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according to the order of cross section assigned to these orbitals at hν = 1.2 eV. 146 

Figure 5.10 Core level spectra along with valence state of (a) Ho2GexTi2-xO7 (x = 2, 1.9 and 

1.75) (b) Ho2GexTi2-xO7 (x = 0, 0.1 and 0.25) showing Ho 4f, 5p1/2, and 5p3/2; O 2s; Ge 3d and 

Ti 3p core and valence levels obtained from XPS. 148 
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Figure 6.4 Dependence of Photoluminescence emission (PLE) spectra of (a) Ho2GexTi2-xO7 
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