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Figure 1.1 Dipolar Spin Ice Model (DSIM) which presents the possibility for inducing long-
range ordering by varying the complex dipolar and exchange interaction in spin disordered

systems.[26] 4

Figure 1.2 Dipole-dipole interactions of parallel magnetic moments. Top: vector
representation of dipoles interacting at a fixed separation, r, and various orientations relative

to the z-axis. Bottom: plot of the value of y = 3cos?0 — 1 as a function of 0. [30] 6

Figure 1.3 (a) Ferromagnetic and (b) antiferromagnetic Ising type spins on the vertices of a
square lattice. Both types of spin coupling on this lattice site result in an unfrustrated system.

14

Figure 1.4 (a) Ferromagnetic and (b) antiferromagnetic interaction between the spins on the

vertices of a triangular lattice.[37] 15

Figure 1.5 (a) Jun >>Jam and (b) Jun << Junn condition on a square lattice site result in an
unfrustrated system, whereas (¢) Jun ~ Junn €nds up with frustrated "plaquettes" of a square

planar lattice.[31] 16

Figure 1.6 (a) Edge-sharing and (b) Corner-sharing (Kagome) triangular lattices having

disordered spin arrangement. [31] 16

Figure 1.7 (a) The simplest example of 3D frustration is antiferromagnetically coupled spin
on the vertices of a tetrahedral lattice. (b) The array of such spin arrangements within the
lattice constitutes the frustrated pyrochlore lattice. (c) The pyrochlore lattice consists of an

alternating kagome and triangular planar layers stacked along a <111> direction.[18], [31]17

Figure 1.8 (Top) Cubic pyrochlores (A2B207; A =rare earth metal ion & B=d block transition
metal ion) with A and B ions residing on two distinct interpenetrating corner-sharing
tetrahedral sublattices. (Bottom) Three-dimensional pyrochlore lattice along with the

Wyckoff sites assigned to these atomic positions according to the International tables of

crystallography.[18] 19
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Figure 1.9 (a) Crystal structure of the magnetic ions in the rare-earth pyrochlores. (b) Local
environment of a rare-earth ion showing the surrounding oxygen ions. The local XY plane of

the ion, as well as the C> and Cj3 rotation axes of the D3y site symmetry group. [11] 20

Figure 1.10 (a) dc-susceptibility data for Gd,Ti207 showing Curie—Weiss behavior at T ~10
K and no sign of long-range order till T ~1 K. (b) Presence of two-phase transitions at 0.9 and
0.7 K (zero applied field) from heat capacity data on Gd>Ti2O7 (top). Induction of new
transitions in applied fields (bottom).[42] 24

Figure 1.11 (a) The 1 k magnetic structure for Gd>Ti207, which is consistent with the neutron
diffraction data above 0.7K. (b) The 4k magnetic structure of Gd,Ti2O7 consistent with both
the Bragg and diffuse neutron diffraction data below 0.7 K. The dark spheres represent Gd
ions with a full (7.0ug) ordered moment while the grey spheres carry only a 1.9 pug ordered
moment. [42] 24

Figure 1.12 (a) Specific heat versus temperature for Er2Ti2O7. (b) Inverse of the magnetic
susceptibility of an EroTi207 crystal versus temperature in a large temperature range. The solid
line results from a fit with the Curie Weiss law. A field of 1 mT is applied along a diagonal

of the cubic crystal structure. The inset shows the low-temperature range of the data. [44] 26

Figure 1.13 Spin dynamics in Y2Mo0207. (a) Neutron spin echo results for Y>Mo207 at
temperatures spanning Tf =22.5 K determined from static magnetization data. Note that
within this time window, spin freezing is not fully established until 10 K. (b) Frequency-
dependent ac susceptibility y' for Y2Mo0207 showing classical spin-glass behavior. (c) dc-

susceptibility showing Tr~22.5 K. [18], [31] 27

Figure 1.14 (a)The temperature dependence of the inverse susceptibility for Tb2Ti>O7, along
with a fit of the high-temperature regime of this data to a Curie-Weiss form. The inset shows
the assumed local arrangement of moments on a single tetrahedron. (b) The variation with
temperature of the muon spin relaxation rate for Tb2T1207 in a longitudinal applied field of
0.005 T. The inset shows the single exponential relaxation of the muon polarization at various

temperatures. [47] 28

Figure 1.15 (Top panel) The normalized intermediate scattering function S(q, t)/S(q, 0) as

measured through neutron scatteringexperiment, integrated in the range 0. 5°A" <q<1.0°A"
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at various temperatures. (Bottom panel) as a function of q, showing negligible q dependence.

[36] 30

Figure 1.16 ac-susceptibility data taken on a single crystal of Ho>Ti2O7. (Top) The high-
temperature peak position as a function of log f at different fields. Inset: Arrhenius behavior
of the low-temperature feature in the same field. (Bottom) Frequency dependence of the ac
susceptibility (imaginary part) measured in an applied dc field B = 1 T parallel to the <111>
axis. [36] 31

Figure 1.17 (a) The curves of M-T (magnetization vs. temperature) for both ZFC and FC
sequences under the magnetic field H = 0.1 kOe and 5 kOe, respectively. The inset indicates
the MT curves under H=0.1 kOe with the T-range of (2-100) K. (b) Magnetic hysteresis loop
at 2 K in the H-range of (-20-20) kOe. [27] 33

Figure 1.18 Limiting low-temperature state is characterized by a residual entropy, S = 1.68

J/mol. K known as zero point or residual entropy being observed in Dy>Ti207. [53] 35

Figure 1.19 (a)"2 in-2 out" orientation, the letter 6 in bracket indicates six possible states.
Adjacent to it is the "1 in-3 out" spin orientation, and this orientation has eight degenerate
states. Last is the "all-in-all-out" configuration having two degenerate states. (b) Assigning an
energy +Jefr to an 'in—in' or 'out—out' pair and -Jerr to an 'in-out' pair yields energies E (2:2)

=2Jetr, B (3:1) = 0 and E (4:4) = +6Jerr. [54] 35

Figure 1.20 Neutron scattering data for HoTi,07. (Left) Unusual temperature dependence of
the magnetic Bragg peaks measured in an applied field of 2 T. (Right)The two sets of peaks
(full and open circles) respectively suggest the q = 0 and q = X magnetic shown as (a) and
(b). [54] 36

Figure 1.21 y-1 vs. T plot for Ho,Ti207 providing the value of Ocw = +1.9 £ 0.1 K in

accordance with Curie-Weiss law. [57] 37

Figure 1.22 (a) Two oxygen atoms (O') are responsible for driving the local Ising anisotropy
and sets a strong crystal-field effect along the <111> axis of the tetrahedron. (b) Strong axial

symmetry of the magnetic site has along a local <111> direction. [58] 39
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Figure 1.23 (a) The local coordinate frame xo,yo,Zo (red arrows) used to describe the transverse
magnetic field B (green arrow) and its direction angle @ in Eq. (1.35). (b) Splitting of the
ground-state doublet under the influence of a purely transverse magnetic field. The red curves
correspond to the non-Kramers behavior of Ho,Ti207. (¢) Splitting of the ground-state doublet
AEo1 = E1 — Eo versus the magnitude of the transverse field. [58] 42

Figure 1.24 Crystal field spectrum of Ho,Ti2O7 features six doublets (solid lines) and five
singlets (dashed-dotted lines). In meV, bottom to top, the series of doublets is 0, 21.96, 25.99,
59.59, 71.51, and 76.80, while the series of singlets is 20.42, 27.71, 69.36, 69.94, and 80.52.
[58] 43

Figure 1.25 The two competing phases for spin-ices: (a) the Q = 0 "all in-all out" phase and
(b) the spin-ice "two in-two out" phase [59]. 44

Figure 1.26 (a) Real and imaginary parts of the ac susceptibility of Dy>Ge>O7 (black lines)
and Dy2Ge 875S10.12507 (red lines) at frequencies of 16 Hz (solid lines), 270 Hz (dashed lines),
and 770 Hz (dash-dotted lines). (b) Spin-relaxation time t as a function of the inverse peak

temperature Tp used for Arrhenius fit.[21] 47

Figure 1.27 (a) Temperature dependence of the magnetic specific heat cmag per mol of Dy of
the Dy>Ge207 and Dy2Ge).875510.12507 samples. (b) Temperature dependence of the molar
entropy of Dy2Ge2O7 and Dy2Gei.875S10.12507 at zero fields and 1, 2, and 4 T. [21] 47

Figure 1.28 The real (') and imaginary part (%) of ac-susceptibility of Dy>xYbxTi207
measured at H = 10kOe. [61] 48

Figure 1.29 Crystal structure of Ho2Ge>O7 (a) the rare earth Ho sublattice showing the right-
handed helices centred on fourfold screw axes parallel to the c-axis; the edge-sharing triangles
connecting the Ho atoms are shaded. The different colored atoms illustrate the four Ho atoms
around the fourfold screw axis. (b) the Ho-O and (c) Ho-Ge coordination polyhedra, with
Ho—red (dark gray) and O/Ge—white/light blue (light gray): there are five O in a highly
distorted pentagon in the ab plane, and two more O, one above and one below. (d) Magnetic

spin configuration showing eight Ho ions in four equivalent ab planes. [28] 50
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Figure 1.30 ac-susceptibility data for single crystal of Ho,Ge>O7; when magnetic field is
applied parallel to ab axis; (b)-(e) v=10, 102, 103, and 104 Hz data for H=0.1, 0.4, 0.5, 0.6,
0.7, 0.8, 1.0, and 1.2 T.[28] 51

Figure 1.31 Inverse magnetic susceptibility of Ho2Ge>O7 (single crystal) for H= 0.1 T and
Hjlab (circles) and H]|c (triangles) together with the calculated average inverse susceptibility
(line). Inset: low temperature anisotropic susceptibilities. (b) Specific heat for Ho,Ge.O7
measured at zero and applied field (0.5 T). (c) T =2 K M(H) isotherms for H||ab (circles) and
Hl|c (triangles). [28] 52

Figure 2.1 In the sample series Ho2GexTi2-«O7, positive and negative chemical pressure has
been applied through the substitution of Ge** in Ho,Ti2O7 and Ti* in Ho.Ge,O7 respectively.
58

Figure 2.2 Possibility of the all the elements that could produce A>*"B>*"0+* cubic pyrochlore
phase. [18] 59

Figure 2.3 Stability field map for the synthesis of A,B>O7 magnetically frustrated systems.
[18] 59

Figure 2.4 Flowchart for standard solid-state route adopted for the sample synthesis. 60

Figure 2.5 Room temperature high resolution x-ray diffraction pattern HRXRD pattern for
Ho2GexTi2x07 (x =2, 1.9, 1.75, 1.5 &1). 62

Figure 2.6 Room temperature high resolution x-ray diffraction pattern (HRXRD) pattern for
Ho2GexTi2x07 (x =0, 0.05, 0.1, 0.15, 0.25 & 0.5). 62

Figure 2.7 Schematic representation of incident and diffracted X-rays from the crystal lattice.

64
Figure 2.8 Schematic representation of photoluminescence emission. 82

Figure 3.1 (a) Dependence of the specific heat peak position on T. (b) Dependence of Tpeak/Diun
on Jun/Dnn ratio. The open symbols are experimental results, and the solid lines are the

theoretical calculations from the dipolar spin-ice model.[60] 86
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Figure 3.2 A part of pyrochlore lattice containing two O' atoms connected through the shared

Ho*" atom of the adjacent tetrahedra. 88

Figure 3.3 The projection of pyrochlore lattice along [111] direction highlighting the strong
axial symmetry containing the O' oxygen ions (red spheres) and magnetic Ho>" (blue spheres)

ions only. 88

Figure 3.4 Room temperature high resolution X-ray diffraction (HRXRD) pattern of
Ho2GexTi2xO7 for (a) x =0 (b) x=0.1 (c) 0.15 (d) 0.25. 89

Figure 3.5 Room temperature high resolution x-ray diffraction data (HRXRD) indicating the
shift of (222), (440), (622) and (662) peaks towards higher Q value and with increase in
chemical pressure for (a) x =0 (b) x =0.1 (¢) x = 0.1 (d) x = 0.25) in Ho2GexTi2xO7. 90

Figure 3.6 Temperature dependence of dc susceptibility curve of HooGexTi2xO7 (x = 0, 0.1,
0.15 and 0.25) samples in the range of (2-200) K for (a) H = 100 Oe (b) and 1000 Oe. The
inset shows the corresponding inverse susceptibility curve obtained from dc y for ZFC data.

92

Figure 3.7 Magnetic field dependence of magnetization of Ho2GexTi2xO7 (x = 0, 0.1, 0.15
and 0.25) at T =2 K for H (magnetic field) ranging from -70 to 70 kOe. 95

Figure 3.8 Real part of ac-susceptibility of Ho.GexTi2.xO7 for (a) x =0 (b) x=0.1 (c) x=0.15
(d) x=0.25 measured at H=0.1, 0.5, 1, 5, 7.5, 10, 20 and 50 kOe at an applied ac-frequency
of 500 Hz. 96

Figure 3.9 Variation of ac susceptibility with temperature for Ho2GexTi2xO7 (x =0, 0.1, 0.15
and 0.25) for an applied field of (a) H = 7.5 kOe (b) H = 10 kOe (c¢) H =20 kOe (d) H = 50
kOe at 500 Hz. Single ion freezing temperature (Ts) is shifted towards the low lower

temperature with increasing chemical pressure effect. 98

Figure 3.10 Frequency independence of ac susceptibility of Ho,GexTi2-xO7 for (a) x = 0 (b)
x=0.1 (c) x=0.15 (d) x= 0.25 for applied dc magnetic field H = 7.5 kOe. 99

Figure 3.11 Shift in the single ion freezing temperature (Ts) against external applied magnetic

field for HooGexTi2xO7 (x =0, 0.1, 0.15 and 0.25) system. 100
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Figure 3.13 Spin ice freezing (Ticc) remains unaffected with the increase in chemical pressure

for HooGexTi2xO7 (x =0, 0.1, 0.15 and 0.25) system. 101

Figure 3.14 Low temperature synchrotron x-ray diffraction pattern of HooGexTi2-xO7 (x =0.1)

at (a) T=150 K, (b) T= 70 K, (c) T=30 K (d) T=15 K. 104

Figure 3.15 Debye Griineisen fit of Ho2GexT12xO7 (x = 0.1) indicating the deviation from its
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Figure 3.16 Temperature dependence of the unit-cell volume of SrRuOs. The solid line

represents the contribution of the phonon fitted using the Debye function. [86] 107

Figure 4.1 Room-temperature high-resolution x-ray diffraction pattern of powdered
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Figure 4.5 Room temperature refined high-resolution x-ray diffraction pattern of powdered

Ho2Tio.1Ge1.907 using the P412,2 space group. 116
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