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Preface

Nature has given us abundant materials with multiple structures, where spin phases have
been playing a vital role in spintronic devices. Recently, it has been noted that not
only from typical collinear spin materials such as collinear ferromagnets and collinear
antiferromagnetically coupled materials, noncollinear spintronic materials are the new
hot spots of research owing to their exotic physical phenomena. In this thesis, firstly, the
introduction of three different types of noncollinear spin structures, that is, the helical spin
structure that offers helical spin phases and the coplanar noncollinear spin structure that
could yield momentum-space Berry phases, and then move to relevant physical phenomena,
including the topological Hall effect, anomalous Hall effect, multiferroic, spin-polarised
current, and spin Hall effect. Afterwards, this thesis summarises and elaborate on the
magnetic-field control of the noncollinear spin structure and related physical effects, which
could enable ultra-low power spintronic devices.

This thesis presents experimental investigations on NiBr2, Cd-Cu2OSeO3, and Mn-
doped SmFeO3 single crystals by dc magnetisation, ac susceptibility, small-angle neutron
scattering (SANS) measurements along with X-ray absorption spectroscopy (XAS). The
main focus is on NiBr2; CSO and SFMO are toward spin reorientation from commen-
surate to incommensurate magnetic structure and weak ferromagnetic to compensated
antiferromagnetic, respectively, at low temperatures, which have immense scientific and
technological implications for next-generation energy-efficient magnetic data storage
devices.

The thesis consists of the following chapters:

• Chapter 1: presents a literature survey of the existing work related to the formation
of a helical ground state, formation of complex magnetic structures: multi-q states and
magnetic skyrmions and their experimental and theoretical realization.

• Chapter 2: describes the experimental techniques, structure, morphology, and
composition employed in this work. Introduction of dc magnetisation and ac magnetic sus-
ceptibility measurements using a Superconducting Quantum Interference Device (SQUID),
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Small-Angle Neutron Scattering (SANS), and X-ray absorption spectroscopy (XAS) are
presented.

• Chapter 3: presents magnetometry to study the low-temperature magnetic phase dia-
gram of NiBr2 single crystals in the vicinity of TIC = 23 K and around the incommensurate
phase. By covering a field range from 0.1 T to 3 T, the ac susceptibility reveals the charac-
teristic relaxation associated with the transitions between the collinear and noncollinear
phases, which shows the signature of the field-induced helimagnetic transition. The nature
of field-induced transition and microscopic features were analysed in Chapter 5, with a
broad range of magnetic fields and small-angle neutron scattering experiments.

• Chapter 4: represents the extended range of ac & dc magnetometry with the ap-
plied magnetic field (1 -14 T) in a-b basal plane and out of the plane, complemented by
SANS. The results demonstrate a clear view of the magnetic-field-induced non-collinear
to collinear spin transition in the triangular spin-lattice of helimagnet NiBr2 single crystals.
Our experimental outcomes are closely related to Okubo et al. (PRL 108, 017206 (2012)),
where the formation of multi-q states and the skyrmions phase for a triangular spin-lattice
has been suggested. This study searched for these states in NiBr2 single crystals, but could
not find any signature of the skrmionic phase in the NiBr2 single crystal. Instead, a typical
degeneracy occupation of the equivalent wave vector for the incommensurate state was
detected.

• Chapter 5: In this chapter, the structural, electronic, and magnetic properties of
Cd-doped Cu2OSeO3 nanocrystallites are described. In addition, cost-effective and fast
synthesis of Cu2OSeO3 nanocrystallites with sizes ranges over 50-200 nm. The physical
significance of Cd doping on the Cu2OSeO3 skyrmions will carry significant technological
importance, as doping-induced chemical pressure can be used to tune and control the
skyrmionic phases and their various physical properties.

• Chapter 6: presents the influence of Mn-doping on structural and magnetic properties
of canted antiferromagnet SmFeO3 single crystals obtained by optical float zone technique.
SQUID magnetometry was performed in the temperature range from 5 to 400 K. The results
reveal a new spin reorientation from the weak ferromagnetic state to the compensated
antiferromagnetic state at nearly 180 K, which is missing in the parent compound for
magnetic fields applied along with the different crystallographic directions due to Mn
doping. Variations in the coercive field indicate the emergence of the exchange bias
phenomenon at low temperatures. The microscopic origin of spin reorientations remains
unclear.



xxix

• Chapter 7: Finally, in this chapter, concluding remarks are presented on the basis of
the experimental findings and theoretical interpretation obtained in all the single crystal
and nanocrystallite samples that are addressed in the thesis.


