
Chapter 1

Introduction

1.1 Overview

This chapter provides an introductory overview of magnetic phenomena, which are essential
for understanding the present work. The competition between various magnetic interactions
gives rise to the formation of different ground state spin configurations, such as spin spirals,
120°-spin structures, domain walls, magnetic skyrmions, and multi-q states; the obtained
experimental results are presented in chapter 4, 5 & 6. First, the exchange interactions and
magnetic anisotropies are introduced, which are responsible for noncollinear magnetism.
Thereafter, various magnetic ordering and spin structures are introduced.

1.2 Magnetic interactions of interest

Recently, noncollinear magnets have become a new research interest of investigators; they
form a background for various exotic magnetic phases. This section emphasises various
magnetic interactions of importance, which are key players in noncollinear magnetism,
sometimes competing together. The magnetic nature of any magnetic specimen depends
on the mutual strength of the associated interactions between the moments of the magnetic
ions present in it. The associated interactions [1] are described below.

1.2.1 Exchange interaction

Exchange interactions are the essence of magnetism, responsible for long-range magnetic
order, and depend on the spatial arrangement and interatomic separation of localised
magnetic moments in solids. It is purely quantum mechanical entity, because the electrons
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are indistinguishable particles. First, in 1928, Heisenberg demonstrated the origin of a
substantial molecular field, which is answerable for parallel alignment (↑↑) of spins in the
domains of ferromagnetic specimens [2].

Fig. 1.1 Bethe-Slater representation, showing the dependence of sign of Jexch (exchange coefficient)
to the ratio of r (interatomic distance) and rd (radius of the unfilled d shell) in case of direct exchange
coupling (adapted from reference [3]. A (- ive) value of the Jexch results in an ↑↓ (antiferromagnetic)
ground state arrangement of spins, whereas a positive value leads to a ↑↑ (ferromagnetic) ground
state coupling, which is indicated by red arrows.

Microscopically, the exchange interaction between two electrons results from the
Coulomb interaction associated with the Pauli exclusion principle. Therefore, the overall
wave function of a system with two electrons must be antisymmetric considering the
exchange of electrons. Therefore, the spatial part of the wave function is symmetric
(triplet), the spin part must be anti-symmetric (singlet), and vice versa.

Thus, for a single pair of magnetic moments, the spin-dependent term in the effective
Hamiltonian (H s) [1] can be written as:

H s =−Je
−→
S1.

−→
S2 (1.1)

where Je is the exchange parameter (also called an exchange coupling constant) that
describes the strength of the coupling of the pair of interacting spins (

−→
S1 &

−→
S2). This model

can be extended to a crystal lattice structure with multiple - electrons, and the exchange
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energy is given by the Heisenberg Hamiltonian, which involves the sum over all pairs of
spin:

Eexch =−∑
i j

Ji j
−→
Si ·

−→
S j ; whereas Ji j =

J f or nearest neighbor spins

0 otherwise
(1.2)

where Ji j is the exchange integral, and the strength of Ji j degrades rapidly with the
separation between the atoms [3]. Based on inter-atomic distances, i.e., orbital overlap, the
values of Ji j might have a positive or negative sign, resulting in the parallel or antiparallel
ground state configuration of spins, respectively, as shown in Fig. 1.1. Often, a good
approximation of Ji j is given by Eq. 1.2, which holds for the next neighbour exchange
interaction, i.e., short-range direct exchange interaction. If the interatomic separation is
too large, i.e., the overlapping of the wave-function is too small, and the direct exchange
coupling is not strong enough to overcome thermal excitations, which gives rise to paramag-
netic behaviour. In the case of metals, above a certain distance, the exchange interaction no
longer results from the direct overlap of the electron wave-function. However, it interacts
with conduction electrons (Ruderman-Kittel-Kasuya-Yoshida (RKKY) interaction [4–6].

The evaluation of magnetic theory has led to the prediction of various types of exchange
coupling between neighbouring spins, namely direct and indirect exchange coupling. Direct
exchange coupling occurs between neighbouring magnetic moments that have overlapping
wave functions [3]. The indirect exchange reveals the coupling of magnetic moments over
relatively large distances, and there is no direct overlap between neighbouring electrons,
which might be mediated through different mechanisms depending on the material systems
under consideration. This section is basically focuses on the Heisenberg model, an example
of an interaction known as direct exchange coupling.

1.2.2 Dzyaloshinskii-Moriya interaction

Dzyaloshinskii-Moriya interaction (DMI) is an anisotropic antisymmetric exchange inter-
action between two neighbouring magnetic moments, resulting from the complex interplay
between lack of inversion symmetry and spin orbit coupling (SOC). The theory was
first proposed by Dzyaloshinskii [7], and later the role of SOC through nonmagnetic
ligand, called anisotropic superexchange interaction, was described by Moriya [8] to
study the weak ferromagnetic (canted antiferromagnetic) nature of α-Fe2O3. The energy
corresponding to the two neighbouring magnetic moments

−→
Sp and

−→
Sq can be expressed as
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Fig. 1.2 Schematic representation of a system with two spins are used to discuss the DMI.

EDM =
−→
D · (−→Sp ×

−→
Sq) (1.3)

where
−→
Sp and

−→
Sq are the spins of two interacting magnetic ions, and

−→
D is a constant

known as the DM vector. In contrast to the aforementioned exchange interaction, this
favours non-collinear spin ordering. Because the interaction is antisymmetric, it vanishes
if it possesses inversion symmetry in the system.

The direction of the
−→
D vector can be determined from the symmetry rule summarised

by Moriya [8] with a similar sketch, as shown in Fig. 1.2. He considered two magnetic
moments,

−→
Sp and

−→
Sq , which are located at positions p and q, respectively, and the point

bisecting the straight line pq is denoted by r. He proposed the following symmetry rules:
• When the centre of the inversion is positioned at r,

−→
D = 0.

• If the mirror plane ⊥ (pq) passes through r, then
−→
D is ⊥ (pq).

• When there is a mirror plane including p and q, then
−→
D is ⊥ this mirror plane.

• If there is a two-fold rotation axis ⊥ (pq) passes through r, then
−→
D is ⊥ the two-fold axis.

• When there is an n-fold rotation axis ∥ (pq),
−→
D is parallel to (pq).

In bulk systems, this broken inversion symmetry can be considered as an intrinsic
property of the crystal structure, for example, in B20 compounds such as MnSi [9] or
can be induced by distortion of the lattice, such as in some multiferroic orthoferrites and
orthochromites [10, 11]. For the particular B20 compounds, the D vector is oriented
parallel to the direction of joining the sites, where the two spin moments are positioned,
and the configuration is often called bulk DMI.

In the case of ultrathin films, the symmetry is broken at the interfaces and the direction
of the

−→
D vector changes depending on the symmetry of the surface. The strength of the

DMI was directly proportional to the intensity of the SOC in the system. Consequently,
systems with larger DMI are often arranged such that an interface is in between the
nonmagnetic heavy metal layer and magnetic thin film. The DMI is associated with a
heavy metal atom having a large SOC for each pair of moments in the magnetic layer,
which is positioned opposite to the interface. All these effective contributions determine
the value of the

−→
D vector and its orientation.
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1.2.3 Magnetic anisotropy

Most of the existing natural or artificial magnetic materials exhibit inherent magnetic
anisotropy, i.e., the free energy linked with the magnetisation depends on the direction
in which the field is applied, and in the absence of a field, the magnetisation will align
along the preferred crystallographic direction. The energy is minimum along an easy axis,
and a large value of the applied field is required to orient the magnetisation in order to
reorient in another direction, the so-called hard axis. For the magnetic anisotropy, the
structural symmetry results in magneto-crystalline anisotropy, and the surface morphology,
grains, and stresses within the crystals are supposed to be a source of anisotropy, as
studied by Sander et al. [12]. The preferred orientation of the magnetisation vector of a
ferro/ferri/antiferromagnet material, therefore, results from the competition among various
energies, which is expressed as follows:
• Exchange energy: minimized if classically spins are aligned ∥ to each other.
• Zeeman energy: minimises if spins are aligned ∥ to the applied external field;
• Uniaxial anisotropy energy: minimised if the magnetic moments are aligned along the
easy axis.
• Thermal energy: attempts to randomise the spin magnetic moments;
• Magnetostatic energy: is minimised if the magnetisation pointed in the direction of
the magnetic dipole moment fields created at the interfaces of the specimen, such as the
domain wall formation.

Microscopically, the spins are coupled with the electric field that arises due to the
charge density of the surrounding electron, i.e., the so-called crystal field through the
SOC, and their energy. Therefore, depends on their absolute orientation concerning the
crystallographic axis, as well as their relative orientation with respect to one another. Such
a local dependency, so-called single-ion anisotropy (SIA), or simply magneto-crystalline
anisotropy [13]. To minimise the magneto-crystalline energy, a crystal may undergo a
small deformation when magnetised, and if not allowed to expand freely, may be a source
of internal stress in the crystal system. In contrast, the application of stress to a crystal
system will affect the lattice and hence the magnetocrystalline energy.

1.2.4 Competing exchange interaction in 1D-chain

Above large atomic distances, the exchange interaction becomes very small, and in many
systems, it is worth considering the nearest-neighbor interactions described by the coupling
constants. Here, one-dimensional spin chain considered with coupling between the nearest
neighbour (NN) interaction J1 is FM, and the next-nearest neighbour (NNN) interaction
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J2 is AFM (see Fig. 1.3 (a)), the exchange coupling can be frustrated and allows to
stabilize non-collinear spin structures (described in next sections). Apart from competing
interactions, such frustration of the exchange coupling can also occur in a geometrical
sense, for example, in the case of AFM coupling on a triangular spin-lattice (see Fig. 1.3
(b)). In this case, the ground state is achieved by a forming Néel state in which the angle
between adjacent moments is 120°, the so-called 120° spin structure (shown in the next
section) [14–16].

Fig. 1.3 Typical sketches of (a) 1-D chain of spins with competing J1 and J2 interactions in the
centrosymmetric system, (b) Geometrical frustration of the triangular spin-lattice (odd loop of
AFM coupling), and (c) Phase diagram showing magnetic ground state for J1-J2 model, and Fig. (c)
was adopted from [17].

The corresponding microscopic spin Hamiltonians Hc for a centrosymmetric system
in a 1D-chain model can be described as follows:

Hc =−J1 ∑
NN

−→
Si ·

−→
S j − J2 ∑

NNN

−→
Si ·

−→
Sk (1.4)

where ∑NN and ∑NNN exhibit the sum over the NN and NNN, respectively, [17]. With
only NN interaction, which is FM in nature, the ground state of such a system is collinear
with the adjacent lattice. On the other hand, competing interactions such as J2 are negative,
i.e., AFM, neither FM nor simple AFM spin arrangement can satisfy the second term, and
thus magnetic frustration arises [17, 18].

By introducing a generalised spin order and analyse the condition to satisfy dHc/dθ =
0, one can find the length scale of the spin modulation of the magnetic ground state (q).

q = [{cos−1 (−J1/4J2)}/a] (1.5)

where a is the lattice parameter of the crystal lattice. Provided the conditions J2 < 0
and (−1 ≤ cos(q)≤ 1) is satisfied, the spiral magnetic order is more stable than the FM
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or simple AFM order. The spin spiral period depends on a delicate balance of the ratio
(J1/J2)[19]. The order of magnitude of J1 and J2 can be the same, which may result in a
spin modulation wavelength on the order of less than ∼ 10 nm[18]. The corresponding
phase diagram of the J1-J2 model is shown in Fig. 1.3 (c) [17, 19].

1.3 Magnetic order and spin structures

In this section, a brief discussion of the various magnetic structures as a function of atomic
structure and exchange interactions is presented. The lack of atomic ordering and the
multi-sublattices characteristic of disordered and amorphous materials make them have
complex magnetic structures [20], which is given below:

1.3.1 Spin structures in pure crystals

Investigations on crystalline materials have played an excellent role in conventional solid-
state material science. The magnetic ordering in pure crystals without any site disordering
is not always consistent [21]. For instance, Fig. 1.4 shows the complex spin structures
in pure crystals that have been worthily evaluated by Keffer [21, 22]. These coherent
noncollinear spin structures generally arise because of competing interactions, regardless
of whether these can be exchange interactions (symmetric and antisymmetric) having one
or more shells of nearest neighbours or exchange and magneto-crystalline anisotropy.

Commensurate spin structures

Materials in nature, microscopic or macroscopic, have their own physio-chemical proper-
ties, which strongly depend on their atomic structures. Therefore, structure determination
is extremely important in condensed matter physics, chemistry, and materials science.
In condensed matter physics, there are many models of phase transitions successfully
demonstrated for a more ordered and less ordered state [66, 133, 142]. If the dimension of
the magnetic unit cell is equal to the integer multiple of the nuclear unit cell, the magnetic
structure is commensurate. The magnetic structure is incommensurate when the magnetic
unit is an irrational multiple of the nuclear unit cell. Incommensurate spin structures may
be linear but quite complicated, like a spiral, cycloidal, conical, umbrella, etc. Especially
in rare-earth compounds, very complex magnetic structures have been found, which are
demonstrated in the next section [21, 38, 48, 62].
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Incommensurate helical spin structures

Magnetism due to helical spin structure, called helimagnetism, was first proposed in
1959 in MnO2 [23] by means of neutron diffraction, and real space visualisations of
helical spin order were first achieved in metal silicide by Lorentz electron microscopy.
Most of the materials exhibit helical ordering at a range of low temperatures, whereas in
2017, Lancaster et al. reported some helimagnetic structures, which are stable at room
temperature [24].

Fig. 1.4 Sketches of some noncollinear spin structures found in pure crystals: (a-d) coherent helical
magnetic structures with period of spin spiral (λ ); (a) proper screw (longitudinal pure helix), (b)
cycloidal (transverse pure helix), (c) conical screw (longitudinal pure cone) (d) transverse conical
(e) three-sublattice classical 120° spin structure, (f) umbrella kind of spin structure, and (g) canted
antiferromagnet (weak ferromagnet).
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Incommensurate helical spin structures often arise from a delicate balance between
the competing exchange interactions (see section 1.2.4) in binary transition metals or
rare-earth metals with hcp structures that exhibit a layered crystalline structure with a
stacking sequence of AB or ABC, which is characterised by parallel alignment of the
moments within each layer, i.e., each plane shows ferromagnetic ordering [15, 25, 26].
However, the rotation of the magnetisation differs by the angle α from layer to layer. To
describe various types [27–29] of the two essential features of the helical spin order, one
of them is the unit vector (êq) along the direction of the modulation vector (q), and the
second is the orientation of the spin spiral plane, in which rotation of spins takes place.
Fig. 1.4 (a-d) illustrates the typical helical spin structures along with an array of magnetic
ions [17]. The spin spiral plane ⊥ (Fig. 1.4 (a)) and ∥ (Fig. 1.4 (b)) to the (êq) vector,
characterize the proper-screw (longitudinal pure helix) and cycloidal (transverse pure helix)
or spiral structure, respectively. Both the helical and spiral spin orders correspond to zero
net magnetic moments. In addition to their antiferromagnetic nature, a conical screw
(longitudinal pure cone) (Fig. 1.4 (c)) and transverse conical spin structure (Fig. 1.4 (d))
exhibit a net magnetization in the direction ∥ q vector and ⊥ to q, respectively [17, 18].
These spin helices generally evolve by applying weak magnetic fields to helical or cycloidal
spiral structures.

Another underlying but interesting class is the triangular spin-lattice (see Fig. 1.3 (b),
the frustration in these systems often gives rise to the noncollinear (or noncoplanar) spin
structures due to competing interactions. The resulting ground-state spin configurations are
presented in Fig. 1.4 (e & f), corresponding to well-known co-planer 120° spin structure
and noncoplanar umbrella-like spin structure, respectively. In the case of the 120° spin
structure, three antiferromagnetically coupled spins are located at each corner of a triangle
and make an angle equal to ±120° with the neighbourhood spins, whereas the top view of
the umbrella structure is also a 120° spin structure. Both the structures in the triangular
spin-lattice occur owing to the delicate balance of exchange anisotropy (J/Jz) and field
strength (H) [30]. For a more detailed description, refer to [26, 30]. In the case of complete
AFM ordering, all the moments are identical, and the cancellation of moments leads to
a zero net magnetic moment. A special type of AFM ordering leads to a non-zero net
magnetic moment, so-called canted antiferromagnetic ordering, in which neighbouring
moments are misaligned by some angle (see Fig. 1.4 (g)) [31]. Owing to the slightly
canted nature of moments, a complete cancellation cannot be achieved; although the spin
structure is antiferromagnetically ordered, it will exhibit a net residual moment by means
of weak DM interaction represented by Eq. 1.3 [32]. Such a material is called a canted
antiferromagnet (or equivalently, a weak ferromagnet) [33, 34].
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1.3.2 Spin structures in disordered and amorphous materials

Apart from the above overview of coherent noncollinear spin structures found in pure
crystals, one does not think it is hard to visualise the partially random or incoherent
spin structures found in disordered crystals. The possibility of randomly canted spin
structures was ingrained in the mid-1960s to be deeply alluded by Morrish [21]. This
section discusses the incoherent spin structures in partially disordered and fully disordered
(amorphous) systems are investigated. Modifications of collinear spin structures in partially
and fully disordered systems that can be introduced by crystal surfaces and solid solutions,
mainly focusing on systems with frustrated antiferromagnetic interactions.

Crystal surfaces

Crystal surfaces are a truncation of the bulk crystalline lattice at the nanoscale; the various
properties of the crystal surfaces are strongly dependent on the arrangement of atoms on the
surface. Surfaces act as imperfections in pure crystals [21]. In the field of nanomagnetism,
most phenomena occur either at or near surfaces owing to the finite size effect and surface
effects, which result from the high surface-to-volume ratio and the symmetry breaking of
the crystal structure at the surface and/or interface, respectively, [35, 36]. A nexus between
finite-size and surface effects governs the magnetic properties of ultra-fine layered magnetic
systems, whose importance is inversely proportional to the thickness [36]. Various types
of surface defects exist, such as lowering the atomic coordination, atomic vacancies,
and lattice disorder that lead to surface spin disorder and frustration. Subsequently, the
magnetic structure at the surface layer is usually significantly different from that in the
body of nanoparticles, and the magnetic interactions in the surface layer have a noticeable
effect on the magnetic properties of the nanoparticles [37]. Surface effects dominate the
magnetic properties of the smallest particles because decreasing the particle size increases
the ratio of surface spins to the total number of spins [36]. Indeed, surface effects can lead
to a decrease in the magnetisation of small particles (< 100 nm) of γFe2O3, with respect
to the bulk value [35, 38]. This reduction has been associated with distinct mechanisms,
such as the existence of canted spins, a magnetically dead layer on the surface, randomly
oriented noncollinear surface spins, and spin-glass-like behaviour [39, 40]. The disordered
crystal structure results from the high surface curvature [41], which increases as the particle
size decreases, modifying the magnetic moment of surface atoms and anisotropy, which
results from surface anisotropy [42].
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Solid solutions (mixed crystals)

Some materials are used to form crystals, comprising atoms of two or more different
substances, which are called solid solutions (or referred to as mixed crystals). In the case of
solid solutions, not only the molecular structure should be of the same type, but also essen-
tially, the crystal lattices must be of the same type and have similar dimensions [43]. There
are no possible solid solutions (mixed crystals) that are of great significance compared to
pure end-members, and there is a huge amount of literature available on their magnetic
properties. The scheme for the generation of random magnetic structures, all of which
involve random stacking of the deck with a delicate balance of competing interactions [21],
which includes the following:
(1) Diluting ordinary magnets with nonmagnetic impurities to alter the balance of compet-
ing exchange interactions in a random way.
(2) Preparation of solutions of two different magnets like FM and AFM.
(3) Introducing impurities into noncollinear magnets.
(4) Preparation of solid solutions between final products with incompatible spin structures.

The majority of solid solutions presents are of what is called the substitution type.
These solutions are obtained by replacing some of the atoms in the crystal lattice of the
primary substance with the atoms of the other substance. The obtained magnetic structures
are characterised by their range of spin correlations [21, 44].

Collinear spin structures in disordered and amorphous materials

Now, begin with considering the scheme (1) to the collinear magnets in disordered sys-
tems, and so-called as dilute magnets are characterized by random exchange interactions
without frustration [45]. Diluting a compound with complete ferromagnetic or antifer-
romagnetic exchange interactions by substitution of nonmagnetic ions does not destroy
ferro/ferri/antiferro-ordering in the bulk cluster, as long as the concentration of magnetic
ions exceeds the substituted one (see Fig. 1.5 (a)) [46, 47]. From a theoretical approach, the
dilute ferro/ferri/antiferro can be described by random exchange interactions, i.e., interac-
tion varies only in strength and not in sign. The ground state of dilute ferro/ferri/antiferroo
is qualitatively the same as that of pure systems [45].

As a guide to discussing magnetism in non-crystalline solids, it is crucial to address
the broad categories of spin ordering in amorphous solids. In contrast to collinear spin
ordering in disordered systems, it is important to discuss the collinear spin ordering
encountered in amorphous materials. A crucial feature of the magnetic order for each case
is comprehended as a component of the magnetic moment of each atom as constant with
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respect to time, i.e.,
−→
Si ̸= 0, where

−→
Si and is the time average of the spin moment, with

similar magnetic interactions [48].

Fig. 1.5 (a) collectively represent the collinear spin ordering in disordered and amor-
phous solids (in brackets) having non zero net magnetic moment, corresponding to fer-
romagnetic, ferrimagnetic and zero magnetic moments corresponds to antiferromagnetic
spin order, respectively [21, 46, 48].

Fig. 1.5 Sketches of some random collinear and noncollinear spin structures (a & b) found in
disordered and amorphous materials (in brackets): (a1) dilute FM (random collinear FM), (a2) dilute
AFM (random collinear AFM), (a3) dilute FI (random collinear FI), and (b1) randomly canted FM
(asperornagnet), (b2) spin glass (speromagnet), (b3) randomly canted FI (sperimagnet). The bottom
part of each Fig. represents the angular distribution of the spin moment orientations.
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Noncollinear spin structures in disordered and amorphous materials

In addition to the familiar collinear magnetic structures briefly introduced in the preceding
paragraph, the classification of random noncollinear spin structures in disordered solid
is demonstrated below [21, 48]. Fig. 1.5 (b) illustrates the variety of noncollinear spin
ordering phenomena in materials in disordered and amorphous materials. Depending on
the values for the exchange and the local anisotropy randomly canted AFM (asperomagnet),
spin glass (speromagnet) and randomly canted FI (sperimagnet) configurations are possible
as outlined in Fig. 1.5 (b), respectively [20, 21, 48].

There are various classes of two-sublattice structures that can be distinguished. In the
case of collinear spin, structures are FM/FI or AFM, depending on whether the sublattices
are coupled parallel or antiparallel. If one or both sublattices possess a random, noncollinear
structure but have a net magnetisation, the structure will be termed sperimagnetic in
amorphous and randomly canted FI in disordered systems [49]. If both sublattices exhibit
random noncollinear structures with a vanishing net moment, the structure is once again
speromagnetic.

1.3.3 Spin orderings in perovskites

Apart from the aforementioned magnetic structures, rare-earth orthoferrite (RFeO3) per-
ovskites are a family of canted antiferromagnets [50]. The main leading interactions are
isotropic exchange interactions among the nearest neighbour (NN) moments [11]. Depend-
ing on the relative sign of NN interactions, five types of collinear ordering emerge, which
are discussed below and shown in Fig. 1.6 (i-m).
• F-type: all magnetic moments are pointed in the same direction, that is, complete FM
ordering.
• A-type: the intra-plane coupling of moments is FM, whereas inter-plane coupling is
AFM, i.e., the moments are directed in opposite directions in successive planes.
• C-type: the moments are aligned in opposite directions in consecutive lines, i.e., AFM
ordering of the FM chains.
• G-type: the NN moments are pointed in opposite directions, i.e., complete AFM ordering.

• E-type: This is a specific type of collinear magnetic order with intra-plane spin
up-up down-down (uudd) AFM order and inter-plane spins aligned antiparallel, i.e., within
plane moments form "zig-zag" lines of parallel moments and stacked antiferromagnetically
next to each other. This type of magnetic order is realised in rare-earth manganites
(RMnO3) as a result of spin-phonon coupling beyond the nearest-neighbor coupling [51–
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53]. Interestingly, such collinear ordering already breaks the inversion symmetry and has
been predicted theoretically and experimentally to induce an electric polarisation [10, 54].

Fig. 1.6 Schematic drawing of collinear spin order of (i) F-type, (j) A-type, (k) C-type, (l) G-type
and (m) E-type (for the sake of simplicity, the spins are directed along the z-axis) and (n) Gx, (o)
pxAy and (h) GxAyFz represent non-collinear spin orders in cubic perovskites.

Bertaut [55] describes a very common notation to describe the noncollinear nature
of spins in perovskite. In this notation, the spin structure is denoted by specifying the
type of magnetic order (such as A, F, C, and G) displayed along each of the principal
crystallographic directions as M

′
xM

′′
y M

′′′
z , where M

′
s represent different magnetic order [56].

For instance, simply assume a G-type structure in which the spins are aligned parallel to
the x-axis. In Bertaut’s notation, this is represented as Gx (as shown in Fig. 1.6 (n)). If
this order represents an additional A-type spin component parallel to the y-axis, then it is
represented as GxAy (as shown in Fig. 1.6 (o)). If there is one more F-type spin component
parallel to the z-axis, then the overall structure is represented as GxAyFz (as shown in Fig.
1.6 (p)) and called as Γ4 spin structure. Most perovskites with the Pbnm structure possess
such spin structures. This is a convenient notation for the description of spin orders in
perovskites.
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1.4 Phase diagram for competing interaction in triangu-
lar lattice

Apart from the geometrical magnetic frustration illustrated above, the noncollinear spin
structure in layered triangular systems often results from the presence of competing ferro-
magnetic (FM) and antiferromagnetic (AFM) Heisenberg exchange interactions between
spins [25, 57–59]. Considering J1 − J3 & (J1 − J2) model in a magnetic field of strength
(H) for a triangular spin-lattice, the Hamiltonian (H) can be expressed as

H =−J1 ∑
<i, j>

Si.S j − J2,3 ∑
<<i, j>>

Si.S j −H ∑
i

Si (1.6)

where ∑<i, j> and ∑<<i, j>> exhibit the sum over the nearest neighbours (nn) and
next-nearest neighbours (nnn), respectively, which are shown in Fig. 1.7 (a). The third
is the Zeeman energy, which was discussed in the previous section [25]. With only nn
interactions, which are antiferromagnetic in nature, the ground state of such a system is
commensurate to the adjacent lattice. On the other hand, competing interactions such as
J1 > 0 and the AF third-neighbor interaction J3 < 0 with J1|J3|< 4, an incommensurate
ground state appears [25, 26].

Fig. 1.7 (a) Competing nearest neighbor exchange interactions, J1 (first), J2 (second), and J3
(third), in a triangular lattice, and (b) Magnetic phase diagram of competing interaction (Eq. (1.6))
with J1/J3 = -1/3 in the H −T plane, obtained from the simulations. Fig. (b) was adopted from
Okubo et al.[60].
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In other words, when nnn interaction becomes dominant, the ground state often results
in an incommensurate spiral structure. In such a compound, the magnitude of the anti-
ferromagnetic nnn interaction is larger than that of the ferromagnetic nn interaction. In
the presence of an externally applied magnetic field, the ordered state of the sublattice
structure is robust and leads to an exciting phase diagram as a function of temperature
[25, 26, 61–63], which is shown in Fig. 1.7 (b) represent the normalized H −T phase
diagram obtained from Monte Carlo simulation method. Apart from the single-q spiral
ground state, the triple-q skyrmion-lattice (SkL) phase appears at a definite temperature
range under a magnetic field. Owing to the presence of space-reflection symmetry on the
xy spin components, the SkL and antivortex-type SkL states are degenerate [18, 60].

1.5 Materials under study

The investigated materials are NiBr2, Cd-doped Cu2OSeO3, and SmFe3/4Mn1/4O3 single
crystals from different families of the crystal system, one of them is transition metal di-
halides (MX2, where M (metal cation), X (halogen anion)), Cd-Cu2OSeO3 is the Skyrmion
host material, and the other is a rare earth orthoferrite (ReFeO3, where Re is a rare-earth
element). Both MX2 [18, 64] and ReFeO3 [11, 65] have long been studied as prototypes
of itinerant antiferromagnets with collinear and noncollinear magnetic ground states, with
triangular lattice and perovskite lattice structures, respectively. Apart from collinear an-
tiferromagnetically coupled materials, both lattice structures are particularly interesting
in terms of noncollinear spintronic materials, which have attracted considerable research
attention owing to exotic physical phenomena [66]. In the following subsection, briefly
introduction of investigated materials is demonstrated.

1.6 Transition metal dihalides: NiBr2

In transition metal dihalides, NiBr2 is a typical example of a triangular spin-lattice of a
chiral magnet that exhibits a temperature-driven phase transition from a commensurate
antiferromagnetic to an incommensurate spin helix phase. This has attracted significant
attention owing to the discovery of exotic magnetic states, such as the formation of
multiple-q states, as theoretically predicted by Okubo et al. [60] because of the presence
of incommensurate spin structures and multiferroicity [17, 67–69]. In the triangular spin-
lattice of NiBr2, a modulated spin structure arises owing to the presence of competing
exchange interactions along with magnetic anisotropy [17, 67]. Few investigations have
been carried out to understand the microscopic source of incommensurate ordering that is
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responsible for helimagnetism in the spin triangular lattices of NiBr2 [59, 68]. However,
in multiferroic helimagnets, enhanced understanding to control and modify spin helices
in incommensurate phases at the nanoscale further needs to be established that have
high technical implications for realising next-generation energy-efficient data storage
devices [66, 69]. Detailed magnetic and crystallographic information is provided in the
introduction of chapter 4.

Our work demonstrates that by combining state-of-the-art neutron scattering exper-
iments with magnetisation measurements, microscopic information in a triangular spin
system can be assessed. These experimental observations (given in chapter 4 & 5) will
further accelerate the search for exotic quantum states in helimagnetic systems. Our
work could be foreseen as a novel approach for an accurate understanding of the role of
neighbouring interactions in triangular spin systems, which paves the way for exploratory
research on field-induced phase transitions, where the choice of spin helices and topological
magnetic texture will be a tool to improve the performance.

1.7 Magnetic skyrmions: Cd-Cu2OSeO3

Magnetic skyrmions are small swirling topological objects in the magnetisation texture,
having a helical spin structure with propagation (q)- vectors on the nanometre length
scale [70]. Magnetic skyrmions came into existence theoretically over 50 years ago by the
British physicist T. H. R. Skyrme [71], but the first experimental realisation was achieved
in 2009 on MnSi single crystals [9]. Subsequently, various non-centrosymmetric magnetic
materials such as FeGe [72], Fe1−xCoxSi [73], Mn1−xFexGe [74], and CoxMn1−xSi [75],
have been proposed as skyrmionic host materials. Among the skyrmionic host non-
centrosymmetric crystal systems, Cu2OSeO3 is a multiferroic and Mott insulator material,
which hosts a skyrmionic phase in bulk and thin films [17, 76–79]. Because of these
intriguing features among the skyrmionic host materials, Cu2OSeO3 is a potential candi-
date for next-generation energy-efficient magnetic data storage devices. The important
criteria of any skyrmion-hosting magnetic materials are the temperature and field range
in which the SkL can be alive. This is the first system in which the skyrmionic phase has
been experimentally realised in the Mott insulator [17], and shows the room-temperature
skyrmionic phase under high pressures, which was recently reported by Deng et al. [80].
It has been established that: skyrmion lattice can be tuned using external stimuli such as
chemical substitution, pressure, and electric and magnetic fields instead of direct currents
in Cu2OSeO3, which opens the door to explore ultra-low-power-consuming spintronic
devices [71, 81]
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This work has demonstrated a systematic strategy for the direct and ultra-fast synthesis
of Cd-Cu2OSeO3 single-crystalline with nominal doping of Cd along with precursors
followed by a one-step quenching process at 600°C with a very slow heating rate. In the
case of a conventional solid-state reaction, 600°C for 10 days with intermediate grinding
followed by various processes (vacuum-sealing, palletization, etc.) [82], in the case of
CVD, 500°C for 6 weeks [17, 71, 79]. Therefore, the present study allows us to develop a
time-and cost-efficient strategy to synthesise this kind of complex material. In addition,
enhanced optical and magnetic properties of Cd-doped Cu2OSeO3 nanocrystalline are
reported.

1.8 Rare-earth orthoferrite: SmFe3/4Mn1/4O3

Rare earth orthoferrite (RFeO3) compounds have complex magnetic interactions between
the rare-earth (R) and transition metal (Fe) ions, which makes them of immense scientific
interest in studying their exotic magnetic properties [65]. Modifying and controlling the
phase transition temperatures to enhance the magnetic properties of such compounds
would play a significant role in energy-efficient magnetic storage data technology in
future spintronics devices [83]. One of the fundamental magnetic properties of most
of the RFeO3 compounds is their spin reorientation transition (SR), during which the
magnetisation reversal of the Fe3+ sublattice takes place from one crystallographic axis
to another upon varying the field and temperature [84–86]. Among the family of RFeO3,
SmFeO3 shoes multiple transitions, such as SRT in the narrow range of 450 K to 480 K,
which is the highest in the RFeO3 family, spin switching at nearly 278 K, H, 300 Oe and
compensation temperature nearly at 4 K, H, 300 Oe are observed in SmFeO3 crystals and
can be manipulated by the field at room temperature, which makes SmFeO3 a potential
candidate for excellent device characteristics [83].

Recently, numerous studies have been performed on doped rare-earth orthoferrite [87],
including R-sites and Fe-sites to improve the physical properties of the host compound,
such as crystal structure [88], magnetic structure [89, 90], electronic structure [91], photo-
luminescence [92, 93]. Therefore, due to the alteration of physical and structural properties,
here, Mn3+ substituted at Fe3+ site, which is best suited on the basis of the Goodenough-
Kanamori [94, 95] theory to show superior magnetic properties due to superexchange
interactions, which may reveal fascinating magnetic properties and lattice dynamics. Hence,
in this thesis, the structural, electric and magnetic properties along with local interactions
in the SFMO single crystal are explored through various measurements.
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1.9 Motivation

The interplay among the various competing interactions with different hierarchical energy
levels makes centrosymmetric noncollinear magnets an interesting class of materials. The
experimental and theoretical indication of the possibility of manipulating spin-modulated
states and the stabilisation of multiple-q states (not skyrmion state) have pointed out that
these systems have the potential for energy-efficient magnetic data storage applications,
especially in the field of spintronics. The motivation behind this investigation was to
find and study these nanometric length scale exotic states in centrosymmetric crystal
systems, which is only theoretically predicted. Prototype chiral multiferroic Mott insulator
Cu2OSeO3 nanocrystallites.

1.10 Outline of thesis

This thesis presents experimental investigations on NiBr2, Cd-Cu2OSeO3, and Mn-doped
SmFeO3 single crystals by dc magnetisation, ac susceptibility, small-angle neutron scatter-
ing (SANS) measurements along with X-ray absorption spectroscopy (XAS). The main
focus is on NiBr2; CSO and SFMO are toward spin reorientation from commensurate to
incommensurate magnetic structure and weak ferromagnetic to compensated antiferromag-
netic, respectively, at low temperatures, which have immense scientific and technological
implications for next-generation energy-efficient magnetic data storage devices.

The thesis consists of the following chapters:

• Chapter 1: presents a literature survey of the existing work related to the formation
of a helical ground state, formation of complex magnetic structures: multi-q states and
magnetic skyrmions and their experimental and theoretical realization.

• Chapter 2: describes the experimental techniques, structure, morphology, and
composition employed in this work. Introduction of dc magnetisation and ac magnetic sus-
ceptibility measurements using a Superconducting Quantum Interference Device (SQUID),
Small-Angle Neutron Scattering (SANS), and X-ray absorption spectroscopy (XAS) are
presented.

• Chapter 3: presents magnetometry to study the low-temperature magnetic phase dia-
gram of NiBr2 single crystals in the vicinity of TIC = 23 K and around the incommensurate
phase. By covering a field range from 0.1 T to 3 T, the ac susceptibility reveals the charac-
teristic relaxation associated with the transitions between the collinear and noncollinear
phases, which shows the signature of the field-induced helimagnetic transition. The nature
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of field-induced transition and microscopic features were analysed in Chapter 5, with a
broad range of magnetic fields and small-angle neutron scattering experiments.

• Chapter 4: represents the extended range of ac & dc magnetometry with the ap-
plied magnetic field (1 -14 T) in a-b basal plane and out of the plane, complemented by
SANS. The results demonstrate a clear view of the magnetic-field-induced non-collinear
to collinear spin transition in the triangular spin-lattice of helimagnet NiBr2 single crystals.
Our experimental outcomes are closely related to Okubo et al. (PRL 108, 017206 (2012)),
where the formation of multi-q states and the skyrmions phase for a triangular spin-lattice
has been suggested. This study searched for these states in NiBr2 single crystals, but could
not find any signature of the skrmionic phase in the NiBr2 single crystal. Instead, a typical
degeneracy occupation of the equivalent wave vector for the incommensurate state was
detected.

• Chapter 5: In this chapter, the structural, electronic, and magnetic properties of
Cd-doped Cu2OSeO3 nanocrystallites are described. In addition, cost-effective and fast
synthesis of Cu2OSeO3 nanocrystallites with sizes ranges over 50-200 nm. The physical
significance of Cd doping on the Cu2OSeO3 skyrmions will carry significant technological
importance, as doping-induced chemical pressure can be used to tune and control the
skyrmionic phases and their various physical properties.

• Chapter 6: presents the influence of Mn-doping on structural and magnetic properties
of canted antiferromagnet SmFeO3 single crystals obtained by optical float zone technique.
SQUID magnetometry was performed in the temperature range from 5 to 400 K. The results
reveal a new spin reorientation from the weak ferromagnetic state to the compensated
antiferromagnetic state at nearly 180 K, which is missing in the parent compound for
magnetic fields applied along with the different crystallographic directions due to Mn
doping. Variations in the coercive field indicate the emergence of the exchange bias
phenomenon at low temperatures. The microscopic origin of spin reorientations remains
unclear.

• Chapter 7: Finally, in this chapter, concluding remarks are presented on the basis of
the experimental findings and theoretical interpretation obtained in all the single crystal
and nanocrystallite samples that are addressed in the thesis.


