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Chapter 8 Emergent Kagome Spin Configurations in the Basal Plane of 

BaFe12O19 as a Function of Temperature 

 

8.1 Introduction 

 The results of X-ray magnetic circular dichroism (XMCD) and magnetization 

studies on single crystals of BaFe12O19 (BFO), presented in chapters 3 and 4, provide 

unambiguous evidence for a significant component of the 3dFe3+ spins in the basal plane 

(i.e., ab-plane) confirming non-collinear nature of the spins. This calls for revisiting the 

collinear magnetic structure of BFO proposed by Gorter [39]. In chapters 5, 6 and 7, we 

presented evidence for a succession of five glassy transitions resulting from the freezing 

of the longitudinal (//c) component of the spins, the transverse (⊥c) component of the 

spins and the freezing of the precession dynamics of the conical magnetic structure using 

ac susceptibility (, T) studies. Taking analogy with the isostructural compound 

SrCr8Ga4O19 (SCGO), it was tentatively proposed in chapters 5 and 6 that the component 

of the spin perpendicular to the c-axis (i.e., in the basal plane) would acquire 

geometrically frustrated kagome spin configuration which may be responsible for the 

emergence of the spin-glass phases. However, the emergence of the kagome spin 

configuration in BFO remains to be confirmed. In case of SCGO [18,19,22] and other 

geometrically frustrated ordered compounds, like pyrochlores [327,328,331,333,334], 

spinels [337,338] and jarosites [370,425], there is only one spin-glass transition due to the 

geometry of the lattice on which the magnetic spins are located in the paramagnetic phase 

itself. In contrast, the five spin-glass phases of BFO result from the long-range ordered 

(LRO) ferrimagnetic phase of BFO which is stable in the temperature range 250 K ≲ T < 

Tc = 714 K. The five spin-glass phases appear successively below 250 K and they coexist 
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with LRO ferrimagnetic phase all along upto the ground state. This difference between 

the two systems also needs to be elaborated on. 

To address these questions, we have presented the results of neutron powder 

diffraction (NPD) studies on BFO powder as a function of temperature in this chapter. 

This study provides evidence for the emergence of two different kagome spin 

configurations as a function of temperature giving an insight into the microscopic basis of 

the glassy transitions, discussed in chapters 5, 6 and 7. Apart from providing evidence for 

emergent geometrical frustration in BFO, we have also addressed the issue of randomness 

of interactions as both frustration (which is geometrical in the present case) and 

randomness are required to explain the spin-glass transitions [57,60,61]. Towards this 

goal, we present results of low-temperature X-ray powder diffraction (XRD) studies 

which reveal significant magnetoelectric strains in BFO at low temperatures. We also 

discuss the possible role of unequal Fe-Fe distances in and out of the ab-plane on the 

exchange anisotropy. Further, implications of change in exchange splitting of the Fe-eg 

band around 15 K revealed by the X-ray absorption spectra (XAS) studies at the O K-

edge, presented in chapter 4, is also discussed in this chapter in the context of the 

succession of the spin-glass transitions. 

8.2 Experimental 

The details of the powder synthesis and crystal growth are already given in chapter 

2. For neutron and X-ray powder diffraction measurements, sintered pellets of BFO were 

crushed into fine powders using mortar pastel. The crushed powder was annealed at 

6000C for 10 hours to remove the strain introduced during crushing. The annealed powder 

was used for all the powder diffraction studies. The low-temperature NPD data was 

collected in the temperature range 10 to 300K at a wavelength of 0.207150Å on SPODI, a 

high-resolution thermal neutron diffractometer at FRM-II, Garching, Germany [187,188].  
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 The temperature-dependent XRD measurements were carried out on an inhouse 

18 kW Cu rotating anode based high-resolution powder diffractometer fitted with a 

monochromator in the diffracted beam (Rigaku, model). The low-temperature attachment, 

based on a closed cycle He refrigerator, provided by Rigaku was used for varying the 

sample temperature from 13 K to 300 K.  

 Rietveld refinement of the nuclear and magnetic structures was carried out using 

the FullProf suite [186]. The isotropy suite [426] was used to determine the possible 

magnetic subgroups of the room temperature magnetic structure. Le-bail analysis of the 

temperature-dependent powder XRD data was also carried out using FullProf suite. 

8.3 Previous Predictions for Spin Canting in BaFe12O19  

 Based on Mӧssbauer and magnetization studies on Al, Ga [134,135], In, 

Sc [135,427] and Mn [428] doped BFO, canting of the magnetic spins at the 12k site has 

been proposed earlier. However, neutron powder diffraction patterns on Mn doped 

samples do not reveal any extra reflections for 00l reciprocal lattice row at or around l = 

2n  1 positions [428] whereas In and Sc doped samples do reveal the extra 

reflections [134]. It was argued that the absence of spin canting in the neutron powder 

diffraction patterns could be due to random canting of the spins at the 12k and 2a 

Wyckoff sites [428]. Theoretical calculations of the single-ion anisotropy of the magnetic 

ions for different sites in BFO suggest that the single-ion anisotropy of the 12k site Fe3+ 

has negative value whereas it is positive for all other sites [429,430]. The negative value 

of single-ion anisotropy indicates that anisotropy energy will be maximum when the 

magnetic spins at the 12k site are parallel to the c-axis [431]. In another theoretical study, 

it has been pointed out that the magnetic spins at the 12k site are subjected to strong 

ferromagnetic interactions with spin at the 2a, 2b, 12k sites (all spin-up) and strong anti-

ferromagnetic interaction with the spins at the 4f1, 4f2 sites (all spin down) [432]. Mean-
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field calculations of the exchange interactions among the magnetic ions in BFO have 

revealed that magnetic spins at the 12k site experiences isotropic exchange 

interaction [433]. It has been argued that the spins at the 12k site plays a crucial role in 

perturbing the Gorter model for the magnetic structure of BFO [433]. Since magnetic 

spins at the 12k site are subjected to isotropic exchange interaction while a mixture of 

ferromagnetic as well as anti-ferromagnetic interactions, the effective field on the 12k site 

magnetic spins will be very small. The weak effective exchange interaction [433] and the 

negative value of anisotropy constant of the 12k site [429,430] may lead to canting of 

spins at this site. Instability of spin direction along the c-axis at the 12k site has been 

verified by substituting non-magnetic ions at the magnetic sites. It has been found that a 

very small amount of substitution (3% to 5%) by Al, Ga, Sc, Mn, Zn and In leads to 

significant canting of the spins at 12k sites [135,192,427,428,434,435]. These 

observations have led us to assume that the spins at the 12k sites are the most probable 

candidates for canted spin components discussed in chapters 3 and 4 and are possibly 

responsible for the transverse and the conical spin-glass transitions discussed in chapters 

5, 6 and 7.  

8.4 Neutron Powder Diffraction Studies 

 To capture the arrangement of the spins in the ab-plane and along the c-axis due to 

spin canting at the 12k site, we refined the magnetic and nuclear structures together by 

Rietveld technique using powder neutron diffraction data. Fig. 8.1 depicts the neutron 

powder diffraction patterns recorded at a few selected temperatures: 300 K, 250 K, 100 

K, 50 K and 10 K. Since the periodicity of the nuclear and magnetic structures is identical 

(propagation vector k = 0, 0, 0), no additional peak is expected due to the antiparallel 

arrangement of the 3d5Fe3+ spins at the 4f1 and 4f2 Wyckoff positions with respect to 

those at the 2a, 2b, 12k Wyckoff positions, if the spins are aligned exclusively along the  
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Figure 8.1:  Neutron powder diffraction patterns recorded at various temperatures. Inset 

shows a zoomed around the forbidden of 003 peak position. All the curves are shifted 

with respect to each other by 0.1 (arbitrary units).  

 

  

c-axis as per the collinear Gorter model. Additional peak may arise at or around l = 2n  1 

positions for 00l type reflections if the spins are canted away from the c-

axis [132,133,192,427]. These reflections are forbidden by the nuclear P63/mmc and 

magnetic space groups for the collinear Gorter type magnetic structure.  In chapters 3 and 

4, we presented evidence for spin canting in the 1.2 to 30 K temperature range using 

XMCD on BFO single crystals. In addition, we gave evidence for the presence of satellite 

peaks at 003 - 1 and 003 + 2 positions in single-crystal neutron scattering patterns due to 

conical magnetic order in chapters 3 and 7 in the temperature range 1.5 to 300 K. 

 A magnified view of the powder diffraction patterns around the 003 position at 

various temperatures, however, does not reveal any magnetic satellite peaks (see the inset 

of Fig. 8.1). The intensity of the satellite peaks is about 1.75% of the intensity of 

neighbouring intense 004 reflection (see chapter 3 and 7). This intensity is too small to be 

observed in our neutron powder diffraction patterns on account of higher background 

count. For example, the background intensity in Fig. 8.1 around the 003 peak position is ~ 

33% of the intensity of the neighbouring 004 peak. Thus, there is no possibility of 
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observing the satellite peaks in the neutron powder diffraction patterns shown in Fig. 8.1. 

However, the other peaks, especially those at lower 2 angles, also have significant 

contribution from magnetic scattering which can be captured through Rietveld refinement 

of both the nuclear and magnetic structures together. Accordingly, we present the results 

of Rietveld refinements in the following sections using representation group theory 

approach for the magnetic structure [436].        

8.4.1 The Irreducible representation for Fe3+ in BaFe12O19 

  To refine the magnetic structure, we have determined the magnetic irreducible 

representations (irreps) [436] for BFO using BasIreps Program [186]. As mentioned 

earlier, the magnetic ion Fe3+ in the unit cell of BFO occupies five different Wyckoff sites 

labelled as 2a, 2b, 4f1, 4f2 and 12k. The possible reducible representations for different 

Wyckoff sites are listed below for each one of these sites in terms of the various irreps. 

The subscript for each irrep represents the irrep number and the superscript the 

dimensionality of the irrep. 

2a = 12 ⊕ 14 ⊕ 25 ⊕ 26  

2b = 12 ⊕ 26 ⊕ 19 ⊕ 211 

4f1 = 12 ⊕ 14 ⊕ 25 ⊕ 26 ⊕ 17 ⊕ 19 ⊕ 211 ⊕ 212 

4f2 = 12 ⊕ 14 ⊕ 25 ⊕ 26 ⊕ 17 ⊕ 19 ⊕ 211 ⊕ 212 

12k = 11 ⊕ 12 ⊕ 13 ⊕ 14 ⊕ 25 ⊕ 26 ⊕ 17 ⊕ 18 ⊕ 19 ⊕ 110 ⊕ 211 ⊕ 212 

The basis vectors of each irrep for different Wyckoff sites are given in Table 8.1, 8.2 and 

8.3. It is evident from the above representations for various Wyckoff sites that the irrep 2 

is common for all the sites. The irrep 2 has only one basis vector for the magnetic ion at 

sites 2a, 2b, 4f1 and 4f2 which can give rise to finite magnetic moment parallel or 

antiparallel to the c-axis (see Table 8.1 and 8.2) but for the 12k site, 2 has two basis  
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Table 8.1: Basis vectors of the irreducible representation n for magnetic ion (Fe3+) 

named as Fe1 at 2a Wyckoff site with fractional coordinate (x=0, y=0, z=0) and Fe2 at 

2(b) Wyckoff site with fractional coordinate (x=0, y=0, z=0.25). 

 

Magnetic 

Representation 

Fe1 (2a) Magnetic 

Representation 

Fe2 (2b) 

(
x
y
z
) (

x
y

z + 1/2
) (

x
y
z
) (

x
y

z + 1/2
) 

2 (
0
0
1

) (
0
0
1

) 
2 (

1
0
0

) (
1
0
0

) 

4 (
0
0
1

) (
0
0

−1

) 
6 (

 1  
2
0

−1  
0
0

) (
 1  
2
0

−1  
0
0

) 

5 (
 1  
0
0

1 
2
0

) (
−1  
0
0

−1

 
−2
0

) 
9 (

1
0
0

) (
−1
0
0

) 

 

 

Table 8.2: Basis vectors of the irreducible representation n for magnetic ion Fe3 and 

Fe4 at 4fiv (4f1) site with fractional coordinate (x=1/3, y=2/3, z=0.0272) and at 4fvi 

(4f2) site with fractional coordinate (x=1/3, y=2/3, z=0.1904), respectively.   

 

    Magnetic 

Representation 

Fe3 (4f1) and Fe4 (4f2)   

                                                  

 

(
x
y
z
) 

 

(
−x
−y

z + 1/2
) 

 

(
x − y
−y
−z

) 

(
x

x − y
−z + 1/2

) 

2 (
0
0
1

) (
0
0
1

) (
0
0
1

) (
0
0
1

) 

4 (
0
0
1

) (
0
0

−1

) (
0
0
1

) (
0
0
−1

) 

5 (
 1  
0
0

1 
2
0

) (
−1 
0
0

−1
−2
0

) (
 1  
0
0

1 
2
0

) (
−1  
0
0

−1
−2
0

) 

6 (
 1  
2
0

−1  
0
0

) (
 1  
2
0

−1  
0
0

) (
 1  
2
0

−1  
0
0

) (
 1  
2
0

−1  
0
0

) 

7 (
0
0
1

) (
0
0
1

) (
0
0

−1

) (
0
0
−1

) 

9 (
0
0
1

) (
0
0

−1

) (
0
0

−1

) (
0
0
1

) 

11 (
 2 
1
0

0
−1
0

) (
−2 
−1
0

0
1
0

) (
−2 
−1
0

0 
1
0

) (
 2  
1
0

0 
−1
0

) 

12 (
 1  
0
0

1 
2
0

) (
 1  
0
0

1 
2
0

) (
−1  
0
0

−1 
−2
0

) (
−1  
0
0

−1 
−2
0

) 
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vectors, one of which gives the moment parallel to the c-axis and the other perpendicular 

to the c-axis (see Table 8.3(a) and (b)). This suggests that the irrep 2 can give rise to both 

collinear and non-collinear magnetic structures. Both (2a) and 2(a  b) irreps, however, 

have a common magnetic space group P63/mm'c'. The combination of the other irreps 

with irrep 2 can produce other magnetic structures also. 

 

 

Magnetic 

Representation Fe5 (12k) 

 
   (

x
y
z
)                  (

−x
−y

z−1/2
)               (

−y
x−y
z

)                  (
−x+y
−x
z

)                 (
x−y
x

z−1/2
)             (

y
−x+y
z−1/2

)      

1   (
1
0
0
)                       (

−1
0
0
)                      (

0
1
0
)                     (

−1
−1
0
)                          (

1
1
0
)                                      (

0
−1
0
) 

2     (
 0  
0
1

1 
2
0
)           (

 0  
0
1

−1 
−2
0

)          (
 0  
0
1

−2 
−1
0
)                        (

 0  
0
1

1 
−1
0
)                    (

 0  
0
1

−1 
1
0

)                (
 0  
0
1

2 
1
0
)                   

3       (
1
0
0
)                 (

1
0
0
)                      (

0
1
0
)                 (

−1
−1
0
)                (

−1
−1
0
)                 (

0
1
0
)   

4      (
 0  
0
1

1 
2
0
)           (

 0  
0
−1

1 
2
0
)             (

 0  
0
1

−2 
−1
0
)           (

 0  
0
1

1 
−1
0
)          (

 0  
0
−1

1 
−1
0
)         (

 0  
0
−1

−2 
−1
0
) 

5 

     
(
2
0
0

0
0
0

0
0
0

0
0
0

2
4
0

0
0
2
)     (

−2
0
0

0
0
−2

0
0
0

0
0
0

−2
−4
0

0
0
2
)      (

0
−1
0

2
1
0

0
0
−1

0
1
0

2
1
0

0
0
−1

)        (
1
1
0

1
−1
0

0
0
1

1
1
0

−1
1
0

0
0
−1

)     (
−1
−1
0

−1
1
0

0
0
1

−1
−1
0

1
−1
0

0
0
−1

)   (
0
1
0

−2
−1
0

0
0
−1

0
−1
0

−2
−1
0

0
0
−1

)   

 6 

                   
   (

2
4
0

0
0
2

0
0
0

0
0
0

0
0
0

2
0
0
)    (

2
4
0

0
0
−2

0
0
0

0
0
0

0
0
0

2
0
0
)       (

2
1
0

0
0
−1

0
−1
0

−2
−1
0

0
0
1

0
−1
0
)         (

−1
1
0

0
0
−1

−1
−1
0

−1
1
0

0
0
−1

1
1
0
)      (

−1
1
0

0
0
1

−1
−1
0

−1
1
0

0
0
1

1
1
0
)           (

2
1
0

0
0
1

0
−1
0

−2
−1
0

0
0
−1

0
−1
0
)    

7      (
 0  
0
1

1 
2
0
)                 (

 0  
0
1

−1 
−2
0

)                  (
 0  
0
1

−2 
−1
0
)                    (

 0  
0
1

1 
−1
0
)           (

 0  
0
1

−1 
1
0
)             (

 0  
0
1

2 
1
0
)         

8        (
1
0
0
)               (

−1
0
0
)                          (

0
1
0
)          (

−1
−1
0
)               (

1
1
0
)                        (

0
−1
0
)           

9      (
 0  
0
1

1 
2
0
)             (

 0  
0
−1

1 
2
0
)              (

 0  
0
1

−2 
−1
0

)            (
 0  
0
1

1 
−1
0
)          (

 0  
0
−1

1 
−1
0
)         (

 0  
0
−1

−2 
−1
0
)      

10        (
1
0
0
)                   (

1
0
0
)                (

0
1
0
)                   (

−1
−1
0
)                   (

−1
−1
0
)                    (

0
1
0
)           

11 

                  
(
1
0
0

−1
1
0

0
0
1

1
0
0

−1
−1
0

0
0
−1

)       

 

(
−1
0
0

1
−1
0

0
0
1

−1
0
0

1
1
0

0
0
−1

)    (
0
0
0

2
1
0

0
0

−2

0
−2
0

0
1
0

0
0
0
)        (

1
1
0

−1
−2
0

0
0
1

−1
−1
0

1
0
0

0
0
1
)     (

−1
−1
0

1
2
0

0
0
1

1
1
0

−1
0
0

0
0
1
)       

 

(
0
0
0

−2
−1
0

0
0
−2

0
2
0

0
−1
0

0
0
0
)     

 

12 

 
(
2
0
0

0
0
0

0
0
0

0
0
0

2
4
0

0
0
2
)   (

2
0
0

0
0
0

0
0
0

0
0
0

2
4
0

0
0

−2
)    (

0
−1
0

2
1
0

0
0
−1

0
1
0

2
1
0

0
0
−1

)      (
1
1
0

1
−1
0

0
0
1

1
1
0

−1
1
0

0
0
−1

)     (
1
1
0

1
−1
0

0
0
−1

1
1
0

−1
1
0

0
0
1
)   (

0
−1
0

2
1
0

0
0
−1

0
1
0

2
1
0

0
0
1
)  

 

 

 Table 8.3(a): Basis vectors of the irreducible representation n for 6 out of 12 

equivalent position of Fe5 at 12k site with fractional coordinate (x=0.168, y=2x, 

z=-0.1082). 
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Magnetic 

Representation Fe5 (12k) 

 
   (

x−y
−y
−z

)                    (
y
x
−z

)                (
−x

−x+y
−z

)                (
x

x−y
−z+3/2

)              (
−x+y

y
−z+3/2

)           (
−y
−x

−z+3/2
) 

1     (
1
0
0
)                (

0
1
0
)                (

−1
−1
0
)                  (

1
1
0
)                     (

−1
0
0
)                      (

0
−1
0
) 

2      (
 0  
0
1

1 
2
0
)            (

 0  
0
1

−2 
−1
0

)            (
 0  
0
1

1
−1
0
)              (

 0  
0
1

−1 
1
0

)                (
 0  
0
1

−1 
−2
0

)                   (
 0  
0
1

2 
1
0
) 

3        (
1
0
0
)                     (

0
1
0
)                 (

−1
−1
0
)                     (

−1
−1
0
)                        (

1
0
0
)                           (

0
1
0
) 

4     (
 0  
0
−1

−1 
−2
0

)            (
 0  
0
−1

2 
1
0
)             (

 0  
0
−1

−1
1
0
)               (

 0  
0
−1

1 
−1
0
)                  (

 0  
0
−1

1 
2
0
)                  (

 0  
0

−1

−2 
−1
0

) 

5 

     
(
2
0
0

0
0
0

0
0
0

0
0
0

2
4
0

0
0
2
)   (

0
−1
0

2
1
0

0
0
−1

0
1
0

2
1
0

0
0
−1

)     (
1
1
0

1
−1
0

0
0
1

1
1
0

−1
1
0

0
0
−1

)    (
−1
−1
0

−1
1
0

0
0
1

−1
−1
0

1
−1
0

0
0
−1

)     (
−2
0
0

0
0
0

0
0
0

0
0
0

−2
−4
0

2
0
0
)   (

0
1
0

−2
−1
0

0
0
−1

0
−1
0

−2
−1
0

0
0
−1

)  

 

 6 

                     
  (

2
4
0

0
0
2

0
0
0

0
0
0

0
0
0

2
0
0
)   (

2
1
0

0
0
−1

0
−1
0

−2
−1
0

0
0
1

0
−1
0
)   (

−1
1
0

0
0
−1

−1
−1
0

−1
1
0

0
0
−1

1
1
0
)    (

−1
1
0

0
0
1

−1
−1
0

−1
1
0

0
0
1

1
1
0
)     (

2
4
0

0
0

−2

0
0
0

0
0
0

0
0
0

2
0
0
)   (

2
1
0

0
0
1

0
−1
0

−2
−1
0

0
0
−1

0
−1
0
)  

 

7      (
 0  
0

−1

−1 
−2
0

)           (
 0  
0
−1

2 
1
0
)              (

 0  
0
−1

−1
1
0
)               (

 0  
0
−1

1 
−1
0
)                 (

 0  
0

−1

1 
2
0
)                   (

 0  
0
−1

−2 

−1
0
) 

8       (
−1
0
0
)                (

0
−1
0
)                    (

1
1
0
)                       (

−1
−1
0
)                         (

1
0
0
)                          (

0
1
0
) 

9      (
 0  
0

−1

−1 
−2
0

)          (
 0  
0
−1

2 
1
0
)            (

 0  
0

−1

−1
1
0
)              (

 0  
0
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8.4.2 Isotropy Subgroups for the Combination of Different Irreducible 

Representations 

 To determine the possible combination of the irreps which can give rise to 

another non-collinear magnetic structure at lower temperatures, we considered the 

isotropy subgroups of the space group P63/mm'c' using ISODISTORT package [426]. The 

isotropy magnetic subgroup tree, so obtained, is shown in Fig. 8.2. The subgroup tree  

Table 8.3(b): Basis vectors of the irreducible representation n for the remaining 

six equivalent positions of Fe5 at the 12k site with fractional coordinate (x=0.168, y=2x, 

z=-0.1082). 
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                 Figure 8.2:  Isotropy subgroup tree for the magnetic space group P63/mm'c' 

 

 

suggests eight possible magnetic space group corresponding to the irrep combinations 2

⊕1, 2⊕3, 2⊕4, 2⊕7, 2⊕8, 2⊕9, 2⊕10 and 1⊕7) which are isotropy 

subgroup of the magnetic space group P63/mm'c'. A careful analysis of the basis functions 

of 2(a  b) as well as the eight possible isotropy subgroups with different irrep 

combinations shows that all of them can produce canting of the magnetic spins at the 12k 

Wyckoff site only, in agreement with Mӧssbauer studies and the theoretical predictions 

discussed in section 8.3. 

8.4.3 Details of the Rietveld Refinement 

 Having identified the various combinations of the irreps that can give rise to non-

collinear magnetic structure of BFO using representation theory in conjunction with group-

isotropy subgroup considerations, we now proceed to present the results of Rietveld 

refinements of the average magnetic and nuclear structures. In the refinements, the 

background was modelled using linear interpolation between the points. The peak shape was 

modelled using Thompson-Cox-Hasting pseudo-Voigt function. The Full-Width at Half-

Maxima (FWHM) of the peaks were modelled using the Caglioti equation [190,191]: 

(FWHM)2
 = Utan2 + Vtan + W. During the refinement, scale factor, zero displacement, 

lattice parameters (a, b, c), positional coordinates (x, y, z) and thermal parameters (B) were 
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allowed to vary while the occupancy of each ion was fixed at their nominal composition 

value. The initial input structural and thermal parameters were taken from ref. [118]. 

8.4.3.1 Results of Rietveld refinements 

 Since the Gorter model for the magnetic structure of BFO corresponds to a 

collinear magnetic structure below 723 K, we have set the second basis vector of the irrep 

2 to zero in the refinement for this magnetic structure. We find that the irrep 2(a) with 

only one basis vector gives reasonable average fit down to 10 K. The values of the overall 

χ2 and magnetic agreement factor RM for this model are shown in Fig. 8.3 at various 

temperatures. It is evident from this figure that the overall χ2 increases with decreasing 

temperature. This behaviour of χ2-value with temperature points towards the possibility of 

change in the magnetic structure from the collinear model. This implies that the irrep 2 

with only one basis function (i.e., 2(a)) is not enough to explain the real magnetic 

structure. Therefore, we refined the magnetic structure using both the basis functions of 

the irrep 2 i.e., using 2(a ⊕ b). The χ2-value obtained after refining the magnetic structure 

at different temperatures using irrep 2(a ⊕ b) are also shown in Fig. 8.3(a). It is evident 

from this figure that the χ2-values for the 2(a ⊕ b) non-collinear magnetic structure at 300 

K and 250 K are in general lower than those obtained with only one component of 2(a ⊕ b) 

(i.e., 2(a)). Further, the χ2-values for 2(a ⊕ b) model at 300 K and 250 K are not 

significantly different. However, the χ2-values for this model also starts increasing for 

temperatures below 250 K. It is evident from Figs. 8.3(b) that the magnetic agreement 

factor RM follows the trend similar to that for the χ2-value with decreasing temperature. 

  Evidently, the magnetic structure below 250 K requires consideration of other 

irreps along with 2(a ⊕ b). The subgroup tree in Fig. 8.2 shows eight possible magnetic 

space groups, along with the corresponding combinations of the various irreps with 2(a ⊕ 

b), which are isotropy subgroups of the magnetic space group P63/mm'c' (i.e., 2(a ⊕ b)).  
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Figure 8.3:  The temperature variation of the (a) χ2 and (b) RM-factor obtained from the 

Rietveld analysis of neutron diffraction pattern collected at different temperatures. 

 

 

Accordingly, we refined the magnetic structure using the irrep combinations (2 ⊕ 1), 

(2 ⊕ 3), (2 ⊕ 4), (2 ⊕ 7), (2 ⊕ 8), (2 ⊕ 9), (2 ⊕ 10) and (1 ⊕ 7) 

corresponding to the eight magnetic isotropy subgroups one by one. As said earlier, all 

the magnetic isotropy subgroups lead to canting at the 12k site only. We find the 

refinement of magnetic structure using irrep combinations (2 ⊕ 7), (2 ⊕ 8), (2 ⊕ 

9), (2 ⊕ 10) and (1 ⊕ 7) give rise to very large χ2-values in comparison to χ2-values 

obtained for (2 ⊕ 1), (2 ⊕ 3) and (2 ⊕ 4) combinations. From the refined structure, 

we find that 2 ⊕ 3 and 2 ⊕ 4 irrep combinations give rise to a significant reduction in 

the χ2 and RM values as shown in Fig. 8.3 at 100 K and 50 K. Since the number of 
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refinable parameters for 2(a ⊕ b) ⊕ 3 (magnetic space group P3̅1c') and 2(a ⊕ b) ⊕ 4 

(magnetic space group P3̅m'1) are 3 and 4, respectively, we choose 2(a ⊕ b) ⊕ 3 

combination as it gives comparable fit with one less refinable parameter. On lowering the 

temperature to 10 K, the 2(a ⊕ b) ⊕ 4 gives slightly lower χ2 and RM values than those for 

2(a ⊕ b) ⊕ 3. However, the difference is not significant enough to choose one or the other 

keeping in mind that 2(a ⊕ b) ⊕ 4 combination has one additional refinable parameter. We 

therefore believe that the magnetic structure of BFO at T ≲ 100 K corresponds to the 2(a 

⊕ b) ⊕ 3 combination of irreps. The fits between the observed and calculated profiles, 

obtained after Rietveld refinement of the magnetic and nuclear structures using irrep 2(a), 

2(a ⊕ b), 2(a ⊕ b) ⊕ 3, and 2(a ⊕ b) ⊕ 4 at 300 K, 250 K, 100 K, 50 K and 10 K, are shown 

in Fig. 8.4. All these fits are quite satisfactory. 

8.4.4 Evidence for Geometrical Frustration in the Magnetic Structure of BaFe12O19 

 The main finding of the Rietveld refinements is that the magnetic structure of BFO 

is non-collinear at least for T  300 K in agreement with the single-crystal neutron 

scattering results presented in chapter 7. For T  300, further neutron diffraction studies 

are required. This non-collinearity is due to the canting of the magnetic spins at the 12k 

octahedral sites. We now proceed to discuss the magnetic structure of BFO as a function 

of temperature on the basis of the results presented in the previous section and compare it 

with that of the SrCr9pGa12-9pO19 (SCGO-p) system which has been investigated 

thoroughly as a function of Ga content [18,22,24,40,238,437]. 

 The spin components along and perpendicular to the c-axis of non-collinear 

magnetic structure at T ≳ 250 K are shown in Figs. 8.5 (a) and (b), respectively. The 

spin configuration in the ab-plane shown in Fig. 8.5(b) corresponds to kagome 

lattice consisting of corner shared triangles. For this kagome spin configuration in  
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Figure 8.4: Observed (filled red circles), calculated (continuous black line), and 

difference (bottom green line) profiles obtained from the Rietveld refinement using 

neutron diffraction data at (a) 300K with 2a, (b) 100K with 2(a ⊕ b), (c) 50K with 2 ⊕ 

3, (d) 10K with 2 ⊕ 3 and (e) 10K with 2 ⊕ 4 for BaFe12O19. The vertical tick 

marks above the difference profile represent the Bragg peak positions (blue). 
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Figure 8.5: Magnetic spin configurations obtained from Rietveld refinement of the 

magnetic structure using irrep 2(a  b) (a) longitudinal and (b) transverse components of 

the canted spins at 300 K and 250 K. 

 

 

the ab-plane ∑ 𝑆𝑖 = 03
𝑖=1 , where S1, S2 and S3 are the three spins all pointing in or out 

in the corner shared pair of triangles. This configuration has got a degeneracy of two 

corresponding to two different chiralities [358].   

 On lowering the temperature below 250 K, the magnetic space group 

P63/mm'c' of BFO changes to P3̅1c' with  2(a ⊕ b) ⊕ 3 combination of irreps for T ≲ 100 

K. The spin components along the c-axis and within the ab-plane are shown in Figs. 8.6 

(a) and (b). The arrangement of the component of the magnetic spins in the ab plane 

shown in Fig. 8.6(b) correspond to the Wyckoff site 12k only. The magnetic spins at the  
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Figure 8.6: Magnetic spin configurations obtained from Rietveld refinement of the 

magnetic structure using irrep 2(a ⊕ b) ⊕ 3. (a) longitudinal and (b) transverse 

components of the canted spins at 100 K, 50 K and 10 K. 

 

 

other Wyckoff sites (2a, 2b, 4f2 and 4f2) as well as the non-basal component of the spins 

at the 12k site are all aligned along the c-axis, as in the Gorter model [39]. Thus, the main 

difference between the magnetic structure of BFO proposed here and that proposed earlier 

by Gorter [39] is due to the canting of spins at the 12k Wyckoff sites (Fig. 8.6(b)). The 

kagome antiferromagnet shown in Fig. 8.6(b) is fully frustrated with macroscopic 

degeneracy [438]. This configuration is similar to that observed in the SCGO system 

except for the presence of Ga3+ ions at some sites [438]. Following the model for SCGO, 

the succussive kagome layers in the ab plane of BFO at T ≲ 100 K are linked through 

magnetic spins at the 2a Wyckoff site and form a kagome bilayer configuration linked 
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through two inverted tetrahedra formed with the spins at the 12k site in the ab plane along 

with those at the 2a site along the c-axis (see Fig. 8.7). These two inverted corner-shared 

tetrahedra are like a pyrochlore slab linking the neighbouring kagome layers. The linkage 

between successive kagome bilayers (12k-2a-12k) is via spins at the 4f2 Wyckoff site 

position at z = 0.6903 and 0.8096 as shown in Fig. 8.7. Every five-layered unit is rotated 

by 1800 about the c-axis to give another similar five-layer block for the 10-layers 

magnetic spins in BFO. Thus, our Rietveld refinements reveal that fully frustrated 

kagome bilayer spin configuration emerges as a function of temperature in BFO T ≲ 100 

K similar to that in SCGO [438]. We believe that this emergent geometrical frustration, 

 

 

                Figure 8.7:  Kagome bilayer configuration linked via pyrochlore slabs [19]. 
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which persists down to the lowest temperatures (at least 10 K as confirmed in the present 

study) is at the heart of the emergence of four successive spin-glass transitions discussed 

in chapter 5.  

 The five-layer block (4f2-12k-2a-12k-4f2) shown in Fig. 8.7, in case of 

SrCr8Ga4O19, has about 14% of the Cr3+ replaced with non-magnetic Ga3+ at the 12k site 

whereas the occupancy of Ga3+ at the 2a-site is about 4% [237]. In our case, there is no 

non-magnetic ion in the Fe3+ sublattice and hence the occupancy of both the 12k and 2a 

sites is 100% Fe3+. The 4f1 Wyckoff site is fully occupied by Ga3+ while it has only ~ 

13.5% occupy at the 4f2 site in SCGO. In BFO, these two sites are also fully occupied by 

the magnetic ion. Further, the 2b site is occupied by Ga3+ only in SrCr8Ga4O19 but not in 

BFO and the spins at this site are not involved in exchange linkages for BFO also. 

However, the kagome bilayer configuration with intervening pyrochlore configuration is 

common to both BFO and SCGO.  

8.5 Genesis of Randomness in BaFe12O19 

 As mentioned in the previous chapters, for spin-glass transition one needs both 

frustration and randomness of interactions. In disordered systems, the source of both 

frustration and randomness is positional disorder caused by substitutions in the magnetic 

sublattice with another element/ion, mostly non-magnetic [57,60,61,245,247]. In ordered 

compounds undergoing spin-glass transitions without any substitutional disorder, such as 

pyrochlores [327–329,331,334,335], spinels [337] and h-DyMnO3 [249], the source of 

frustration is the geometry of the lattice of the paramagnetic phase. In case of BFO, we 

have seen in the previous section, that fully geometrically frustrated kagome spin 

configuration emerges below T ≲ 100 K. However, this emergent geometrical frustration 

in the long-range ordered ferrimagnetic phase of BFO, or for that matter, the frozen-in 

geometrical frustration in other ordered compounds where there is a direct transformation 
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from paramagnetic phase to the spin-glass phase, is not sufficient to cause spin-glass 

transition. We need to identify the source of randomness in the few body exchange 

interactions. As mentioned in earlier chapters, theoretical considerations have revealed 

that even infinitesimal disorder caused by anisotropy in the exchange interactions due to 

nearest neighbour bond length variations [332,340,341,346], magnetoelastic 

strains [341,342] and dipole-dipole interactions between the local spin clusters with intra-

cluster geometrical frustration [343] can lift the degeneracy and bring about a phase 

transition to spin liquid [372,439], spin-ice [361,440] and spin-glass [340,341,345–347] 

states.    

8.5.1 Evidence for magnetoelastic strain in BaFe12O19  

 We now proceed to identify the possible source of randomness in case of BFO. 

For this, we first present the results of the temperature-dependent x-ray powder 

diffraction studies on BFO in the temperature range 13 K to 300 K. Le-bail refinement of 

the nuclear structure was carried out for various temperatures using the P63/mmc space 

group for the nuclear structure. These refinements confirm that there is no structural 

phase transition associated with any of the spin-glass transitions. The results of the Le-

bail refinements using the P63/mmc space group are shown in Fig. 8.8 for T = 300 K, 100 

K, 40 K, 20 K and 13 K. These fits are pretty good confirming that nuclear structure 

remains P63/mmc down to the lowest temperature of our study. 

 The temperature evolution of the lattice parameters (a, c) and the unit-cell volume 

(V), obtained using temperature-dependent XRD and NPD data, are shown in Figs. 8.9 

and 8.10, respectively.  It is evident from Fig. 8.9 that the lattice parameters ‘a’ and ‘c’ as 

well as the unit cell volume show deviation from linear thermal expansion behaviour 

below T ≲ 175 K. Below 100 K, the lattice parameter ‘a’ becomes nearly temperature 

independent while ‘c’ continues to decrease though with a slightly different slope. A  
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Figure 8.8: Observed (filled red circles), calculated (continuous black line), and 

difference (bottom green line) profiles obtained from Le-bail refinement using X-ray 

powder diffraction data at (a) 300 K, (b) 98 K, (c) 43 K (d) 23 K and (e) 13 K for 

BaFe12O19. The vertical tick marks above the difference profile represent the Bragg 

peak positions (blue).  
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Figure 8.9: The evolution of the lattice parameters (a) ‘a’ and (b) ‘c’ with temperature: 

filled red circle is from the XRD data. Filled squares (blue colour) are from NPD data 

discussed in the section 8.4.3.1. The solid black line is the straight-line fit. 

 

 

similar deviation in the c-parameter has been reported earlier [441] where this was linked 

with the local magnetic field of Fe3+ ion. The Rietveld results of the magnetic structure 

using NPD data, presented in the previous section, have revealed a change in the 

magnetic space group from P63/mm'c' to P3̅1c' in the temperature range 250 to 100 K.  

The fifth spin-glass transition, discussed in the preceding chapter, occurs in this 

temperature range. We believe that deviation observed in the lattice parameters ‘a’ and ‘c’ 

around 175 K is due to spin-lattice coupling associated with the glassy transition around 

175 K. 
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 In order to see the effect of anomalous behavior of the lattice parameters and 

magnetic correlations on the unit-cell volume, we have used the Debye- Grüneisen model 

for the lattice specific heat to calculate the anharmonic part of lattice vibration which 

contributes to the unit cell volume (V) as per the relationship [442,443]: 

                              V = V(T=0) + 
9γNk𝐵

𝐵
 T ( 

T

θD
 )3 ∫

x3

(ex−1)
dx

T
θD

⁄

0
,                      …….(8.1) 

where V(T=0) is the volume at 0 K, 𝜃𝐷 is the Debye temperature, γ is the Grüneisen 

parameter and B is the bulk modulus. The least-squares fit corresponding to Equation 

(8.1) to data points is shown in Fig. 8.10 using solid black line. The Debye temperature 

and V(T=0) values are found to be 538 ± 3 K and 693.7 ± 0.01 Å3, respectively. It is 

evident from Fig. 8.10 that the calculated unit cell volume deviates from the experimental  

 

 

Figure 8.10:  Variation of the unit-cell volume with temperature: filled red circle is the 

XRD data, filled square (blue colour) is NPD data and solid black line is the fit for 

Debye Grüneisen equation. The broken line through the data points is the straight-line 

fit. 
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value of unit cell volume below ⁓ 125 K. This is shown more clearly in the inset of Fig. 

8.10 on a magnified scale. The significant deviation from the theoretically expected 

phonon contributions to the unit cell volume below ~ 125 K shows the presence of 

magnetoelastic strains which may be the source of randomness in the few body exchange 

interactions leading to spin- glass transitions in the presence of emergent geometrical 

frustration in BFO at low temperatures (T ≲ 125 K). 

 The magnetoelastic volume strain (ΔV/V) in many compounds exhibits quadratic 

dependence on the spontaneous magnetization (Ms) [74,442,443] which is known as 

magneto-volume effect [444]. In order to verify the magneto-volume effect, we measured 

spontaneous magnetization using M-H plots for the powder samples at various 

temperatures. The M-H plots for one quadrant are shown in Fig. 8.11 for a few selected 

temperatures. The variation of the bulk strain (ΔV/V) with Ms
2 is shown in Fig. 8.12. It  

 

 
                      Figure 8.11:  Variation of magnetization with dc magnetic field. 
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Figure 8.12:  the variation of volume strain S (i.e., V/V) versus the square of 

spontaneous magnetization (MS
2) obtained from temperature-dependent M-H loop. 

 

 

reveals three temperature regions in which ΔV/V shows linear dependence on Ms
2. The 

first region corresponds to the glassy phase resulting below 175 K while the remaining 

two regions may be related to the other spin-glass states discussed in the previous 

chapters. This suggests that the conical spin-glass phase below 175 K shows magneto-

volume effect. The slope of ΔV/V versus Ms
2

 plot increases below 83 K and finally 

becomes very steep below 28 K. All these suggest the presence of magnetoelastic strains 

in BFO below 175 K (see Figs. 8.9 and 8.10). Such strains by virtue of their long-range 

effects may provide the randomness in the few body exchange interactions which along 

with emergent geometrical frustration in BFO may stabilise the spin-glass phases in 

ordered compounds, as shown by various workers theoretically [332,340,341,346]. In the 

presence of such random strains, Andreanov et al. [332] have shown that the 
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geometrically frustrated systems do not show deviations from conventional spin-glass 

results. The successive freezing of the transverse and longitudinal components of the 

spins below the conical glass transition are, on the other hand, in excellent agreement 

with the theoretical predictions for conventional Heisenberg systems with negative single-

ion anisotropy [67]. This single-ion anisotropy for the 12k site is known to be negative for 

BFO [429,430] as discussed in section 8.3. After the first round of such freezing, BFO 

intriguingly shows a similar freezing again at lower temperatures, the origin of which we 

discuss in the next section. 

8.5.2 Role of the Exchange Anisotropy 

 As pointed out in chapter 4, the anisotropy in magnetisation grows with decreasing 

temperature below Tc until the onset of spin-glass transition around 45 K (see Fig. 4.3). 

The Curie-Weiss fits for the variation of M⊥c and M//c with temperature also gives 

different values for the Curie-Weiss temperatures (CW) (see Fig. 4.1). As per molecular 

field theory, it clearly points towards variation in exchange interactions J⊥c and J//c 

perpendicular to and along the c-axis. Such an anisotropic exchange interaction has also 

been shown to lift the degeneracy of the geometrically frustrated magnetic lattices and 

stabilise a new phase [332]. We believe that apart from the magnetoelastic strains, the 

exchange anisotropy may also play important role in stabilising the spin-glass phases, 

especially at lower temperature. The role of exchange anisotropy for disordered 

Heisenberg systems has been investigated and it has been shown that such an anisotropy 

can lead to a succession of two lines, the Almeida-Thouless (A-T) and Gabay-Toulouse 

(G-T), in the T-H plane [236]. The anisotropy in exchange interactions is also anticipated 

from the variation in the nearest neighbour bond lengths, R1, R2, R3, R4 and R5, shown 

in Fig. 8.7 for BFO, are 2.916(0) Å, 2.9693(2) Å, 3.479(2) Å, 3.494(2) Å and 3.4935(1) 

Å, respectively, confirming the presence of exchange anisotropy in BFO. In chapter 4, the 
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analysis of XAS spectra recorded for the normal incidence (NI) geometry at the O K-edge 

revealed that the exchange splitting of the eg band between 15.5 K and 5.5 K changes by 

about 0.17 eV. This indicates that the exchange interactions may change at lower 

temperatures. We believe that the second round of freezing of the longitudinal and 

transverse components of the spins with TSG//c ~ 15 K and TSG⊥c ~ 4 K, after the first 

round of freezing at TSG//c ~ 25 K and TSG⊥c ~ 46 K, respectively, may be linked with the 

change in the exchange anisotropy around 15 K. All these possibilities need to be looked 

into in any future theoretical investigation on the origin of multiple spin-glass transitions 

in BFO.   

8.5.3 The Origin of the Incommensurate Conical Spin-Glass Phase 

 In chapter 7, we presented evidence a fifth spin-glass with TSG ~ 173 K using 

neutron scattering and bulk magnetic studies. It was shown that incommensurability of 

the block conical modulation increases suddenly below TSG ~ 173 K. While the intensity 

of the satellite peaks shows a dip at the same temperature suggesting involvement of 

conical magnetic ordering in the glassy freezing. The emergent kagome spin 

configuration at 300 K and 250 K does not have macroscopic degeneracy. The spin 

configuration shown in Fig. 8.5(b) is doubly degenerate corresponding to left and right-

handed chiralities. This implies that the dynamics of the conical modulation may be 

influence by the chiralities of the spin configuration either only in the ab-plane or out of 

the ab-plane involving both the longitudinal and transverse components of the spins. The 

former case corresponds to 2D X-Y Heisenberg system while the latter corresponds to 3d 

Heisenberg system with vector chiralities k⃗ =   si⃗⃗  x sj⃗⃗ , where si⃗⃗  and sj⃗⃗  are the neighbouring 

spins in the plane, and scalar chiralities k = si⃗⃗ . (sj⃗⃗  x  sk⃗⃗  ⃗), respectively. Our case 

corresponds to scalar chiralities which has got Z2 chiral degeneracy corresponding to left-

handed and right-handed chiralities while spins have SO(3) spin rotation symmetry. Since 
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a degeneracy of two is not sufficient to cause the spin-glass transition, which requires 

macroscopic degeneracy, the origin of the glass transition with TSG ~ 173 K needs to be 

looked into in the light of the chirality scenario discussed by Kawamura and his co-

workers in a series of papers [384,416,445–452]. It has been argued by these 

workers [384] that for nearly isotropic 3d Heisenberg systems, chiralities and spin 

components may get decoupled and lead to chiral glass transition at a temperature higher 

than the spin-glass transition temperature. Assuming the spins at the 12k site experience 

isotropic exchange interactions (see section 8.3), the glass transition around 173 K may 

be linked with the decoupling of the chirality from the spins. However, theory predicts 

that the spin-glass transition temperature TSG may be 10 to 15% lower than the chiral 

glass transition temperature TCG. In our case, the difference between the glass transition 

temperature for the ~ 173 K transition and the next spin-glass transition temperature ~ 50 

K is too large. We, therefore, believe that the origin of the ~ 173 K glassy transition is 

entirely different from the remaining four lower temperature glass transitions. In the light 

of the neutron scattering results presented in chapter 7, we also believe that this transition 

this transition is linked with the conical ordering involving all the three components and 

not just the transverse or longitudinal components. Also, exchange anisotropy for the 12k 

site may be non-zero since the number of ferromagnetic exchange bonds exceeds the 

number of antiferromagnetic bonds for the 12k site. For the weakly anisotropic 3D 

Heisenberg system, the theory predicts recoupling of the chiral and spin degree of 

freedom. As a result, the chiral glass transition would appear as a standard spin-glass 

transition. A Gabay Toulouse (G-T) like line in the T-H plane for the shift of the glass 

transition temperature is predicted for such recoupled scenario at high fields whereas at 

extremely low fields, the theory predicts the shift along the Almeida-Toulouse (A-T) line. 

In our case, the shift observed for H ≳ 100 Oe is along the G-T line (see Fig. 7.10). More 
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measurements preferably using ac (T) data, under low dc bias (H << 100 Oe) is 

required to verify the crossover from A-T to G-T line with increasing field in any future 

investigation to confirm the applicability of the theoretical prediction involving chirality 

scenario.  

8.6 Conclusions 

 (1). The deviation from collinear Gorter model is primarily due to canting of the 

spins at the 12k sites, leaving the spins at other sites aligned parallel or antiparallel to the 

c-axis.  

(2). Evidence for the presence of fully frustrated kagome spin configuration at T ≲ 100 K 

in BFO was presented using Rietveld analysis of the temperature-dependent NPD data. 

Rietveld refinement gives only the average spin configurations. In real systems, the spins 

would show disorder from the average configuration due to the frustrated exchange 

interactions. Such a disorder is expected to lead to magnetic diffuse scattering [314,453]. 

Although not included in the thesis, the preliminary studies on BFO single crystals have 

revealed significant magnetic diffuse scattering around the Bragg peak positions at 30 K.  

(3). Using temperature-dependent powder XRD studies, we have shown the presence of 

significant anisotropic magnetoelastic strains below 175 K in BFO. We have also 

confirmed magneto-volume effect in different temperature ranges corresponding to the 

various spin-glass phases of BFO. These strains may provide randomness to the few body 

exchange interactions required for lifting the degeneracy of the fully frustrated emergent 

kagome spin configuration at T ≲ 100 K as per the existing theories of the spin-glass 

transitions in geometrically frustrated ordered compounds.  

(4). We have presented some suggestion for the likely genesis of four successive spin-

glass transitions of BFO below T < 100 K involving either the transverse or the 
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longitudinal spin components in terms of single-ion anisotropy and the anisotropic 

exchange interactions.   

(5). We have also presented a brief discussion on the genesis of the spin-glass transition 

around 173 K discussed in the previous chapter. We proposed that this transition is 

independent of the remaining four spin-glass transitions and may be linked with the 

theoretically predicted chirality scenario for the weakly anisotropic 3D Heisenberg 

systems due to the involvement of the conical magnetic order in this transition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


