Table of contents

Li	st of fi	igures xvi	i
Li	st of t	ables xx	i
Li	st of A	Abbreviations xxii	i
Li	st of S	Symbols xx	V
Pr	eface	xxvi	i
1	Intro	oduction	1
	1.1	Overview	1
	1.2	Magnetic interactions of interest	1
		1.2.1 Exchange interaction	1
		1.2.2 Dzyaloshinskii-Moriya interaction	3
		1.2.3 Magnetic anisotropy	5
		1.2.4 Competing exchange interaction in 1D-chain	5
	1.3	Magnetic order and spin structures	7
		1.3.1 Spin structures in pure crystals	7
		1.3.2 Spin structures in disordered and amorphous materials 10	0
		1.3.3 Spin orderings in perovskites	3
	1.4	Phase diagram for competing interaction in triangular lattice 1	5
	1.5	Materials under study	6
	1.6	Transition metal dihalides: NiBr ₂	6
	1.7	Magnetic skyrmions: $Cd-Cu_2OSeO_3$	7
	1.8	Rare-earth orthoferrite: $SmFe_{3/4}Mn_{1/4}O_3$	8
	1.9	$\mathbf{Motivation} \dots \dots$	9
	1.10	Outline of thesis	9

2	Synt	thesis ar	nd characterization techniques	21
	2.1	Overvi	ew	21
	2.2	Synthe	sis/Growth method	21
		2.2.1	Solid-state reaction route	22
		2.2.2	Optical floating zone technique	24
		2.2.3	Mn-doped samarium ortho-ferrite (Mn-SmFeO $_3$) crystal growth: .	28
	2.3	Charac	terization techniques & working principle	29
		2.3.1	X-ray diffraction	29
		2.3.2	Laue diffraction	31
		2.3.3	Scanning electron microscopy (SEM)	32
		2.3.4	Energy dispersive X-ray spectroscopy (EDS or EDX)	35
		2.3.5	Transmission electron microscopy (TEM)	35
		2.3.6	X-ray photo electron spectroscopy	36
		2.3.7	X-ray absorption spectroscopy	37
		2.3.8	X-ray magnetic linear dichroism (XMLD)	37
		2.3.9	Neutron diffraction	37
		2.3.10	Magnetic property measurement system (MPMS)	38
2	Mac	motio nl	asso transition and spin structure of holimognat NiPr-	41
3		Introdu	votion	41
	3.1	Crystal		41 12
	3.2	Magna		42
	3.5 2.4	Export	mentel details	44
	2.5	Dopult		45
	5.5			40
		5.5.1 2.5.2		40
		5.5.2 2.5.2	Differential magnetic suscentibility	40
		5.5.5 2.5.4	Magnetic susceptionity	48
	2.6	3.5.4	Magnetic phase diagram of $NIBr_2$	51
	3.6	Conclu	Isions	53
4	Mag	gnetic-fi	eld-induced non-collinear to collinear spin transition in NiBr ₂	55
	4.1	Introdu	uction	55
	4.2	Experi	mental details	57
	4.3	Results	s and discussion	58
		4.3.1	Magnetization and susceptibility	58
		4.3.2	Neutron diffraction on NiBr ₂	61
		4.3.3	Neutron scattering	65

		4.3.4 Phase diagram	71
	4.4	Summary and conclusions	73
5	Site-	substitution effect on skyrmion phases of Cu ₂ OSeO ₃	75
	5.1	Introduction	75
	5.2	Experimental details	77
	5.3	Results and discussions	78
		5.3.1 Structural characterizations	78
		5.3.2 Compositional analysis of Cd-Cu ₂ OSeO ₃	82
		5.3.3 Electronic properties of $Cd-Cu_2OSeO_3$	84
		5.3.4 Magnetic properties of Cd-Cu ₂ OSeO ₃	85
	5.4	Summary and conclusions	86
6	Inve	stigating the microscopic origin of spin-reorientations in canted antifer-	
	roma	agnetic $SmFe_{3/4}Mn_{1/4}O_3$ orthoferrites	87
	6.1	Introduction	87
	6.2	Crystal structure	89
	6.3	Experimental details	90
		6.3.1 Synthesis/Crystal Growth	90
		6.3.2 Characterizations	90
	6.4	Results and discussion	91
		6.4.1 Powder X-ray diffraction	91
		6.4.2 Transmission electron microscopy (TEM)	93
		6.4.3 Energy dispersive X-ray (EDX) spectroscopy	94
		6.4.4 Single crystal Laue diffraction	95
		6.4.5 Magnetic properties	96
		6.4.6 X-ray absorption spectroscopy	01
	6.5	Summary and Conclusions	03
7	Con	clusions and future plan 1	05
	7.1	Overview	05
	7.2	NiBr ₂	05
	7.3	$Cd^{2+}-Cu_2OSeO_3$	06
	7.4	Mn-SmFeO ₃	06
	7.5	Future scope of the work	07

109

Appendix List of Publications

123

List of figures

1.1	Bethe-Slater curve for direct magnetic exchange interactions	2
1.2	Sketch of two magnetic moments used to discuss the symmetry of the DMI	4
1.3	Competing magnetic interactions and their consequences	6
1.4	Sketches of some noncollinear spin structures found in pure crystals	8
1.5	Sketches of some random collinear and noncollinear spin structures	12
1.6	Schematic representation of spin orders found in cubic perovskites	14
1.7	Competing interactions in triangular lattice and corresponding phase diagram	15
2.1	Flow chart for sample preparation by conventional solid-state route	22
2.2	Temperature versus time graph of reactive sintering process	24
2.3	Principle of four mirror optical floating zone (OFZ) method	25
2.4	Flow chart representation of single crystal growth by OFZ technique	26
2.5	Various stages during SFMO single-crystal growth process	29
2.6	Role of characterizations among synthesis, realizations, and applications .	30
2.7	Working principle of X-ray diffraction.	31
2.8	A simplified block diagram showing the working principle of SEM	33
2.9	Interactions of electron beam with matter, and EDX working principle	34
3.1	Schematic representation of $CdCl_2$ type crystal structure of $NiBr_2$	43
3.2	A typical representation of magnetic structures of $NiBr_2$	44
3.3	TEM data analysis of NiBr ₂ powder sample dispersed in ethanol medium	47
3.4	Temperature dependence of magnetization on single crystal $NiBr_2$	48
3.5	Magnetization versus magnetic field for single crystal $NiBr_2$	49
3.6	Temperature dependence of magnetic susceptibility for NiBr ₂ single crystal	50
3.7	Differential magnetic susceptibility $dM(H)/dH$ vs. magnetic field	51
3.8	Relative variation of $ac(dc)$ magnetic susceptibilities with temperature $\ . \ .$	52
3.9	Magnetic phase diagram of NiBr ₂ constructed from ac(dc) magnetometry	53

4.1	Temperature dependence of dc magnetic susceptibilities measured with	
	field applied $\ $ & \perp (a-b) basal plane	59
4.2	Field dependence of magnetization applied along various axis at different	
	temperatures in the range of 3 K and 60 K	61
4.3	The temperature dependence of the χ_{ac} along various crystallographic-axes	62
4.4	Neutron diffraction patterns of the NiBr ₂ recorded at various values of T	
	& H	63
4.5	T dependence of the magnetic (0 0 $3/2$) reflection measured upon cooling	66
4.6	The diffraction pattern recorded with zero fields around the $(0 \ 0 \ 3/2)$	
	reflection	67
4.7	Temperature dependence of the diffracted signal around (0 $0 3/2$) reflection	69
4.8	Magnetic structure of $NiBr_2$ at various temperature	70
4.9	Field dependence of the intensity around the $(0\ 0\ 3/2)$ reflection at low	
	temperatures	71
4.10	Magnetic phase diagram of NiBr ₂ constructed bulk magnetic and neutron	
	diffraction measurements	72
51	Systematic representation for the synthesis of Cd_2OSeO_2 nanocrystallites	78
5.2	XRD pattern evolution of doped and pristine powder samples	79
5.2	TEM HRTEM and SAED pattern of $(Cu_1, Cd_2) \circ OSeO_2$ (x ≈ 0.2)	17
0.0	nanocrystals	81
5.4	Elemental mapping and EDX data of $(Cu_0 \circ SCd_0 \circ 2) \circ OSeO_3$	82
5.5	Wide XPS spectra of Cd-2p. Cu-2p. O-1s and Se-3p.	83
5.6	Temperature-dependent magnetization of $(Cu_1, Cd_2) \circ OSeO_2$ (x ≈ 0.2)	00
5.0	nanocrystals	85
6.1	Crystal structure of Mn-doped SmFeO ₃ orthorhombic perovskite	89
6.2	Rietveld refined X-ray diffraction pattern for SFMO sintered at 1250 $^\circ C$.	92
6.3	TEM analyses of SFMO crystallites obtained by HRTEM and SAED pattern	93
6.4	SEM and EDS analysis of sintered ceramics SFMO at 1250 °C	95
6.5	SEM and EDS analysis of SFMO single crystal	95
6.6	Laue back-scattering patterns of SFMO single crystal along the (100),	
	(010) and (001) crystallographic axes	96
6.7	Temperature-dependent magnetizations of SFMO single crystal in two	
	protocol ZFC & FC along a and b-axes	97
6.8	Hysteresis curves for the SFMO single crystal along the a-axis at 150 K,	
	and 250 K	98

6.9	Hysteresis curves for the SFMO single crystal along the c-axis at 150 K,	
	and 250 K	99
6.10	M-H curves for the SFMO single crystal along the a, c-axes at various	
	temperatures	100
6.11	Temperature dependence of the exchange $bias(H_E)$ along a, c-axes	101
6.12	The Fe $L_{2,3}$ and Sm $M_{4,5}\text{-edge}$ spectra of $\text{SmFe}_{3/4}\text{Mn}_{1/4}\text{O}_3$	102

List of tables

2.1	Variation of growth parameters during single crystal growth	28
5.1	XPS data fitting parameters for elements O, Cu, Se, and Cd for doped and undoped Cu_2OSeO_3	84
6.1	Structural parameters for bulk Mn-SmFeO ₃	92