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PREFACE 

 

After the discovery of implications of Anderson’s resonating-valence-bond (RVB) theory 

to high-temperature superconductors, frustrated magnetism developed wide-spread 

recognition. Experimentally, the absence of phase transition at Curie-Weiss temperature 

signals the possibility of unconventional low-temperature physics. The study of the nature 

of low-temperature spin-dynamics in such magnetically frustrated systems helps to 

discover new properties and new exotic states namely spin-ice, gapped or gapless spin-

liquids, spin nematics, etc.  

Low-temperature spin-dynamics are effectively controlled through dipolar and exchange 

interaction along with the crystal electric field. Cubic pyrochlores (space group = Fd3̅m) 

and tetragonal pyrogermanates (space group = P41212) belonging to a class of spin 

disordered systems had been synthesized. Structural analysis establishes an entirely 

different ligand arrangement around the central rare earth metal ion for both these systems. 

The parameters affecting the nature of spin fluctuations had been studied. Further 

perturbation had been created in the interaction Hamiltonian through the application of 

chemical pressure in the parent matrix of holmium pyrotitanates and pyrogermanate for 

studying the nature of spin fluctuations (classical/quantum) driving the spin dynamics at a 

lower temperature (T ~ 2 K and T ~ 15 K). Thereafter modification in chemical potential 

manifests remarkable effects in magnetic properties, and had been elaborately discussed.  

Further, the electronic structure had been calculated, and the band gap (Eg) had been 
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determined. Eg for Ho2Ge2O7 is 5.2 eV, and that for Ho2Ti2O7 is 3.7 eV which puts them 

in an insulator class of materials and could be efficiently exploited for various applications 

where optical and magnetic properties are combined. The absorption and emission (optical) 

spectral studies reflect a high probability of forbidden transition between the 4f states of 

Ho3+ ion that suitably such systems in the category of materials for quantum information 

storage and biological imaging applications.   

The comprehensive objective of this thesis was to synthesize pure phase holmium titanate, 

and holmium germanate and its chemical pressure applied derivatives (Ho2GexTi2-xO7). 

Thereafter a thorough understanding of its structural, magnetic, electronic, and optical 

properties had been presented. Both the dipolar and exchange interaction had been tuned 

to induce long-range ordering. The dipolar interaction decreases in Ho2Ge2O7 with the 

application of negative chemical pressure effect, and the low-temperature spin dynamics 

(~ 2 K) is of ferromagnetic origin. The ac-susceptibility measurement suggested Ho2Ge2O7 

to be classified as a classically frustrated spin disordered system. On the other hand, for 

the conventional cubic pyrochlore Ho2Ti2O7, the magnetic ground state is spin-ice, and this 

freezing relaxation is robust to the application of positive chemical pressure effect, 

classifying it as a quantum spin-ice system.  

The specific objectives of the Ph.D. thesis are as follows: 

 
1.  Structural and magnetic analysis of the holmium pyrogermanates and holmium 

titanates using various characterization tools.  

2.  Investigation of the parameters (magnetic interactions, i.e., Jnn and Dnn) which 

affects the spin dynamics at low temperatures. 

3.  Studying the nature of the spin fluctuations (quantum/classical) that drives the spin 
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dynamics at low temperature (~2 K) and at T ~ 15 K through perturbations in the 

interaction Hamiltonian by the application of chemical pressure. 

4.  Calculation of the electronic structure i.e., the density of states and band structure, 

along with the determination of band gap using both theoretical (density functional 

theory) approach as well as via an experimental method. 

Important findings of the present thesis are as follows: - 

 
1. The magnetic response of Ho2Ge2O7, as well as that of its negative chemical 

pressure induced derivative Ho2Ti0.1Ge1.9O7, indicates the archetypical signature of 

ice-like spin correlation at T ~ 2 K. Effect of negative chemical pressure in 

Ho2Ge2O7 matrix decreases the low temperature short-range ferromagnetic spin 

correlation at T ~ 2 K. Dominance of the debilitation of exchange interaction over 

dipolar interaction is established through the enhancement in Curie-Weiss 

temperature.  

2. The magnetic analysis of Ho2GexTi2-xO7 (x = 0, 0.1, 0.15 & 0.25) shows a 

reduction in the value of Curie-Weiss temperature from 0.33 K to -0.04 K (for an 

applied magnetic field of 100 Oe) with an increase in positive chemical pressure, 

indicating the dominance of the evolution of antiferromagnetic exchange 

interaction over ferromagnetic dipolar interaction. The single-ion spin freezing 

mechanism at T ~ 15 K is attributed to crystal field-phonon coupling. 

3. Distinct shrinkage effect in the matrix of Ho2Ti2O7 upon Ge4+ substitution results 

in the modifications of band gap value. The band gap of 5.20 eV drastically drops 

to 3.92 eV with immediate Ti4+ substitution in Ho2Ge2O7.  Density of state (DOS) 

calculation indicates that the upper valence band is formed due to the hybridization 
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of the O-2p state with that of Ho-5p & Ti-3p state, whereas conduction band 

primarily consists of Ho-5d state hybridized with Ti-3d & Ge-4d states. The 

evolution of the total DOS for Ho2GexTi2-xO7 shows that valence band edge is more 

sensitive than the conduction band to the change in chemical pressure. It proves 

that chemical pressure is an excellent tool to tailor the band gap and fine-tune the 

intermediate electronic states in Ho2GexTi2-xO7. 

4. Photoluminescence spectra present four favored sub-level vibrational transition 

corresponding to 5F5 (D7, D6, D1, D1) to 5I8 (Z10, Z11, Z8, Z11) electronic levels at 

652, 659, 663, and 669 nm for Ho3+ using an excitation wavelength of 450 nm 

along with other emission peaks for transition within 4f states of Ho3+ ion. Such 

fine control over emission spectra can find applications in devices where precise 

wavelengths are required. 

The major aim of the work was to synthesize and crystallographically analyse the above-

mentioned spin frustrated magnetic systems and to further study the low-temperature spin 

dynamics. Chapter 1 of this thesis presents the basic introduction to magnetic frustration 

as well as the magnetic interactions that play a role at low temperatures for the 

establishment of magnetic ground state. This chapter also includes the signatory features 

of Ho2Ge2O7 and Ho2Ti2O7 in relevance to their magnetic and structural properties as 

obtained through various characteristics tools. Further, the role of chemical pressure 

(modification in interaction Hamiltonian) in context to dipolar spin ice model (DSIM) for 

inducing long-range ordering has also been discussed.  

The optimization of various synthesis parameters in order to obtain the pure phase 

Ho2Ge2O7 and Ho2Ti2O7 is described in Chapter 2. The duration for mechanical mixing 
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(high energy ball mill), temperature for thermochemical reaction, pressure condition for 

pellet formation, binder removal temperature, as well as the sintering and annealing 

temperatures, all have been properly optimized to ensure the maximum reproducibility of 

the samples.  

The robust nature of the spin ice freezing (T ~ 2 K) for conventional cubic pyrochlore has 

been established in Chapter 3. Low-temperature synchrotron x-ray diffraction pattern 

indicates an anomaly in lattice volume below 30 K, the curve of lattice volume vs. 

temperature when fitted using Debye-Grüneisen equation established crystal field-phonon 

coupling in Ho2Ti2O7. This crystal field-phonon coupling is prominent at T ~ 15 K, which 

is reflected through the shift of single ion spin freezing temperature (T ~ 15 K) towards 

lower temperature with an increase in chemical pressure.  

Chapter 4 deals with the structural analysis of Ho2Ge2O7 along with the study of the effect 

of modulation in magnetic interaction upon the spin relaxation at a lower temperature. The 

high-resolution x-ray diffraction pattern of Ho2TixGe2-xO7 indicates the lattice volume 

expansion, and this effect decreases the dipolar interaction in the Ho2Ge2O7 matrix. ac-

susceptibility presents two spin relaxation, one at T ~ 3 K corresponding to ice-like spin 

freezing at second at T ~ 15 K due to single-ion anisotropy attributed to the thermal origin. 

The M-H (magnetization vs. field) behavior at 2 K indicates a ferromagnetic spin 

correlation. 

In Chapter 5, we have tried to appraise the relationship between the structural and 

electronic properties of Ho2TixGe2-xO7. Computational approach had been used for the 

density of state (DOS) and band structure calculation of Ho2TixGe2-xO7. The electronic 
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structure of valence band (V.B.), conduction band (C.B.), band gap energy (Eg), orbitals 

involved in hybridization, influence of the B site substitution (Ho2TixGe2-xO7) on the 

electronic states of the subsystems had been discussed in detail.  

The thorough understanding of the optical properties of Ho2TixGe2-xO7 with its linkage to 

crystal structure is described in Chapter 6. UV-Visible spectroscopy presents the 

maximum cross-section for absorption at a wavelength of 454 nm. Using the excitation 

wavelength of 450 nm, luminescence peaks of precise wavelength had been obtained at a 

wavelength of ~ 675 nm. The sensitivity of the band gap to the composition makes these 

materials extremely interesting from the point of view of the fundamental problem 

regarding energy band structure in solid-state physics.    

The whole of the thesis work is summarized in Chapter 7 along with the future work 

suggestions.


