nuclei. The Pauli principle requires that the entire wave function must be antisymmetric concerning the interchange of electrons. There is the combination of the spatial wave function and spin wave function with at least one of symmetry of the total wave function must be antisymmetric. Due to this antiparallel alignment, antiferromagnetic ordering exists with a negative value of exchange interaction (J). When these atoms are brought far away from each other, electrons can move away

from the nucleus to reduce the electron-electron columbic interaction. This results in parallel alignment of the spins with a positive value of J i.e. ferromagnetic ordering. The nature of direct exchange interaction can be determined with the help of the Bethe-Slater plot as shown in figure 1.8.



*Figure 1.8:* Bathe-Slater curve showing the variation of exchange integral with 3d orbital radius  $r_{3d}$  relative to atomic radius  $r_a$ .

#### Indirect Interaction

#### (a) Super Exchange Interaction

Indirect superexchange interaction involves the interaction between two nearest neighbour cations such as  $O^{2-}$ ,  $S^{2-}$ ,  $Se^{2-}$ ,  $Cl^{1-}$  or  $Br^{1-}$  with non-magnetic ions (Oxygen). The 3d orbitals of the transition metal oxides (TMO) are good examples of such interaction. In TMO, ions overlap with the p-orbitals of oxygen. Indirect d-d coupling is known as superexchange as shown in figure 1.9(a). For example, take a system of two magnetic atoms with a single d-

electron, separated by oxygen atom i.e. MnO<sub>2</sub>. The hybridization occurs between 3d-Mn orbital and 2p-O orbital which reduces the energy of the system due to the virtual hoping of O-2p electron to the overlapping of Mn d-orbitals. If the transition metal ions makes an angle of around 180° via bridging oxygen, this overlap results in an AFM interaction between the 3d orbitals. The coupling becomes ferromagnetic as the angle approaches 90 degrees and this is the Anderson-Goodenough-Kanamori rules.

#### (a) **Double Exchange Interaction**

The coupling of two localized magnetic moments via an nomadic "extra" electron that can move in between two magnetic nuclei is referred to as a double exchange (DE) interaction. It belongs to the spins of magnetic ions with the compounds having mixed valency and is distinguished by a high degree of electron delocalization. Double exchange creates a significant spin polarization effect that favours ferromagnetic spin alignment since the itinerant electron retains its spin orientation during the transfer. This model is comparable to the superexchange model.

In superexchange, an AFM or FM alignment takes place between two atoms having the same number of valance electrons, however in double exchange, the interaction occurs only when one of the atoms has one more electron then the other. *Wang et al.* proposed the initial notion of this indirect transfer based on the electron-spin interaction mechanism to explain the FM seen in the manganites structure of mixed valency, such as  $(La_xCa_{1-x})(Mn^{+3}Mn^{+4}_{1-x})_{03}$  [53]. When a  $La^{3+}$  ion is replaced by  $Ca^{2+}$  ion, one of the  $Mn^{3+}$  must drop an electron and become  $Mn^{4+}$  to conserve the charge. The electrons on  $Mn^{3+}$  ion can jump to a neighboring site of  $Mn^{4+}$  via oxygen by interacting with 2p electrons of  $O^{2-}$ . This is possible only if there is a vacancy of the same spin. The d-band of the  $Mn^{3+}$  ion has four

electrons. These levels are degenerate in a free atom. The degeneracy is lifted after the ion has been put in the oxygen octahedron, as in  $MnO_2$  structure. The levels of an unperturbed octahedron are divided into a doublet known as  $e_g$  and a triplet known as  $t_{2g}$ . However, due to the strong Hund's coupling, the three electrons at the  $t_{2g}$  level want to keep the  $e_g$ electron aligned to them. Thus it is not energetically favorable for an  $e_g$  electron to hop to an adjacent ion where the  $t_{2g}$  spins will be antiparallel to the  $e_g$  electron. FM arrangement of neighboring ions is required to retain the high-spin arrangement of both the receiving and the donating ions. The FM originates in such systems is governed by the double exchange (DE) mechanism and can be understood considering figure 1.9(b).



*Figure 1.9: Schematic diagram for (a) superexchange interaction and (b) double exchange interaction.* 

#### Ferromagnetism in Antiferromagnetic Nanoparticles

In general, when the size of the antiferromagnetic particle is reduced, the ferrimagnetic component of the total magnetization becomes visible. According to Neel, there is an appearance of uncompensated spins on the surfaces of the nanoparticles. However, because

of exchange interactions with neighbouring atoms, the spins of uncompensated atoms would still be connected to the underlying order, but these interactions would be reduced by decreasing the coordination of surface atoms. Because of defects, bulk uncompensated spins must exist alongside surface uncompensated spins. This means that antiferromagnetic particles have three different components, diamagnetic, typical AFM and FM component that contribute towards the overall moment of the particle [54][55]. Diamagnetic component is smaller in comparison to others and exists in all type of samples. The second is the typical antiferromagnetic and ferrimagnetic component. In theory, the Curie temperature ( $T_c$ ) of ferrimagnet material should be same as the Neel temperature ( $T_N$ ) of an AFM material. If there is strong exchange coupling between the compensated bulk and uncompensated surface moments, we may expect the ferrimagnetic moment to drop with dropping temperature, as it does in an AFM. Higher-complexe exchange coupling should act more like ferromagnets, with the total moment increasing with decreasing temperature.

## **1.1.3 Applications**

When numerous key features in the practical application of nanomaterials, for example abundance in nature, low cost, nontoxic, and environmental benignity, are taken into account, manganese dioxide ( $MnO_2$ ) attracts special interest from researchers and has been employed in a variety of applications [56][57]. It also has distinct characteristics because of multiple valence states of manganese (+2, +3, +4, and +7). Figure 1.10 depicts a handful of the many characteristics of  $MnO_2$ . These characteristic properties make it a promising and functional nanomaterial in environmental purification systems, as a catalyst [58], absorbent of noxious elements [59], sensors [60], dry cell batteries [61], [62], inorganic coloring of ceramics [63], electrodes for Li batteries [64][25], Na batteries [65], Mg batteries [66] and

supercapacitors [67][68](Figure 1.11).  $MnO_2$  is also frequently utilized as an electrode in alkaline batteries, as a photocatalyst, and in electrolysis [69]–[71].  $MnO_2$  has the capacity to absorb harmful ions, which has led to its usage in important water cleaning applications [72]. Manganese dioxides are non-stoichiometric compounds because it absorbs water molecules and other cations to stabilize its structure. However, due to a number of drawbacks, the material's unsatisfactory efficiency has so far hampered its further application. Nanosized  $MnO_2$  particles agglomerate easily during the adsorption or catalytic reaction process due to their high surface energy. Due to their extremely narrow bandgap, recombination is a risk for photoinduced electrons and holes, which limits their application in photocatalysis.

#### *MnO*<sub>2</sub> as an Electrode in Supercapacitor

Supercapacitors are electronically charged devices that can hold massive quantities of electric charge. Supercapacitors are classified into three types based on their energy storage method, as seen in Figure 1.12. The first is the electrode double layer capacitor (EDLC). Capacitance is achieved in this group due to the accumulation of pure electrostatic charge on the electrode-electrolyte interface. This group is heavily reliant on the amount of electrode surface area available to electrolyte ions. Second one is the pseudocapacitor. Due to electro-active species, a fast and reversible faradic process occurs in this case, as illustrated in figure 1.13 [56][73][11]. Hybrids are a third group that combines the properties of both EDLCs and Pseudocapacitor devices. Electrical properties are determined by the electrode material used in supercapacitors. It is a surface process to store charge in two layers on the same surface. Surface properties of electrode materials have a significant impact on the capacitance of a cell.

A supercapacitor is made up of an electrode, an electrolyte, and a separator, with the electrode being crucial to its performance. Exploring electrode materials with excellent performance is a critical task. When it comes to the workings of pseudo-capacitors, it's



*Figure 1.10:* Various properties of MnO<sub>2</sub> nanostructures.

important that the electrode materials and electrolytes make good contact, and that ions/charges move quickly both inside and outside of the electrode. As a result of their large specific surface area and suitable pore dimensions, transition metal oxides with mesopores (between 2 and 50 nm) are advantageous for the construction of highperformance supercapacitors. Mesoporous compounds like RuO<sub>2</sub>[74], MnO<sub>2</sub> [75], ZnO [76], Fe<sub>2</sub>O<sub>3</sub> [77], and NiMn<sub>2</sub>O<sub>4</sub> [78] have been explored extensively for their potential application in supercapacitors during last decade. Among other TMOs, RuO<sub>2</sub> comprises redox reaction induced charge transfer processes, and the shape of its cyclic voltammogram (CV) curve is extremely wide, with a quasi- rectangular form. Fast and reversible redox reactions with high capacitance are aided by good conductivity, quick charge transfer and a larger specific surface area. Unfortunately, high price and toxicity of RuO<sub>2</sub> restrict it from being used on a wide basis. MnO<sub>2</sub> has a low-cost and rectangular voltammogram as a result of fast and reversible faradaic reactions, making it one of the promising alternatives to RuO<sub>2</sub>.



Figure 1.11: Different applications of MnO<sub>2</sub> nanostructures.



Figure 1.12: Taxonomy of materials for supercapacitors.



*Figure 1.13: Schematic diagram of supercapacitor (a) EDLC and (b) Pseudocapacitor.* 

In 1999, Goodenough has reported the first use of MnO<sub>2</sub> as an electrode in supercapacitors [79]. This discovery opened up new possibilities for the development of the range of electroactive MnO<sub>2</sub> electrodes for high performance supercapacitors. This is due to the fact that MnO<sub>2</sub> has several benefits over other materials. Its theoretical specific capacitance is 1370 Fg<sup>-1</sup>, a 1.0 V working potential window, and the capacity to permit electrolytes with considerably less chemical corrosion to current collectors [80]. For improved electrochemical performance, there should be a tuning between the crystalline and amorphous nature of an electrode material. The electrochemical performance of an amorphous structure is superior to that of a well-crystallized structure.

#### The Charge Storage Mechanism

It involves a reversible intercalation and deintercalation of protons or ions into/from  $MnO_2$ lattice as well as a transition of  $Mn^{3+}$  to  $Mn^{4+}$  and vice versa. The charge/discharge process involves two sorts of mechanism involved in the reaction. The first is the cation adsorption and desorption on the surface of  $MnO_2$ . It depends on the radius and mobility of the ions [81]. Second one is the intercalation/deintercalation of cations/protons into/from bulk  $MnO_2$ , expressed as

 $(MnO_2)$ surface + M<sup>+</sup> + e<sup>-</sup>  $\rightarrow$  (MnOOM)surface

 $MnO_2 + M^+ + e^- \rightarrow MnOOM$ 

where M<sup>+</sup> signifies alkali cations, like Li<sup>+</sup>, Ba<sup>+</sup>, and K<sup>+</sup>.

As a result, the charge storage method is linked not only to  $MnO_2$  frameworks, but also to other variables including surface area, electronic and ionic conductivity among others.

#### Factors Affecting the Pseudocapacitance of MnO<sub>2</sub> Electrode Materials

Exploring the optimum crystallinity with excellent conductivity and ionic transport is both essential and challenging. It is observed that electrochemical capacitance strongly depends on the crystallographic structure in the order of  $\alpha$ -MnO<sub>2</sub>  $\geq \delta$ -MnO<sub>2</sub> >  $\beta$ -MnO<sub>2</sub> [82]. As a result, the crystallinity, shape, surface area, diffusion, and size of the nanoparticles all play crucial role in the supercapacitive performance of MnO<sub>2</sub> [56]. Therefore, much effort has gone into developing MnO<sub>2</sub> polymorphs with a variety of morphology and huge surface area. MnO<sub>2</sub> has low electronic conductivity i.e. ~ 10<sup>-5</sup> to 10<sup>-6</sup> S cm<sup>-1</sup> [83], which is responsible for its low experimental specific capacitance, usually upto 350-400 Fg<sup>-1</sup> which is quite smaller than the theoretical value of 1370 Fg<sup>-1</sup> [83]. Thus, to achieve ideal supercapacitive performance, it is important to improve the conductivity of MnO<sub>2</sub> with large surface area. One effective approach is doping metal cation into the MnO<sub>2</sub> matrix or composing it with highly conductive carbon materials and conductive polymers.

# **1.2 Literature survey**

## **1.2.1** Synthesis of the Polymorphs of MnO<sub>2</sub>

Nanostructured  $MnO_2$  samples with varied controllable morphologies are being synthesised using a variety of techniques. Using different methods, one can readily regulate the size, shape, and growth of the nanoparticles by adjusting the synthesis parameters. The majority of the common methods used in the synthesis and functionalization of  $MnO_2$  nanoparticles are simple reduction, co-precipitation, microwave, sol-gel, reflux root, and the hydrothermal synthesis technique. In the sol-gel method, the formation of gel takes place via the redox reaction of potassium permanganate with carboxylic acid such as citric acid, fumaric acid etc. [84]. Formation of different tunnel size MnO<sub>2</sub> structures are controlled by adjusting the pH of the gel. For instance,  $\alpha$ -phase of MnO<sub>2</sub> is formed in conc. acid, while  $\delta$ -MnO<sub>2</sub> is produced in the conc. base [84][85]. Nanowires of  $\alpha$ - and  $\beta$ -MnO<sub>2</sub> are synthesized through the oxidation of Mn<sup>2+</sup> cations by S<sub>2</sub>O<sub>8</sub><sup>2-</sup> ions in an aqueous solution without using any catalyst in sol-gel method [85]. A low temperature sol-gel method uses manganese acetate tetrahydrate (CH3COO)<sub>2</sub>Mn.4H<sub>2</sub>O and conc. HNO<sub>3</sub> accompanying with different surfactants in alcoholic solvent. MnO<sub>2</sub> nanowires and nanorods are synthesized in the presence of polyvinyl pyrrolidone (PVP) and cetyltrimethylammonium bromide (CTAB), respectively [86].

In coprecipitation technique, the advantage over other synthesis methods is the ease with which the particle size and composition can be controlled without a need of any surfactant. This method involves reaction between equal amount of any two manganese salts, like MnSO<sub>4</sub> and C<sub>2</sub>H<sub>2</sub>MnO<sub>4</sub>, and adjusting the pH to 12 by adding sodium hydroxide to obtain a dark brown MnO<sub>2</sub> precipitate [87]. Co-precipitation of Manganese chloride, MnCl<sub>2</sub> and manganese oxalate, C<sub>2</sub>H<sub>2</sub>MnO<sub>4</sub> with the addition of NaOH to regulate the pH of aqueous solution results in the formation of  $\alpha$ -MnO<sub>2</sub> nanosheets [87]. Urchin-like  $\alpha$ -MnO<sub>2</sub> nanomaterials are also synthesised using a simple coprecipitation process of H<sub>2</sub>SO<sub>4</sub> and KMnO<sub>4</sub> in an aqueous solution heated to 85°C [88].

Subramanian et al. have synthesised a variety of  $MnO_2$  microstructures by tuning the decomposition period of KMnO<sub>4</sub> and MnSO<sub>4</sub> from 1 to 18 h at 140°C through hydrothermal technique [89]. MnO<sub>2</sub> nanorods, nanosheets and nanotubes are obtained by

24

*Xiao et al.* when the same reaction solution is kept at 100-200°C for 12 h [90]. Single crystal of  $\beta$ -MnO<sub>2</sub> nanotubes of diameter 200-500 nm are prepared through hydrothermal technique by the oxidation of MnSO<sub>4</sub> with sodium chlorate in the assistanceship of PVP [91]. *Cheng et al.* reported a synthesis of  $\gamma$ -MnO<sub>2</sub> nanowires and  $\alpha$ -K<sub>x</sub>MnO<sub>2</sub> nanofibers from a reaction of MnSO<sub>4</sub> with (NH<sub>4</sub>)<sub>2</sub>S<sub>2</sub>O<sub>8</sub> and KMnO<sub>4</sub>, in an autoclave at 90°C for 24 h and 140°C for 12 h, respectively [74][92].

The microwave Irradiation (MWI) method is one of the simplest and fast methods to synthesis nanostructured materials since there is no need of high temperature or pressure. The ability of a solvent or reagent to absorb microwave radiation determines how quickly a substance is heated by irradiating it with microwave radiation. *Zhang et al.* develop a facile one-pot microwave aided hydrothermal method to synthesise  $\delta$ -MnO<sub>2</sub> microspheres and nanorods at 60°C and 140°C by the reduction of KMnO<sub>4</sub> uder microwave radiation irradiating for 10 min. [93]. Similarly, nanoballs platelike MnO<sub>2</sub>/MWCNTs is well synthesized by placing the solution of MnSO<sub>4</sub>, (NH<sub>4</sub>)<sub>2</sub>S<sub>2</sub>O<sub>8</sub> and CNTs in microwave oven for 16 min. [94].

The aqueous-based reflux technique, which is beneficial for the green synthesis of nanostructured materials permits in situ sample crystallization under ambient pressure and temperature under the boiling point of the solvents. To synthesise required phase and morphology of the nanomaterials, the parameters like concentration of precursors, the time of reflux, and the cooling rate should be optimized. *Wang et al.* have used the refluxing technique to produce  $\lambda$ -MnO<sub>2</sub> nanodisk from manganese acetate and PVP in a dimethyl sulfoxide solution [37]. *Cui et al.* have synthesized single-crystalline  $\beta$ -MnO<sub>2</sub> nanorods

Chapter 1

using a reflux-root reaction of potassium permanganate and manganese sulphate in HNO<sub>3</sub> solution [34].

# 1.2.2 Structural Transformation: Effect of Synthesis Parameters & dopants

As  $MnO_2$  has a flexibility to exist in a number of polymorphic forms as  $\alpha$ -,  $\beta$ -,  $\gamma$ -,  $\delta$ - and  $\lambda$ phase. Phase transformation from one phase to other is crucial from the application point of view. The performance of  $MnO_2$  in a diverse range of applications such as supercapacitors, catalysts, sensors, and so on can be improved if the phase transformation can be well studied. Despite a wide range of reports providing synthesis techniques for  $MnO_2$ polymorphs and their transitions, knowledge of the fundamental driving factors is limited. This gap makes it challenging to distinguish between kinetic and thermodynamic effects in any systematic investigation of the production of  $MnO_2$ , as well as to make assessable theory regarding polymorphic transitions which limit both scientific knowledge and design of functional  $MnO_2$ -based materials. Many efforts have been made to date to understand the phase and structural transformation of  $MnO_2$  using different synthesis routes.

The additive in the hydrothermal and other synthesis methods is the key to control the process of phase transformation so that the phase content of  $MnO_2$  can be precisely controlled. Moreover, phase transformation significantly depends on the synthesis conditions [95]. For example, *wang et al.* synthesized  $\beta$ -MnO<sub>2</sub> through hydrothermal synthesis technique by a reaction between MnSO<sub>4</sub> and (NH<sub>4</sub>)<sub>2</sub>S<sub>2</sub>O<sub>8</sub> which on further addition of (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> produces  $\alpha$ -MnO<sub>2</sub> [82].  $\alpha$ -MnO<sub>2</sub> nanorods have been successfully synthesized by *Li et al.* via reaction between MnSO<sub>4</sub> and (NH<sub>4</sub>)<sub>2</sub>S<sub>2</sub>O<sub>8</sub> of equal concentration while on increasing the concentration of both the precursors with same

processing steps, a mixture of  $\alpha$ - and  $\gamma$ -MnO<sub>2</sub> is obtained [7]. *Musil et al.* have synthesized various polymorphs of MnO<sub>2</sub> by increasing the reaction temperature by twice using the same reaction conditions [96]. Wei et al. transform  $\gamma$ -MnO<sub>2</sub> at room temperature to  $\alpha$ - and  $\beta$ -MnO<sub>2</sub> at 140 and 170°C, respectively [91].  $\delta$ -MnO<sub>2</sub> is transformed to MnOOH in dodecyl amine solution which again transforms to  $\beta$ -MnO<sub>2</sub> after annealing it at 300°C [97]. Shen et al. report a phase transformation of  $\delta$ -MnO<sub>2</sub> to other polymorphs of MnO<sub>2</sub> by varying the pH from 13 to 1 [98]. Zhang et al. have proposed an approach for controlled phase transformation to synthesize different compositions of  $\alpha/\beta$ -MnO<sub>2</sub> by adding zinc acetate as a phase transforming agent as shown in figure 1.14. When the concentration ratio of Zn/Mn increases from zero to  $1.75 \times 10^{-3}$ , it transforms from  $\alpha$  to  $\beta$ -MnO<sub>2</sub> which again  $\alpha$ -MnO<sub>2</sub> on further increasing the Zn/Mn ratio to 3.85x10<sup>-2</sup> [99]. forms Extraction/intercalation of external cations in MnO<sub>2</sub> framework also induces phase transformation. This suggests that cations play an important role in kinetical or thermodynamical stabilization of the MnO<sub>2</sub> polymorphs [100]. Phase selectivity depends on the compatibility of the accessible interstitial site with the coordination of alkali ions. As a result, Na<sup>+</sup>, Ca<sup>+</sup>, K<sup>+</sup> cations stabilize  $\alpha$ -MnO<sub>2</sub>; Na<sup>+</sup> ions and water molecules stabilized  $\delta$ -MnO<sub>2</sub> and; Li<sup>+</sup> and Mg<sup>+</sup> ions stabilize  $\lambda$  phase. *Kitcheav et al.* predict an equilibrium thermodynamics driven phase diagram between A<sub>x</sub>MnO<sub>2</sub> system and external cation (figure 1.15). They evaluate the thermodynamics of the intercalation of alkali and alkali-earth (A = $K^+$ , Li<sup>+</sup>, Na<sup>+</sup>, Mg<sup>2+</sup> and Ca<sup>2+</sup>) cations into MnO<sub>2</sub> framework and establish a relation for the type and concentration of cation on the stability of the polymorphs of MnO<sub>2</sub>. They conclude that  $\alpha$ -,  $\lambda$ - and  $\delta$ - structures are not thermodynamically stable and can be stabilized by alkali intercalation. While, all cations except Li prefer δ- phase, Na, Ca and K



Figure 1.14: XRD patterns of the different compositions of Zn/Mn mix-MnO<sub>2</sub>.



**Figure 1.15:** Constrained equilibrium thermodynamics driving phase selection between  $MnO_2$  polymorphs as a function of solution conditions at 298 K and zero applied potential, for solutions containing (a) Li<sup>+</sup>, (b) Na<sup>+</sup>, (c) K<sup>+</sup>, (d) Mg<sup>2+</sup>, or (e) Ca<sup>2+</sup> cations.

cations prefers the formation of  $\alpha$ -MnO<sub>2</sub>. Spinel structured  $\lambda$ -MnO<sub>2</sub> is favored by Li<sup>+</sup> and Mg<sup>2+</sup>. R and  $\gamma$  phase are stabilized by Ruetschi defect and proton insertion [33]. *Hastuti et al.* have observed a phase transformation from  $\alpha$ -MnO<sub>2</sub> to R-MnO<sub>2</sub> after doping Fe. A large ionic radius of Fe increases the micro-strain and oxygen vacancies that cause tunnel destruction from (2x2) to (2x1) [101]. Hydrothermally synthesized Fe doped MnO<sub>2</sub> leads to a transformation of phase from  $\alpha$ -MnO<sub>2</sub> to a mixture of  $\alpha$  and  $\epsilon$ -MnO<sub>2</sub> [95].

#### **1.2.3** Structure, Morphology and Dopant Dependent Magnetic

## **Properties**

Modulating the crystal structure is a possible way to tune the magnetic behaviour as it determines by means of the short range interactions among the magnetic ions, crystallographic characteristics like bond length, bond angle, and coordination ions. Surface reconstruction can also be used to tune these parameters and control the magnetic behaviour and optimize their functional performance for various applications. In this context, Li et al. have synthesised MnO<sub>2</sub> nanowires with different exposed planes and investigated their modulated magnetic properties. The exchange bias effect is much stronger in MnO<sub>2</sub>-210 as compared to MnO<sub>2</sub>-110 and the difference is attributed to their crystal structure [102]. The magnetic characteristics of  $\alpha$ -,  $\beta$ -,  $\gamma$ - and  $\delta$ -MnO<sub>2</sub>, synthesized using both hydrothermal and coprecipitation methods illustrate that while  $\alpha$ -MnO<sub>2</sub> displays a spin-glass like behaviour below 50 K,  $\beta$ - and  $\delta$ -MnO<sub>2</sub> exhibit an antiferromagnetic (AFM) transition at 92 K and 20 K, respectively. y- MnO<sub>2</sub> maintains its paramagnetic state irrespective of temperature range [23]. The morphology related characteristics of nanomaterials have also gained the interest of researchers as a means of generating unusual properties with a high potential for the practical and innovative applications. Rich diversity

in the magnetic characteristics of MnO<sub>2</sub> comes from the variation in composition and structure, which are generated using different synthesis techniques. Depending on the synthesis technique, sputtered grown  $\alpha$ -MnO<sub>2</sub> nanorods have shows an exchange bias (H<sub>EB</sub>) of 1340 Oe for the cooling field of 30kOe [1]. On the other hand,  $\alpha$ -MnO<sub>2</sub> nanoribbons synthesized through molten salt method possess a large zero field cooling  $H_{EB}$  of 1100 Oe [103]. Furthermore, the complicated magnetic characteristics of  $MnO_2$  are extremely intriguing to study because of their uniquely diverse magnetic ordering. They are most likely produced by magnetic frustrations and the existence of a significant amount of cations inside the tunnels. Cations of alkaline earth elements, and metals, can be doped in the structures due to comparatively large tunnel size. Through careful doping element selection, the characteristics of  $\alpha$ -MnO<sub>2</sub> can be modified in accordance its utilization for various applications. AFM behaviour of  $\alpha$ -K<sub>x</sub>MnO<sub>2</sub> for (x  $\leq$  0.07) is observed below 24.5 K [104], however single crystals of  $\alpha$ -K<sub>0.166</sub>MnO<sub>2</sub> exhibits an AFM interaction below 18 K [4]. Tsang et al. tuned the magnetic characteristics of  $\alpha$ -MnO<sub>2</sub> nanotubes by inserting Na<sup>+</sup>,  $Li^{3+}$ , and K<sup>+</sup> cations inside the tunnels [5]. Incorporation of K cation with varying concentration affect the magnetic interactions present in  $\alpha$ -MnO<sub>2</sub> nanotubes. When the concentration of  $K^+$  is less than 12 at%, it exhibits FM ordering, when the doping concentration  $\geq 12$  at %, it shows AFM ordering [5]. The Neel temperature (T<sub>N</sub>) of dandelion type  $\beta$ -MnO<sub>2</sub> has increased to 100 K from 92 K in bulk  $\beta$ -MnO<sub>2</sub>. Barudzija et al. comprehensively examined the structural and magnetic characteristics of hydrothermally synthesised  $\beta$ -MnO<sub>2</sub> and  $\alpha$ -K<sub>x</sub>MnO<sub>2</sub> (x = 0.15 and 0.18) [6].  $\beta$ -MnO<sub>2</sub> nanorods exhibits an antiferromagnetic ordering at 93 K, while both  $\alpha$ -K<sub>x</sub>MnO<sub>2</sub> (x = 0.15 and 0.18) nanorods exhibit reentrant spin-glass (RSG) feature at freezing temperature, 21 K and 20 K,

respectively. *Zhou et al.* reported that  $\alpha$ -MnO<sub>2</sub> shows SG like characteristic below 50 K, and  $\beta$ - and  $\delta$ - MnO<sub>2</sub> shows an AFM transition at 92 K and 20 K, respectively. On the other hand,  $\gamma$ -MnO<sub>2</sub> maintains paramagnetic behaviour during the entire temperature range from 300 K to 0 K [39]. *Yu et al.* demonstrated that Ba doped  $\alpha$ -MnO<sub>2</sub> nanoribons exhibits an exchange bias of 865 Oe for zero foeld cooling [2].

# **1.2.4** MnO<sub>2</sub> as an Electrode Material for Supercapacitor application

Among all polymorphs of  $MnO_2$ ,  $\alpha$ -phase is considered to be the suitable phase from application point of view as it has a large tunnel size which may intercalate external cation to alter the properties of  $MnO_2$ . Therefore,  $\alpha$  phase is more electrochemically active phase in comparison to other phases. Although, other phases of MnO<sub>2</sub> are also electrochemically active. Zhao et al. have synthesized  $\alpha$ -MnO<sub>2</sub> nanourchins through hydrothermal method at 80, 110 and 140 °C. Among them, α-MnO<sub>2</sub> synthesized at 110°C owns poor crystallinity in comparison to other.  $\alpha$ -MnO<sub>2</sub> nanourchins possess the highest capacitance of 155.5 Fg<sup>-1</sup> at  $1Ag^{-1}$  [105].  $\alpha$ -MnO<sub>2</sub> nanowires with poor crystalline nature possess high specific capacitance with high stability compared to highly crystalline  $\alpha$ -MnO<sub>2</sub> nanorods [106]. *Yin* et al. have synthesised different phases of MnO<sub>2</sub> and study the variation in their electrochemical performance. They observed that specific capacitance decreases in the order of  $\alpha$ -MnO<sub>2</sub> (535 F/g) >  $\delta$ -MnO<sub>2</sub> (464 F/g) >  $\beta$ -MnO<sub>2</sub> (155 F/g) [107]. A structure controlled synthesis of  $\alpha$  and  $\beta$ -MnO<sub>2</sub> nanorods,  $\gamma$ -MnO<sub>2</sub> urchin-like microspheres,  $\delta$ -MnO<sub>2</sub> nanowire and nanosheet have been synthesised by Wang et al., and have observed that, at 5 mVs<sup>-1</sup>, the  $\gamma$ -MnO<sub>2</sub> microspheres,  $\alpha$ - MnO<sub>2</sub> and  $\beta$ -MnO<sub>2</sub> nanorods have capacitance 237.6,

| Phase                   | Morphology          | Electrolyte | Specific                            | Reference |
|-------------------------|---------------------|-------------|-------------------------------------|-----------|
| structure               |                     | _           | capacitance                         |           |
| β-MnO <sub>2</sub>      | Nanorods            | ЗМ КОН      | 125 Fg <sup>-1</sup> at 1           | [108]     |
|                         |                     |             | Ag <sup>-1</sup>                    |           |
| δ-MnO <sub>2</sub>      | Nanosheets          | 1M          | $300 \text{ Fg}^{-1}$ at 1          | [109]     |
|                         |                     | $Na_2SO_4$  | Ag <sup>-1</sup>                    |           |
| MnO <sub>2</sub>        | Hierarchical hollow | 1M          | $308 \text{ Fg}^{-1}$ at            | [110]     |
|                         | nanoparticles       | $Na_2SO_4$  | 0.2 Ag <sup>-1</sup>                |           |
| α-MnO <sub>2</sub> @ δ- | Snowflake like      | 1M          | 260.5 at 0.3                        | [111]     |
| MnO <sub>2</sub>        | coreshell           | $Na_2SO_4$  | Ag <sup>-1</sup>                    |           |
| δ-MnO <sub>2</sub>      | Porus Nanotube      | 1M          | $365 \text{ Fg}^{-1}$ at            | [112]     |
|                         |                     | $Na_2SO_4$  | 0.25 Ag <sup>-1</sup>               |           |
| β-MnO <sub>2</sub>      | Nanowires           | 1M          | 453 $\operatorname{Fg}^{-1}$ at     | [113]     |
|                         |                     | $Na_2SO_4$  | 0.5 Ag <sup>-1</sup>                |           |
| δ-MnO <sub>2</sub>      | Ultrathin tremella- | 1M          | 220 $\operatorname{Fg}^{-1}$ at     | [114]     |
|                         | like structure      | $Na_2SO_4$  | 0.1 Ag <sup>-1</sup>                |           |
| δ-MnO <sub>2</sub>      | Nanoflower          | 1M NaOH     | $256.5 \text{ Fg}^{-1}$ at          | [115]     |
|                         |                     |             | 0.3 Ag <sup>-1</sup>                |           |
| Single crystal          | Nanotube            | 1M          | 220 Fg <sup>-1</sup> at 5           | [116]     |
| α-MnO <sub>2</sub>      |                     | $Na_2SO_4$  | mVs <sup>-1</sup>                   |           |
| δ-MnO <sub>2</sub>      | Nanoplates          | 2M          | $165 \text{ Fg}^{-1} \text{ at } 5$ | [117]     |
|                         |                     | $Na_2SO_4$  | mVs <sup>-1</sup>                   |           |

Table 1.2: Polymorphs of  $MnO_2$  with different morphologies and their specific capacitance.

103.9 and 57.7 Fg<sup>-1</sup>, respectively [8]. Table 1.2 shows the spefic pacitance of different phases of  $MnO_2$  with their morphology.

## **Doped MnO**<sub>2</sub> Nanostructures

One of the most significant ways for modifying the physical and chemical characteristics of functional materials is doping. Control over doping can increase the ionic and electronic conductivity of  $MnO_2$ .  $MnO_2$  is a semiconductor material with high resistance ( $10^5-10^6$ )

Ωcm which limits its better electrochemical performance. Therefore, doping may offer a high specific capacitance or lead to a phase transformation. For example; *Poonguzhali et al.* observed an enhancement in SC from 210 Fg<sup>-1</sup> to 912 Fg<sup>-1</sup> after doping Fe in α-MnO<sub>2</sub> [118]. Vanadium doped δ-MnO<sub>2</sub> nanosheet display an excellent electrochemical performance as supercapacitor electrode because of significant increase in its electronic conductivity [119]. Cu doped β-MnO<sub>2</sub> is a potential cathode for Li-ion batteries with excellent cyclic stability of 125 mAhg<sup>-1</sup> after 100 cycles [119]. *Tang et al.* report that after doping Co in MnO<sub>2</sub>, the specific capacitance of 350 Fg<sup>-1</sup> is achieved at a current density of 0.5Ag<sup>-1</sup> which is quite higher than the specific capacitance of pure MnO<sub>2</sub> (168 Fg<sup>-1</sup>) (figure 1.16) [9].



**Figure 1.16:** (a) Galvanostatic charge/discharge curves of  $MnO_2$  and  $Co-MnO_2$  spheres at a current density of 1 A/g (b) cyclic stability of  $MnO_2$  and  $Co-MnO_2$  at a current density of 2 A/g.

Cryptomelane ( $\alpha$ -KxMnO<sub>2</sub>) can be made to have novel morphologies and electrochemical properties by changing the crystal chemistry and replacing K<sup>+</sup> ions by a metal cation with either a low valency (+3, +2, +1) or a high valency (+5, +6). The metal cation can be intercalated or doped into MnO<sub>2</sub> lattice in two possible ways. One method is to replace the Mn cation in MnO<sub>6</sub> octahedra with a cation (six-coordinate cation) of radius similar to Mn<sup>3+</sup> low spin (0.72), Mn<sup>3+</sup> high spin (0.785), and Mn<sup>4+</sup> (0.67) and the other method is to insert dopant cation within (2 x 2) tunnels with a crystal radius similar to K<sup>+</sup> (1.65), which results in eight-coordination cation [120]. Lower valence dopant cations can make lattice more negative, which encourages the insertion of additional K<sup>+</sup> cations within the tunnels and increases the stability of the structure. High-valency dopant cations generate an excess of electrical charge, which is balanced by the formation of vacancies, resulting in deformation of structure and thermal instability. It has been observed that MnO<sub>2</sub> framework doped with metal cations like Ag<sup>+</sup>, Ni<sup>2+</sup>, Cu<sup>2+</sup>, Co<sup>2+</sup>, Fe<sup>3+</sup>, Cr<sup>3+</sup>, Mo<sup>6+</sup>, V<sup>5+</sup>, W<sup>6+</sup>, etc., successfully increases the specific capacitance as illustrated in table 1.3.

Recently, rare earth (RE) based nanostructures and their composite have progressively gains the interest of researchers. Because of their unpaired 4f electronic configuration they can readily control the structural characteristics while maintaining the excellent physical and chemical properties. Most of the rare-earth elements such as Ce, Er, Nd, Pr, Sm, etc. exhibit  $RE^{3+}/RE^{2+}$  or  $RE^{4+}/RE^{3+}$  redox couple which shows that they are also feasible for electrochemical energy storage. [121]–[124]. Nanostructured RE based materials have high surface to volume ratio. This indicates that they have more number of active sites which can participate in redox reactions and hence increases the capacitance. The pseudocapacitive performance of MnO<sub>2</sub> nanostructures may be tuned by combining MnO<sub>2</sub>

| Electrode                        | Morphology     | Electrolyte                        | Specific capacitance                                  | Reference |
|----------------------------------|----------------|------------------------------------|-------------------------------------------------------|-----------|
| Agdoned                          | Nanosheets     | 1M Na2SO4                          | $272 \text{ Fg}^{-1}$ at 10 mVs <sup>-1</sup>         | [125]     |
| MnO <sub>2</sub>                 | 1 vanobneetb   | 111111112004                       | 27215 at 10 m v 5                                     | [120]     |
| Co-doped                         | Yolk shell     | 1M Na <sub>2</sub> SO <sub>4</sub> | 196 $Fg^{-1}$ at 2 $Ag^{-1}$                          | [9]       |
| MnO <sub>2</sub>                 | spheres        |                                    |                                                       | [7]       |
| Cu doped δ-                      | Microspheres   | LiCl-PVA                           | $300 \text{ Fg}^{-1} \text{ at } 5 \text{ mVs}^{-1}$  | [10]      |
| $MnO_2$ thin                     | Ĩ              | gel                                | C                                                     |           |
| film                             |                | electrolyte                        |                                                       |           |
| 2at% Fe doped                    | Nanonest       | 1M Na <sub>2</sub> SO <sub>4</sub> | 273 Fg <sup>-1</sup> at 5 mVs <sup>-1</sup>           | [126]     |
| MnO <sub>2</sub> thin            |                |                                    |                                                       |           |
| film                             |                |                                    |                                                       |           |
| 0.1M Cu                          | Nanocrystals   | 0.5M KCl                           | 583 Fg <sup>-1</sup> at 10 Ag <sup>-1</sup>           | [127]     |
| doped MnO <sub>2</sub>           |                |                                    |                                                       |           |
| Fe doped                         | Hollow         | 1M Na <sub>2</sub> SO <sub>4</sub> | $203.3 \text{ Fg}^{-1}$ at 0.25                       | [128]     |
| MnO <sub>2</sub>                 | urchin-like    |                                    | Ag <sup>-1</sup>                                      |           |
|                                  | architectures  |                                    |                                                       |           |
| 1at% Ni-                         | Nanospheres    | 0.5M                               | $451 \text{ Fg}^{-1} \text{ at } 5 \text{ mVs}^{-1}$  | [129]     |
| doped MnO <sub>2</sub>           |                | Na <sub>2</sub> SO <sub>4</sub>    |                                                       |           |
| Cu doped                         | Porus          | 1M Na <sub>2</sub> SO <sub>4</sub> | $365 \text{ Fg}^{-1}$ at 1 $\text{Ag}^{-1}$           | [130]     |
| MnO <sub>2</sub>                 | microspheres   |                                    |                                                       |           |
| 5% Co doped                      | Nanowire       | 1M Na <sub>2</sub> SO <sub>4</sub> | 415 $Fg^{-1}$ at 0.2 $Ag^{-1}$                        | [131]     |
| MnO <sub>2</sub>                 |                |                                    |                                                       |           |
| Sn doped σ-                      | Hollow         | 0.5M                               | 169.9 Fg <sup>-1</sup> at 1 Ag <sup>-1</sup>          | [132]     |
| MnO <sub>2</sub>                 | nanostructures | Na <sub>2</sub> SO <sub>4</sub>    |                                                       |           |
| 0.125M Zn                        | Spherical      | 0.5M KCl                           | $620 \text{ Fg}^{-1} \text{ at } 10 \text{ mVs}^{-1}$ | [133]     |
| doped MnO <sub>2</sub>           | particles      |                                    |                                                       |           |
| Fe doped δ-                      | Nanoneedles    | 3M KOH                             | $627.3 \text{ Fg}^{-1} \text{ at } 1 \text{ Ag}^{-1}$ | [134]     |
| MnO <sub>2</sub>                 |                |                                    |                                                       |           |
| Zn doped δ-                      | Nanoflakes     | 1M Na <sub>2</sub> SO <sub>4</sub> | $466 \text{ Fg}^{-1} \text{ at } 0.5 \text{ Ag}^{-1}$ | [36]      |
| MnO <sub>2</sub>                 |                |                                    |                                                       |           |
| B doped                          | Nanosheet      | 0.5M                               | $269 \text{ Fg}^{-1}$ at 50 mVs $^{-1}$               | [135]     |
| MnO <sub>2</sub>                 |                | Na <sub>2</sub> SO <sub>4</sub>    | 1                                                     |           |
| 1.5at% Er                        | Microspheres   | 0.5M                               | $224.3 \text{ Fg}^{-1}$ at 0.5 Ag $^{-1}$             | [136]     |
| doped $\alpha$ -MnO <sub>2</sub> |                | Na <sub>2</sub> SO <sub>4</sub>    | 1 4                                                   |           |
| Sn doped α-                      | Nanoflower     | $1 M Na_2 SO_4$                    | $243.6 \text{ Fg}^{-1}$ at 1 Ag $^{-1}$               | [137]     |
| MnO <sub>2</sub>                 |                |                                    |                                                       |           |

**Table1.3:** Comparision of specific capacitance of cation-doped- $MnO_2$  nanostructures reported in literatures.

| Electrode material           | Electrolyte                        | Specific                   | Stability   | Reference |
|------------------------------|------------------------------------|----------------------------|-------------|-----------|
|                              |                                    | capacitance                | (cycles)    |           |
| MnO <sub>2</sub> @GO         | 1M Na <sub>2</sub> SO <sub>4</sub> | $307.7 \text{ Fg}^{-1}$ at | -           | [139]     |
|                              |                                    | $0.1 \text{ Ag}^{-1}$      |             |           |
| MnO <sub>2</sub> @HGO (holey | 1M Na <sub>2</sub> SO <sub>4</sub> | 117.48 Fg <sup>-1</sup>    | -           | [140]     |
| Graphene oxide)              |                                    | at 5 mVs <sup>-1</sup>     |             |           |
| $MnO_2@g-C_3N_4$             | $0.5M Na_2SO_4$                    | $211 \text{ Fg}^{-1}$ at 1 | 100%        | [141]     |
| (graphic carbon              |                                    | Ag <sup>-1</sup>           | (1000)      |           |
| nitride)                     |                                    |                            |             |           |
| MnO <sub>2</sub> @NRGO       | $0.5M Na_2SO_4$                    | $522Fg^{-1}$ at 2          | 96.3%       | [142]     |
| (Nitrogen doped              |                                    | $mVs^{-1}$                 | (4000)      |           |
| graphene oxide)              |                                    |                            |             |           |
| MnO <sub>2</sub> @Graphite   | 2M                                 | $276.3 \text{Fg}^{-1}$ at  | 93% (10)    | [143]     |
| nanoplatelet                 | $(NH_4)_2SO_4$                     | $2 \text{ mVs}^{-1}$       |             |           |
| MnO <sub>2</sub> @MCNT       | 1M KOH                             | $250.5 \text{ Fg}^{-1}$ at | -           | [144]     |
|                              |                                    | $2 \text{ mVs}^{-1}$       |             |           |
| MnO <sub>2</sub> @Graphene   | 1M KCl                             | $328 \text{ Fg}^{-1}$ at 1 | 99% (1300)  | [145]     |
|                              |                                    | Ag <sup>-1</sup>           |             |           |
| MnO <sub>2</sub> @PANI@MC    | 1M KOH                             | $348.5 \text{ Fg}^{-1}$ at | 88.2%       | [146]     |
| NT                           |                                    | $1 \text{ Ag}^{-1}$        | (2000)      |           |
| MnO <sub>2</sub> @PPY        | 1M Na <sub>2</sub> SO <sub>4</sub> | 303 Fg <sup>-1</sup> at    | 71.2% (500) | [147]     |
|                              |                                    | $20 \text{ mVs}^{-1}$      |             |           |
| PANI@MNO2@PC                 | $1 M H_2 SO_4$                     | $289 \text{ Fg}^{-1}$ at 1 | 91% (1000)  | [148]     |
| NF (Porus Carbon             |                                    | Ag <sup>-1</sup>           |             |           |
| nanofibers)                  |                                    |                            |             |           |

**Table1.4:** Comparision of the specific capacitance of  $MnO_2$  nanocomposites reported in the literature.

with rare earth elements. For example, doping of La/Ce in  $MnO_2$  enhances the capacitance from 466 to 608 F/g at a scan rate of 10 mV/sec [138]. Chen et al. have observed that after doping Ce+ ion in  $\beta$ -MnO<sub>2</sub> transforms it to an electrochemically active phase  $\alpha$ -MnO<sub>2</sub> [107].

#### MnO<sub>2</sub> Based Nanocomposites for High Performance Supercapacitors

An ideal nanocomposite electrode material to be used in supercapacitors should be composed of a high power and energy density material (carbon-based compounds and MnO<sub>2</sub>). Carbon based samples possess high surface area and electronic conductivity that can be used to facilitate charging channels. These channels can improve the rate capability of MnO<sub>2</sub>. Pseudocapacitive materials are composed of conducting polymers which provides good electronic conductivity for MnO<sub>2</sub> by interlinking the polymer chains with MnO<sub>2</sub>. Such interlinking of polymer chains provides a percolated electrical conducting pathway with an improvement in charge exchange efficiency that also provides the stability during redox process. A strong synergistic effect is likely to emerge in MnO<sub>2</sub>/conducting polymer due to the high pseudocapacitance of both components. Carbon nanotubes (CNTs), carbon nanofibers (CNFs), graphene, and carbon nanofoams etc. are used to make composite with manganese dioxide to give improved electrochemical performance (Table 1.4).

# **1.3** Objectives

Nanostructured MnO<sub>2</sub> adopts various crystallographic forms depending upon the size of the tunnel resulting in distinct physical and chemical characteristics with their variety of applications in catalysts, sensors, electrodes for electrochemical batteries, and supercapacitors. Due to their potential applications, MnO<sub>2</sub> have received a lot of attention in research communities. In order to achieve a stable structure, tunnels and interlayers spacing present in  $\alpha$ -,  $\beta$ - and  $\delta$ -MnO<sub>2</sub> acquire supplementary metal ions, water molecules or vacancies. In this context, MnO<sub>2</sub> displays a variety of magnetic ordering in different phases with varying electrochemical performance whose behaviour is still not well understood.

Researchers have shown that the structural and molecular modifications can be used to study magnetic and electrochemical properties of the polymorphs of MnO<sub>2</sub>. As a result, the synthesis and study of the properties of MnO<sub>2</sub> structures with various morphologies are critical for a variety of applications. Researchers have shown tuned structural and magnetic properties with electrochemical performance of MnO<sub>2</sub> after incorporating dopants within the tunnels. However, RE doped MnO<sub>2</sub> has not been studied either from magnetic point of view or on the basis of its electrochemical performance. Therefore, it is of interest to study regression of structural and magnetic characteristics with electrochemical performance of MnO<sub>2</sub> after the incorporation of Dy ion. Detailed study of the polymorphs ( $\alpha$ ,  $\beta$ ,  $\delta$  and mixed phase of  $\alpha$  and  $\beta$ ) of MnO<sub>2</sub> and Dy doped MnO<sub>2</sub> are included in the thesis as the following chapters:

- Chapter 1 accounts for the introduction and review of the literatures on the topics that been studied in this work. In chapter 2, we have studied the synthesis and experimental techniques adopted to synthesize and characterize the materials.
- > In chapter 3, we synthesise  $\alpha$ ,  $\beta$ , and mixed phase of  $\alpha$  and  $\beta$ -MnO<sub>2</sub> using hydrothermal technique. Further, the structural and microstructural analysis has been done employing XRD, FT-IR, FE-SEM and XPS. In this chapter we examine thorough research on the magnetic characteristics, including the understanding of magnetic and SG like ordering based on varying concentrations of Mn<sup>3+</sup>/Mn<sup>4+</sup> in all sample.
- In chapter 4, we discuss the synthesis of δ-MnO<sub>2</sub> and study its structure, microstructure through XRD and Raman spectroscopy. The surface morphology and oxygen vacancies are determined through FE-SEM, TEM and XPS. The magnetic properties are

evaluated from magnetization versus temperature, magnetization versus field, remanent magnetization and frequency dependent ac susceptibility measurements.

> In chapter 5, we examine the effect of doping Dy ion on electrochemical performance of  $\alpha$ -MnO<sub>2</sub> nanorods synthesised using simple and facile hydrothermal method. (5 mol % of Dy doped  $\alpha$ -MnO<sub>2</sub> electrode accelerates mass transport, improve the electrode kinetics investigated extensively employing cyclic voltammetry (CV), Galvanostatic charge/discharge (GCD) and electrochemical impedance spectroscopy (EIS). The structural, morphological and surface area analysis has been performed using X-ray diffraction, Raman spectroscopy and BET and BJH method. The influence of doping Dy in  $\alpha$ -MnO<sub>2</sub> nanorods on its specific capacitance has been explained in this chapter.

- > In chapter 6, we illustrate the evolution in magnetic characteristics after doping Dy in  $\alpha$ -MnO<sub>2</sub> nanorods made by one step hydrothermal method. Magnetic properties are evaluated using magnetization versus temperature and magnetic field versus temperature measurements. Furthermore, we quantify the exchange bias and training effect, which are discussed in terms of various phenomenological models.
- Finally, chapter 7 has been committed to sum up of the major findings of the thesis. By the end, the future scope of the work related to the present thesis has been briefly outlined.