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Chapter 5  Evidence for Four Spin-Glass Transitions in BaFe12O19 due to 

Successive Freezing of Transverse and Longitudinal Spin 

Components  

 

5.1 Introduction 

 In the preceding two chapters, we presented results of X-ray absorption spectra 

(XAS) and X-ray magnetic circular dichroism (XMCD) from 1.2 K to 30 K, single-

crystal neutron diffraction studies at 1.5 K and dc magnetization M(T) studies in the 

temperature range 2 to 950 K on single crystals of BaFe12O19 (BFO). The four main 

findings of these studies are: (1) The 3dFe3+ spin magnetic moment in BFO are canted 

with respect to the crystallographic c-axis giving rise to longitudinal conical magnetic 

order which is incommensurate with respect to the underlying lattice. (2) The component 

of the spin magnetic moment in the basal plane, obtained by XMCD studies, decreases 

with temperature below 30 K until it takes an upturn around 15 K. This behaviour was 

confirmed by dc magnetisation studies also. (3) It was also shown that the band width of 

the eg energy levels also change around 15 K suggesting that the strength of the 

exchange-correlations is changing around this temperature. (4) The magnetocrystalline 

anisotropy A (
M⊥𝑐

M//𝑐
) in the dc magnetization studies increases with decreasing temperature 

below Tc and peaks around 45 K suggesting significant canting of spins even above 30 K 

upto which the XMCD studies were carried out. 

  In a related M-type hexaferrite material with magnetoplumbite structure, 

SrCr8Ga4O19 (SCGO), with a maximum Ga content of ~33.3% in the magnetic sublattice, 

it has been shown that the spins lie entirely in the ab-plane and not along the c-axis, in 

marked contrast to the Gorter model for the isostructural Ba-hexaferrite [237]. The SCGO 

has received enormous attention [17,18,152,238–242,19,21–27] of the exotic spin 
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liquid [18,24,27] and spin-glass [17–19,21–26] transitions as a function of Ga content in 

the magnetic sublattice due to the formation of kagome bi-layer type stacking of the spins 

which are completely frustrated [19,21,237]. The presence of a significant component of 

the spins in the ab-plane,  discussed in chapters 3 and 4, raises the possibility of the 

formation of geometrically frustrated kagome bi-layer configuration of the spins in the 

ab-plane of BFO also similar to that reported in the context of SCGO [19,237]. This calls 

for revisiting the nature of the magnetic transitions in BFO also, especially the magnetic 

transition seen in the dc M(T) around ~ 45 K at 500 Oe, discussed in the previous chapter, 

and observed by previous workers also [137]  has a spin-glass character as a result of 

geometrically frustrated nature of the basal plane component of the spins in a way similar 

to that observed in the SCGO system [18,19]. Further, the change in the exchange-

correlation energy around 15 K may drive additional magnetic transitions in BFO at low 

temperatures.  

  Taking the cue from the dc M(T), XAS and XMCD studies discussed in chapter 4, 

we have carried out alternating current (ac) magnetic susceptibility measurements as a 

function of temperature and frequency ((, T)) in the 2 to 300 K range to explore the 

magnetic transitions in BFO below the room temperature. In addition, we have also 

carried out neutron diffraction measurements as function of temperature in the 2 to 300 K 

on BFO single crystals to seek signatures of the magnetic transitions at low temperatures 

observed in (, T) measurements. The analysis of the temperature (T) and frequency 

dependent real (') and imaginary ('') parts of ac susceptibilities χ⊥𝑐(, T) and χ//𝑐(, T) 

carried out with an ac drive field applied perpendicular (⊥) and parallel (//) to the c-axis 

of the BFO single-crystals, respectively, are presented in this chapter. It reveals 

occurrence of four spin-glass (SG) transitions involving spin components perpendicular 

(⊥) and parallel (//) to the c-axis with critical spin-glass transition temperatures at which 
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the spin relaxation dynamics diverges due to ergodicity breaking as TSG⊥𝑐
1  ≃ 46 K and 

TSG⊥𝑐
4  ≃ 4 K in the ab-plane and TSG//𝑐

2  ≃ 25 K and TSG//𝑐
3  ≃ 15 K along the c-axis. We 

also present evidence for the signature of these spin-glass transitions in the variation of 

the integrated intensities of the 006 and 101 reflections as a function of temperature using 

single-crystal neutron diffraction measurements. It is shown that the successive spin-glass 

phases in BFO coexist with the long-range ordered (LRO) ferrimagnetic phase and only a 

part of the longitudinal (//c) and transvesrse (⊥c) components of the spins takes part in 

spin-glass freezing. This is the first report of four spin-glass transitions in any ordered or 

disordered system  

5.2 Experimental 

 Single crystals were grown using high-temperature flux method using pre-

calcined powders and a flux, the details of which are given in chapter 2. The M⊥c(T) 

measurements were carried out using a SQUID-based magnetometer (MPMS-3, Quantum 

Design, USA).  The M⊥c(T) measurements on zero-field cooled (ZFC) and field cooled 

(FC) crystals were carried out during the warming cycle under a dc magnetic field of 500 

Oe. The frequency-dependent ac-susceptibility χ⊥𝑐(ω, T) and χ//𝑐(ω, T) measurements 

on the same single crystals were carried out under an ac drive field of 3 Oe applied 

perpendicular and parallel to the c-axis, respectively, using the same MPMS-3 set-up. The 

relaxation of thermoremanent magnetization (TRM) was investigated for the M⊥c(t) 

measurements carried out with a magnetic field 1000 Oe applied perpendicular to c-axis 

at a temperature below transverse spin-glass transition temperature (TSG⊥c  ~ 46 K) using a 

physical properties measurement system (PPMS, DynaCool, Quantum Design, USA).   

 The temperature-dependent neutron diffraction measurements on single-crystals of 

BFO were carried out using WISH time-of-flight diffractometer at ISIS facility of the 

Rutherford Appleton Laboratory (RAL), United Kingdom, the details of which are 
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available elsewhere [209]. Mantid software [243] was used to analyse the neutron 

scattering data.  

5.3 Magnetic Susceptibility Studies 

5.3.1 Evidence for the Freezing of the Transverse Component of the Spins 

 The observation of significant component of spins in the ab-plane of BFO in 

M(T) and XMCD studies discussed in chapter 4, and occurrence of the magnetic 

transition around ~ 45 K in the M⊥c(T) plot suggests that this transition may have a spin-

glass character in analogy with the spin-glass transition in SCGO [19]. To verify this, we 

first measured M⊥c(T) during the warming cycle on zero-field cooled (ZFC) and field 

cooled (FC) single-crystals and one typical result is depicted in Fig. 5.1(a). Evidently, 

M⊥c(T) exhibits irreversibility between the ZFC and FC magnetization curves below Tirr 

≲ 80 K as revealed by the bifurcation of the two curves in the figure. Such an 

irreversibility of the ZFC and FC magnetization curves can occur either due to blocking 

of non-interacting spin clusters as in superparamagnetic (SPM) systems [244] or due to 

the onset of non-ergodic behaviour due to an impending spin-glass transition [57–61,245–

247]. 

 The decay of thermoremanent magnetization (TRM) for M⊥c(t) was investigated 

on a BFO single crystals cooled from 300 K to 40 K under a field of 1000 Oe and then 

held at this temperature for 600 sec in the presence of the same dc magnetic field (i.e., H 

= 1000 Oe) applied perpendicular to the c-axis. After the elapse of 600 sec, the magnetic 

field was switched off and the decay of magnetization M⊥c(t) as a function of time (t) was 

recorded for 8 hours. Fig. 5.1(b) depicts the time evolution of M⊥c(t) for one typical 

measurement. The decay of TRM in spin-glass systems is known to follow Kohlrausch-

Williams-Watt (KWW) type stretched exponential behaviour [57,60,74,75,248–252]: 

                                                M(t) = M0 + Mgexp{-(t/τr)
β},                                …….(5.1) 



105 

 

 

Figure 5.1: (a) Variation of the ZFC and FC magnetization (M⊥c) measured with dc field 

of 500 Oe applied perpendicular to the c-axis of the crystal. (b) Evolution of 

thermoremanent magnetization M⊥c(t) of a 1000 Oe FC crystal with time at 40 K. (c) 

Temperature dependence of real 𝜒⊥𝑐
′  and imaginary 𝜒⊥𝑐

′′  parts of the ac susceptibility 

measured at 545 Hz with an ac field drive of 3 Oe applied perpendicular to the c-axis of 

the crystal.    
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where M0 is the ferromagnetic component due to the coexistence of ferrimagnetic phase 

with the spin-glass phase, Mg is the glassy component and τr is the characteristic 

relaxation time. For β = 1, the system follows exponential decay, M(t) = M0 + 

Mgexp{-t/τr}, with a single relaxation time (τ) corresponding to the potential 

energy barriers of equal height. Since the energy landscape for spin-glass systems 

is multivalleyed with different barrier heights, the relaxation time (τ) has a 

distribution [57,60,251] and this situation has been modelled using stretched 

exponential function given by Equation (5.1) where β lies in the range 0 < β < 1due 

to the distribution of  [57,60,248–251]. A least-squares fit using the KWW function 

(Equation (5.1)) gives an excellent fit between the observed and calculated M⊥c(t) 

with M0 = (0.115 ± 0.0001) emu/g, Mg = (0.015 ± 0.00018) emu/g, τr = (7415 ± 2) sec and 

β = (0.63 ± 0.01). The value of β = 0.63 rules out the possibility of relaxation of TRM due 

to purely long-range ordered ferrimagnetic phase of BFO, for which β should have been 

equal to 1, and suggests the presence of metastable states in the system, possibly due to its 

glassy nature [251]. 

 To resolve whether the irreversibility of ZFC and FC M(T) and non-exponential 

decay of TRM is due to SPM blocking or spin-glass freezing, we first present the result of 

ac-susceptibility (, T) measurements using an ac drive field of 3 Oe applied in a 

direction transverse to the c-axis of the BFO crystals. The corresponding temperature 

variation of χ⊥𝑐
′  and χ⊥𝑐

′′   is shown in Fig. 5.1(c) for a frequency of 545 Hz. It is evident 

from this figure that χ⊥𝑐
′  exhibits a peak around ~ 48 K while χ⊥𝑐

′′  exhibits a peak at T ~ 

38 K. For long-range ordered (LRO) magnetic transitions, both χ′(ω, T) and χ′′(ω, T) 

should peak at the same temperature as per the Kramer-Koning relationship [253] that 

relates the two quantities. The fact that the peak temperatures Tf
′() and Tf

′′() 

corresponding to the peaks in χ′(ω, T) and χ′′(ω, T), respectively, are not coincident with 
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Tf
′′() < Tf

′() suggests that this transition may not be a long-range ordering type.  In 

addition, the χ⊥𝑐
′′ (, T) plot in Fig. 5.1(c) shows another peak at ~ 5 K. This transition 

appears to be a rather weak transition as there is no obvious signature of this transition in 

χ′(ω, T) plot but its signature in the χ′′(ω, T) plot is quite unambiguous. We believe that 

the signature of this transition in χ′(ω, T) is overwhelmed by the higher temperature 

transition which is a strong transition with prominent signature in χ′(ω, T) and χ′′(ω, T) 

plots. However, the signature of both the transitions are seen in the neutron diffraction 

studies discussed in a latter section. In order to understand the nature of these two 

transitions, we measured the χ⊥𝑐
′ (ω, T) and  χ⊥𝑐

′′ (ω, T) plots at different frequencies (ω = 

2πf) and the results are shown in Figs. 5.2(a) and (b), respectively. It is evident from this 

figure that both the peak temperatures, i.e., Tf
′()  and Tf

′′(), shift towards the higher 

side with increasing measuring frequency as expected for the spin-glasses [57–61,245–

247] as well as the SPM [244] systems. The smaller peak seen in χ⊥𝑐
′′ (ω, T) (Fig. 5.1(c)) 

has been magnified in Fig. 5.2(c) to demonstrate the frequency dispersion of Tf
′′() for 

this transition also.  

 For the SPM blocking transition, the temperature dependence of the spin 

relaxation time τ is known to follow Arrhenius behaviour [244]: 

                                                (T) = 0 exp (
Ea

kBTf 
),                                      …….(5.2)  

where τ0 is the attempt relaxation time, Ea is the activation energy barrier and kB is the 

Boltzmann constant. For spin-glass systems, the spin dynamics, on the other hand, shows 

critical slowing down following Vogel-Fulcher law [254] and/or a power law [57,60] 

behaviour:  

Vogel-Fulcher law: 

                                                 (T) = 0 exp (
Ea

kB(Tf −TVF)
),                               …….(5.3) 
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Figure 5.2:  Temperature dependence of (a) real 𝜒⊥𝑐
′ (, T) and (b) imaginary 𝜒⊥𝑐

′′ (, T) 

parts of ac susceptibility measured at various frequencies using an ac drive field of 3 Oe 

applied perpendicular to c-axis of the crystal; (c) depicts the lower temperature anomaly 

in 𝜒⊥𝑐
′′ (, T) on a zoomed scale. The solid continuous lines through the data points in (c) 

are the fitted curves.  
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Power law: 

                                                  (T) = 0 (
(Tf −TSG)

TSG
)
−zv

,                                     …….(5.4) 

where τ0 is the inverse of the attempt frequency or attempt relaxation time, Ea is the 

activation energy, kB is the Boltzmann constant, Tf is the frequency dependent peak 

temperature in χ′(ω, T) or χ′′(ω, T), TVF  and TSG are the critical Vogel-Fulcher and spin-

glass transition temperatures, respectively, at which the relaxation time (τ) diverges as a 

result of ergodic symmetry breaking, z is the exponent for the power-law dependence of 

the correlation length ξ on τ  (i.e., ξ ~ τ-z) while ν is the exponent for the temperature 

dependence of ξ (i.e., ξ ~ ((Tf - TSG)/TSG)ν) as per the scaling theories [57,60].  

 We first present the results of the analyis of Tf
′() for the higher tempeature 

transition. The relaxation time τ was taken as 1/, where  = 2f and f is the measuring 

frequency, corresponding to the peak temperature Tf
′() [60,255–257]. For the SPM 

blocking transition with Arrhenius behaviour, the ln(τ) versus 1/Tf
′ plot should be linear. 

The non-linear nature of ln() versus 1/Tf
′ curve shown in Fig. 5.3 rules out the possibility 

of SPM blocking being responsible for the irreversibility of the ZFC and FC M⊥c(T) 

curves as well as the frequency dispersion of Tf
′(ω, T). We then fitted the ln(τ) versus 1/Tf

′ 

plots in Figs. 5.3 using Vogel-Fulcher law. The least-squares fit for the Vogel-Fulcher 

law shown using continuous solid line in Fig. 5.3 is in excellent agreement with observed 

data points suggesting that the higher temperature transition seen in M⊥c(T) and 
⊥𝑐
′ (ω, T) 

is due to a spin-glass transition.  The least-squares fitting parameters are: TVF
′

 = (45.46 ± 

003) K, τ0 = (1.8   0.1) x 10-4  s, Ea = (0.13  0.006) meV with a goodness of fit (GoF) of 

0.995. 

 We also modelled the temperature dependence of  using the power-law. The 

Equation (5.4) for the power-law dependence of  on temperature can be written as: 
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Figure 5.3: Variation of the ln() with 1/Tf
′. The continuous solid line through the data 

points is the result of the least-squares fit for Vogel-Fulcher law using χ′(ω, T) data. 

 

 

                                         ln(τ) = – (zν)ln((Tf  – TSG)/TSG) + ln(τ0),                      …….(5.5) 

 

  which is the equation of a straight line of the type 

  y = mx + c,                                             …….(5.6) 

where y = ln(τ), c = ln(τ0), m = – zν, and x= ln((Tf  – TSG)/TSG). Since there are three 

unknowns in Equation (5.5) (zν, τ0, and TSG) whereas only two unknowns can be 

determined using least-squares straight-line fit as per Equation (5.6), we followed the 

procedure given in ref. [258]. In this approach, one chooses different values of  TSG
′  and 

carries out least-squares fit for ln(τ) vs ln((Tf
′
 – TSG

′ )/TSG
′ ) where the prime superscript 

signifies that these correpond to 
⊥𝑐
′ (, T) data. The variance (σ) obtained for each value 

of TSG by least-squares fit is plotted as a function of TSG in Fig. 5.4(a). It is evident from 

this figure that σ shows a minimum corresponding to TSG
′  = (46.035 ± 0.005) K.  The 

range of uncertainty ± 0.005 K in the determination of the critical transition spin-glass 

transition temperature corresponds to the smallest interval at which we chose TSG values  
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Figure 5.4: (a) Optimization of TSG
′ . The minimum in (a) corresponds to the lowest 

variance with TSG
′  ~ 46.035 K. (b) The least-squares fit for the power-law for ln() versus 

ln((Tf
′
 – TSG

′ )/TSG
′ ) plot  using χ′(ω, T) data. 

 

 

to determine the optimum one with the lowest variance. In this way, we obtained the best 

fit value of TSG
′  = (46.035 ± 0.005) K. Using this optimised value of TSG

′ , the least-squares 

fit for the ln() versus ln((Tf
′ – TSG

′ )TSG
′ ) was carried out and the resulting plot is depicted 

in Fig. 5.4(b). The fitting parameters for the best fit are: τ0 = (8.2  0.8) x 10-5 s, zν = 

(0.50  0.02) and GoF = 0.984. Evidently both Vogel-Fulcher and power laws give 

comperable GoF and both confirm the divergence of the spin dynamics at TVF
′ /TSG

′  

expected for a spin-glass transition due to ergodic symmetry breaking. 

Since the signature of the lowest temperature transition is present only in the imaginary 

part χ⊥𝑐
′′ (ω, T) of the ac susceptibility, we also analysed the χ⊥𝑐

′′ (ω, T) data to verify if the 

divergence of the spin dynmics can be confirmed using χ⊥𝑐
′′ (ω, T) data as well for both 

the transitions. The spin relaxation time () at various temperatures was obtained from the 

position of the peak in χ⊥𝑐
′′ (ω, T), i.e., Tf

′′(), using  = 1 criterion as 

usual [60,259,260]. In the literature, the spin dynamics related to SPM blocking (TB) and 

spin-glass transitions has been investigated using both χ′(ω, T) and χ′′(ω, T) data [261–
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264]. The non-linear nature of the the ln(τ) versus 1/Tf
′′ plots shown in Figs. 5.5(a) and 

(b) for the higher and lower temperature transitions once again rules out the possibility of 

SPM blocking for frequency dispersion in Tf
′′(ω, T) in χ⊥𝑐

′′ (ω, T) plot also. The least-

squares fits for the two transitions using the Vogel-Fulcher law are shown using the 

continuous solid line in these figures. The best fit parameters for the two transitions are: 

TVF
′′   = (31.63 ± 0.06) K, τ0 =(9.8  1) x 10-5 s, Ea = (0.63 ± 0.01) meV with GoF = 0.989 

and TVF
′′  = (3.11 ± 0.02) K, τ0 = (1.3  0.1) x 10-4 s, Ea = (0.14 ± 0.002) meV with a GoF =  

   

 

Figure 5.5: The ln(τ) vs 1/Tf
′′ plots for the (a) higher and (b) lower temperature 

transitions obtained from the χ⊥𝑐
′′ (ω, T) data. The solid line is the least-squares fit for the 

Vogel-Fulcher law for the two transition with the best fit parameters given along with 

the figures. 
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0.998 for the higher and lower temperature transitions, respectively. 

 To verify the power-law fit, we followed the procedure discussed earlier for the 

analysis of χ′(ω, T) data. The variation of the variance (σ) as a function of TSG
′′ , where the 

double prime superscript has been used to indicate that these characteristic temperatures 

were obtained from the χ⊥𝑐
′′ (ω, T) plots,  shown in Figs. 5.6(a) and (b). These plots reveal 

minima at TSG
′′  = (33.5 ± 0.1) K and TSG

′′  (4.17 ± 0.01) K corresponding to the higher and 

lower temperature spin-glass transitions, respectively. The uncertainty of ± 0.1 K and ± 

0.01 K for the two critical spin-glass transition temperatures corresponds to the smallest 

interval at which we chose TSG values to determine the optimum one with lowest 

variance. For these two values of TSG
′′ , we obtained excellent least squares fit for the ln(τ) 

vs ln((Tf
′′ - TSG

′′ )/ TSG
′′ ) plots with the best fit parameters as τ0 = (5.7  0.3) x 10-5 s, z = 

(0.85  0.04) with GoF = 0.992  and τ0 = (1.94  0.07) x 10-4 s, z = (0.3  0.01) with a 

GoF = 0.995 for the higher and lower temperature transitions, respectively, as can be seen 

from Figs. 5.7(a) and (b). Thus both Vogel-Fulcher and power laws give excellent fits  

 

 
Figure 5.6: Optimization of TSG

′′
 for (a) the higher temperature and (b) the lower 

temperature transitions. The minimum in the two curves gives the optimised critical 

spin-glass transition temperatures which are indicated with an arrow in each figure. 
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Figure 5.7: The ln(τ) vs ln((Tf
′′ − TSG

′′ )/TSG
′′ ) plots for the power law type spin dynamics 

for the (a) higher and (b) lower temperature spin-glass transitions seen in 
⊥𝑐
′′ (, T) data. 

The best fit parameters are listed along with the figures. 

 

 

confirming the spin-glass character of the two transitions and ruling out SPM blocking 

process for the two transitions seen in Fig. 5.1(c). Thus, the critical slowing down of the 

spin dynamics can be established using either the χ′(ω, T) data or the χ′′(ω, T) data. 

5.3.2 Evidence for the Freezing of the Longitudinal Component of the Spins 

 Having presented evidence for two spin-glass transitions related to the freezing of 

the transverse component of the spins in the ab-plane, we now proceed to show that there 

are two spin-glass transitions resulting from the freezing of the longitudinal component of 

the spins along the c-axis also. The signature of these two transitions are seen in the ac 

susceptibility (, T) plots of BFO single crystals. Fig. 5.8 depicts a typical variation of 
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χ//𝑐
′  and χ//𝑐

′′  with temperature at 200 Hz with an ac drive field of 3 Oe applied parallel to 

c-axis of the crystal. This figure reveals a diffuse anomaly between ~ 125 K and ~ 250 K, 

highlighted through the dashed base line, in χ//𝑐
′ (T). The diffuse transition around 200 K 

is the subject matter of detailed study in chapter 7 using M(T) and χ(, T) data on both 

single-crystal and polycrystalline samples of BFO along with single-crystal neutron 

diffraction data. 

 On lowering the temperature below ~ 60 K, the  χ//𝑐
′  versus T plot in Fig. 5.8 

shows a broad peak in the temperature range 2 to ~ 50 K. A magnified view of this peak, 

shown as inset in Fig. 5.8, reveals that this diffuse peak consists of two peaks due to two 

transitions around 15 K and 25 K. The variation of the χ//𝑐
′  with temperature at various 

frequencies is shown in Fig. 5.9(a). It is evident from this figure that the temperature Tf
′ 

corresponding to the two peaks in χ//𝑐
′ (, T) plot shifts to the higher temperature side 

suggesting that these transitions may be due to the successive freezing of the longitudinal 

 

 

Figure 5.8: Temperature dependence of real χ//𝑐
′  and imaginary χ//𝑐

′′  part of ac 

susceptibility measured at frequency 200 Hz using ac field of 3 Oe applied along the c-

axis of the crystal.  Inset shows the variation of χ//𝑐
′  on the zoomed scale.  
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Figure 5.9: (a) Temperature dependence of the real χ//𝑐

′  part of ac susceptibility 

measured at various frequencies using an ac drive field of 3 Oe applied parallel to the c-

axis of the crystal.  All the curves in (a) are shifted by 0.012 emu/gOe x 10-2 along the y-

axis and solid continuous line through the data points is a guide to the eyes.  The ln(τ) 

versus 1/Tf
′ plot for the two anomalies are shown in (b) for ~ 25 K and (c) for ~ 15 K 

transitions observed in χ//𝑐
′ . The continuous solid line in (b) and (c) is least-squares fit 

for Vogel-Fulcher law. 

 

 

component of the spins parallel to the c-axis. We determine the spin relaxation time  

corresponding to each Tf
′() using the realationship  = 1 where  = 2f, as discussed 

already in the previous section.  

 In order to rule out the Arrhenius type spin dynamics expected for the SPM 

blocking process, we show in Figs. 5.9(b) and (c) the ln() versus 1/Tf
′ plots for the higher 

and lower temperature transitions, respectively. The non-linear nature of the ln() versus 

1/Tf
′ plots rules out the possibility of SPM blocking being responsible for the frequency 

dispersion in χ//c
′ (, T) and Tf

′() for the two transitions. On the other hand, least-
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squares fits using the Vogel-Fulcher law given by Equation (5.3) are excellent for both 

the plots, as shown in Figs. 5.9(b) and (c) using the continuous line. The corresponding 

fitting parameters are given in the same figures. The Vogel-Fulcher fit shows the 

divergence of the spin dynamics at TVF
′  ~ (22.54 ± 0.02) K and (13.15  0.02) K pointing 

towards the spin-glass character of these two transitions associated with the freezing of 

the longitudunal component of the spins.   

 We also verified critical slowing down of the spin dynamics using χ//c
′′ (, T) 

data for the power-law behaviour of  (Equation (5.4)). The optimum values for the TSG
′  

were obtained using  the procedure explained earlier for the transverse conponent. The 

corresponding variation of the variance with various chosen values of TSG
′  gives the 

lowest variance for TSG
′  = 24.78 K and TSG

′  = 14.93 K for the two transitions (see Fig. 

5.10). The excellent fit between ln(τ) versus ln((Tf
′ - TSG

′ )/ TSG
′ ) plots for both the 

transitions using the optimised values of TSG
′ , shown using continuous solid lines in Figs. 

5.11(a) and (b), confirms the divergence of relaxation time τ at the repective TSG
′  values. 

The parameters obtained after least-squares fit to the power-law are TSG
′  = (24.78 ± 0.02)  

 

 
Figure 5.10:  Optimization of TSG

′
 for (a) higher and (b) lower temperature transition seen 

in Fig. 5.9(a). 
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Figure 5.11:  The ln(τ) vs ln((Tf
′ −TSG

′ )/TSG
′ ) plots along with the least-squares fit for the 

power law type spin dynamics for the (a) higher and (b) lower temperature transitions 

seen in χ//c
′ (, T) plots in Fig. 5.9(a). The best fit parameters are listed in the two 

figures. 

 

 

K, zν = (0.64 ± 0.02), τ0 = (8.4  0.4) x 10-5 s with GoF = 0.998 and TSG
′  = (14.95 ± 0.05) 

K, zν = (0.63 ± 0.02), τ0 = (1.03  0.2) x 10-4 s with GoF = 0.995 for the higher and lower 

temperature spin-glass transitions, respectively. Thus our χ//𝑐
′ (, T) measurements 

reveals the occurance of two spin-glass transitions due to successive freezing of the 

longitudinal spin components with spin-glass transition temperatures of TSG
′  ~ 24.78 K 

and ~14.95 K. 



119 

 

5.3.3 Signatures of the Spin-Glass Transitions in the Single-Crystal Neutron 

Diffraction Studies 

 In this section, we shall present the results of a temperature dependent neutron 

diffraction study on single crystals of BFO in the temperature range 2 to 300 K with a 

view to capture the signatures of the four spin-glass transitions discussed in the previous 

section. Since the integrated intensity of the Bragg peaks is proportional to the square of 

the ordered magnetic moment, any disordering of the spin components along or 

perpendicular to the c-axis should lead to departure from the expected Brillouin function 

behaviour for the magnetic moment.  

 

                                                                μ = μ0BJ(x),                                         …….(5.7) 

 

where, x = 
3J

J+1

Tc

T

μ

μ0
, where J is the total angular momentum, μ and μ0 are the magnetic 

moments at finite temperature T and T= 0 K, respectively, and BJ is the Brillouin function 

given as:  

 

                                            BJ(x) = 
2J+1

2J
coth (

2J+1

2J
x) −

1

2J
 coth (

1

2J
x),             …….(5.8) 

 

 We carried out neutron diffraction measurement along the 00l and 10l reciprocal 

lattice rows of the BFO single crystals in the temperature range 2 to 300 K. To capture the 

signature of the transverse freezing of the spins, we selected one of the 00l reflections as 

it contains information about the component of the magnetic spins in the basal plane. The 

10l reflections, on the other hand, contain information about freezing of both the 

longitudinal and transverse spin components.   

 To study the variation of the integrated intensities of the 00l and 10l reflections as 

a function of temperature, we modelled the peak profile of these reflections using back-
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to-back two exponential functions, as the time-of-flight peak shapes can be described well 

using such a function [265]: 

                                       Peak shape       =   I
(AB) 

2(A+B)
[I1 + I2],                              …….(5.9) 

 

where                             I1 = exp (
A[AS2+2(x−X0)]

2
) erfc (

A[AS2+(x−X0)]

S√2
) 

and  

                                     I2 = exp (
B[BS2+2(x−X0)]

2
) erfc (

B[BS2+(x−X0)]

S√2
), 

where I is integrated intensity of the peak, A and B are constants for modelling the rising 

and the decaying parts of the neutron pulse, X0 is the peak position and S is the standard 

deviation of the Gaussian part of the peak shape function.  

 We fitted the above profile function to the observed neutron diffraction profiles 

of 006 and 101 reflections at various temperatures in the range 2 to 300 K and the fits are 

shown in Figs. 5.12, and 5.13, respectively, for a few selected temperatures. As evident 

from these figures, the fits are pretty good at all the temperatures. The temperature 

variations of the integrated intensity of the 006 and 101 reflections, obtained after the best 

fit to the peak profile using back-to-back two exponential functions, are shown in Figs. 

5.14 and 5.15 respectively.  

 The temperature variation of the integrated intensity of the 006 reflection (I006), 

shown in Fig. 5.14(a), reveals flat bottomed dips in the temperature range 5 to 15 K and 

45 to 60 K. This is shown more clearly in the magnified view given in Fig. 5.14(b). The 

highest temperature anomaly below 175 K is the subject matter of discussion in chapter 7 

and we focus here on the two lower temperature anomalies only. The two anomalous dips  
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Figure 5.12:  Peak profile of 006 Bragg reflection at (a) 1.5 K, (b) 10 K, (c) 50 K, (d) 

100 K, (e) 200 K and (f) 300 K: The continuous solid lines through the data points (filled 

circles) are the fits for the back-to-back two exponential functions. 

 

 

Figure 5.13:  Peak profile of 101 Bragg reflection at (a) 1.5 K, (b) 10 K, (c) 50 K, (d) 

100 K, (e) 200 K and (f) 300 K: The continuous solid lines through the data points (filled 

circles) are the fits for the back-to-back two exponential functions. 
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Figure 5.14: Temperature dependence of the integrated intensity of 006 Bragg reflection 

(a) on the full scale and (b) on the magnified scale, obtained from the neutron diffraction 

data collected on the single-crystal of BaFe12O19. Broken lines in (a) and (b) are guide to 

the eyes, while the continuous solid line (black coloured) in (a) is the fit for the square of 

Brillouin function behaviour of μ. 

 

 

in the temperature dependence of the I006 are in the vicinity of the two-transverse spin-

glass freezing temperatures whose frequency dependent Tf
′() lies nearly in the same 

range (see Figs. 5.2(a) and (c)). The fit corresponding to the square of the Brillouin 

function behaviour (shown using continuous line in Fig. 5.14(a)) shows deviation from  
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Figure 5.15: Temperature dependence of the integrated intensity of 101 Bragg reflection 

(a) on the full scale and (b) on the magnified scale, obtained from the neutron diffraction 

data collected on the single-crystal of BaFe12O19.  Broken lines in (a) and (b) are guide to 

the eyes, while the continuous solid line (black coloured) in (a) is the fit for the square of 

Brillouin function behaviour of μ. 

 

 

the theoretically expected behaviour below 200 K (see Fig. 5.14(a)). For the two lower 

temperature transitions in the basal plane, the observed intensities are significantly lower 

than that expected theoretically for the square of the Brilluoin function behaviour. 

Interestingly, after each dip, the intensity again increases and tries to approach the 

theoretically expected curve before decreasing again for the next transition. All these 
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imply that a part of the basal plane component of the spins is detached from the long-

range ordered phase and leads to the spin-glass transition as discussed in the 

literature [74,266] . It is this part of the basal plane spin component that is involved in the 

freezing associated with the two spin-glass transitions observed perpendicular to the c-

axis in Fig. 5.2 similar to that in Ref. [74] and  [266] for two different disordered systems. 

 The integrated intensity of the 101 (I101) reflection also shows deviation from the 

expected square of the Brilluoin function behaviour in the temperature range 5 K to 25 K, 

45 K to 55 K and 100 K to 175 K (see Fig. 5.15(a)). Our focus in this chapter is on the 

lower temperature dips, as the highest temperature dip is the subject matter of chapter 7. 

The anomalous behaviour of I101 shown more clearly in Fig. 5.15(b) in the vicinity of the 

transverse spin-glass freezing temperature is in agreement with the temperature variation 

006 reflection. The spin-glass freezing temperatures Tf() for the remaining three 

transitions are very close by. The freezing of the transverse component of the spins at the 

lowest temperatures occurs in the temperature range ~ 4 K to ~ 11 K, whereas the two 

longitudinal freezing occur in the temperature range ~ 15 K to ~ 31 K. The broad flat-

bottomed dip in the 5 to 25 K range contains the signature of all the three transitions. It is 

worth mentioning that the flat-bottomed dip in Fig. 5.14(b) for the 006 reflection extends 

from ~ 5 K to ~ 10 K only whereas the lower temperature dip in 101 reflection extends 

from ~ 5 K to ~ 25 K. The increase in the temperature range of that bottomed dip which 

comes in the range Tf() for the two transitions involving the longitudinal component of 

the spins.  

 The presence of the two dips in Figs. 5.14 and 5.15 demonstrates that only a part 

of the ordered magnetic moments along and perpendicular to the c-axis are involved in 

the spin-glass freezing while the remaining parts remain ordered suggesting coexistence 

of the spin-glass and the ferrimagnetic phases.  
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 We also attempted to capture the signatures of the four magnetic transitions of 

BFO below room temperature in the specific heat (CP) studies on BFO powder. The 

variation of CP with temperature shown in Fig. 5.16 in the 1.8 K to 300 K range does not 

as such reveal signature of any transition. However, the same data when plotted in 

different formats reveals clear signatures of all the four transitions. For example, the CP/T 

versus T2 plot shown in Fig. 5.17 on a semi-log scale reveals the appearance of a diffuse 

peak over the monotonically decreasing background (shown with red line in the figure) 

with an onset temperature of ~ 15 K which is close to the TSG of the lowest temperature 

longitudinal spin-glass transition (see inset (i) also). The signature of the next longitudinal 

spin-glass transition in this plot is not so clear except for the fact that the experimental 

values deviate from the trend of the CP/T versus T2 curve shown with blue line at ~ 25 K, 

as shown more clearly in inset (ii). The huge diffuse peak around 170 K is due to conical 

spin-glass phase discussed in chapter 7. This peak seems to overwhelm the signature of 

the first longitudinal spin-glass transition. The signature of the two-transverse spin-glass  

 

 

                                  Figure 5.16: Variation of CP with temperature (T). 
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                     Figure 5.17: Variation of CP/T with square of the temperature (T). 

 

 

transitions are revealed in the CP/T3 versus T plot shown in Fig. 5.18. The lowest 

temperature peak in this figure at ~ 2.7 K is due to the quantum electric dipole liquid state 

discussed later on in chapter 9. The second peak occurs around 5 K which is close to the 

lowest temperature transverse spin-glass transition temperature. The signature of the 

second transverse spin-glass transition is also seen in this figure as a hump around 50 K. 

Thus, the specific heat data also confirms all the four spin-glass transitions discussed in 

this chapter. The CP/T3 versus T plot is often used to locate the Boson peak at low 

temperatures (< 20 K) in liquids and glassy materials [267,268,277–285,269–276]. It 

represent excess specific heat due to non-Debye contributions from low energy localised 

excitations [269,271,282–285,273,275–281]. However, this explanation is not valid for 

the peaks seen at the four spin-glass transitions. We believe that the anomalies seen in 

various representations of specific heat plots around the spin-glass transitions 

temperatures may be due to the coupling of the spin, lattice [137,138,160] and charge  
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                         Figure 5.18: Variation of CP/T3 with temperature (T). 

 

 

degrees of freedom leading to new excitations like electromagnons [286]. Inelastic 

neutron and X-ray scattering measurements [271,287,296,297,288–295] along with 

Raman scattering studies [137,138,160] backed up by appropriate theoretical modelling is 

required to understand the genesis of the signature of spin-glass transitions in CP/T3 

versus T and CP/T versus T2 plots. 

5.3.4 The Outlook 

In the foregoing, we have presented evidence for two spin-glass transitions each 

associated with the freezing of the transverse and longitudinal components of the spins. 

Table 5.1 summarises the characteristic values for the TVF, 0 and activation energy Ea for 

the Vogel-Fulcher fits and TSG, z and 0 for the power-law fits for the four spin-glass 

transitions. Except for the lowest temperature spin-glass transition, all the values in this 

Table correspond to the fits obtained using frequency dependent peak temperatures Tf
′() 

in 
⊥𝑐
′ (, 𝑇). For the lowest temperature transition, we used the Tf

′′() corresponding to 

the peak in ′⊥𝑐
′ (, 𝑇) as it was not possible to locate the corresponding peak in 

⊥𝑐
′ (, 𝑇) 
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curve. Use of Tf
′′() gives lower values of TVF/TSG as compared to those obtained using 

Tf
′(), as demonstrated for the highest temperatures transition in the 

⊥𝑐
(, 𝑇).   

 It is interesting to note that both the Vogel-Fulcher and power-law fits give values 

of  0 of the order of 10-4 s. For the atomic spin glasses, this value is of the order of 10-12 

to10-13 s as it involves flipping of isolated spins [57–61,245–247,298,299]. The fact that 

0 for all the four spin-glass transitions in BFO are much larger suggests that the spin 

dynamics in these transitions involve spin clusters and not isolated spins. For cluster spin 

glasses, such large 0 value are commonly observed [75,300,309–312,301–308]. Presence 

of spin clusters in geometrically frustrated ordered compounds undergoing spin-glass 

transition has been reported using small angle neutron scattering [313] and diffuse 

neutron scattering studies [257,314]. As shown in chapter 8, BFO also exhibits 

geometrical frustration due to the emergence of kagome spin configurations as a function 

of temperature and we believe that the large 0 

 

Table 5.1: List of parameters obtained after least-square fit to the Vogel-Fulcher and 

power-law dynamics to spin relaxation time. 

Transitions 

in (, 𝑇) 

Fitting parameters for Vogel-

Fulcher law 

Fitting parameters for power-law 

TVF 

(K) 

0 (s) Ea 

(meV) 

GoF TSG 

(K) 

0 (s) 

 

zν GoF 

1 

3.11 ± 

0.02 

(1.3  0.1) 

x 

10-4 s 

(0.14 ± 

0.002) 

0.998 4.17 ± 

0.01 

(1.94  0.07) 

x 10-4 

0.30  

0.01 

0.995 

2 
13.15  

0.02 

(1.0  0.6) 

x 

10-4 

(0.42 ± 

0.007) 
0.998 

14.95 ± 

0.05 

(1.03  0.2) 

x 10-4 

0.63 ± 

0.02 
0.995 

3 
22.54 ± 

0.02 

(9.6  0.5) 

x 

10-5 

(0.54 ± 

0.04) 
0.998 

24.78 ± 

0.02 

(8.4  0.4) x 

10-5 

0.64 ± 

0.02 
0.998 

4 
45.46 ± 

003 

(1.8  0.1) 

x 

10-4 

(0.13 ± 

0.006) 
0.995 

46.035 ± 

0.005 

(8.2  0.8) x 

10-5 

0.50  

0.02 
0.990 
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is related to the presence of local spin clusters due to macroscopic degeneracy of the 

kagome spin configuration of BFO, similar to those observed in other ordered 

compounds. 

  Interestingly, the critical freezing temperature TVF and TSG as obtained from the 

Vogel-Fulcher and power-law fits are quite close to each other. In fact, they are more 

close to each other for the transverse components than for the longitudinal component. 

Further, the activation energy Ea for Vogel-Fulcher law are quite close to each other 

within (0.5  0.1) meV range, except for the lowest temperature transition for which Ea ≃ 

0.14 meV. We believe that the lowest temperature transition may be affected by quantum 

fluctuations also, as discussed in chapter 9 in relation to quantum electric dipole liquid 

and dipole glass transitions.  

 The calculated zν value for BFO is anomalously small. Conventionally the values 

of exponent zν lies between 4 and 12 for spin glasses [60]. However, several disordered 

oxides and alloy-based systems have been reported to exhibit low zν values in the range 2 

< zν < 4  [249,300,315–317], 1  zν < 2  [302,311,317–320] and zν < 1 (zν = 0.9, & 

0.55)  [321,322]. Currently, there is little theoretical understanding of such 

unconventional exponents even in disordered systems, except suggesting that the zν  4 

for 3D systems [323,324] and zν < 4 for 2D systems [323]. In the absence of any 

theoretical insights into these unconventionally low values of exponents, such spin 

glasses have been termed as unconventional spin glasses [321]. 

  The spin-glass transition has conventionally been linked with substitutional site-

disorder that is responsible for the frustration and the randomness of the 

interactions [57,60,61,325,326]. In this context, the observation of spin-glass transition in 

an ordered compound like BFO without any substitutional disorder appears intriguing. 

However, spin-glass transition has been reported in several geometrically frustrated 



130 

 

ordered compounds like pyrochlores (e.g., Tb2Mo2O7) [327–335], hydronium jarosites 

(e.g., (H3O)Fe3(SO4)2(OH)6) [336], spinels (e.g., MAl2O4 with M=Co, Fe, and 

Mn) [312,337–339] and hexagonal-DyMnO3 [249]. Recent theoretical studies on spin-

glass transition in geometrically frustrated ordered compounds suggest that the presence 

of an infinitesimal disorder due to anisotropic exchange interactions or magnetoelastic 

strains is sufficient to bring in randomness in the interactions and thereby stabilize the 

spin-glass state [332,340–347]. We shall return to this aspect in chapter 8 where we 

present evidence for the emergence of kagome spin configurations and magnetoelastic 

strains below room temperature in BFO. 

 The spin-glass phase reported in the geometrically frustrated compounds including 

BFO is different from those reported in CaBaFe4O7+ [348], GaFeO3 [349], Mn3In [350] 

and Na2Mn3(SO4)3(μ3-OH)2(μ2-OH2)2 [351] like compounds where there is inherent 

cation disorder due either to mixed-valence states or anti-site disorder or randomness in 

the partial occupancy of the Wyckoff position. For example, in CaBaFe4O7+δ, there is 

cation disorder due to the presence of Fe3+ and Fe2+ for δ < 1 [348]. Similarly, there is 

mixed occupancy at the octahedral site by Fe3+ and Ga3+ in GaFeO3 [349]. In Mn3In, there 

is mixed occupancy at both the octahedral and cubo-octahedral sites by Mn and In [350]. 

In Na2Mn3(SO4)3(μ3-OH)2(μ2-OH2)2, there is a disorder in the position of Mn ion as only 

3/2 sites in the asymmetric unit are occupied randomly by Mn ion [351]. In our case, no 

disorder was introduced by modifying the oxygen stoichiometry deliberately, as was done 

in the case of CaBaFe4O7+δ. Also, mixed occupancy by Ba2+ and Fe3+ is not possible due 

to the large difference in their ionic radii in the nearly close-packed structure of BFO. In 

view of these, the spin-glass transitions in BFO are of different origin than in the 

compound listed above.  
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 BFO is isostructural with SCGO where a kagome bi-layer configuration of the 

spins has been reported for the basal plane spins. We believe that the formation of 

kagome bi-layer configuration for the basal plane component of the spins in BFO (as 

confirmed in chapter 8) along with the anisotropy in the exchange interactions as well as 

variation in the exchange interactions due to nearest neighbour distances due to 

magnetoelastic strains is responsible for the stabilization of the spin-glass phase observed 

by us in BFO. This aspect will be discussed further in chapter 8. However, we would like 

to emphasise that the analogy with SCGO and other geometrically frustrated ordered 

compounds like Tb2Mo2O7 [334], MAl2O4 [337] and  (H3O)Fe3(SO4)2(OH)6 [336] is not 

exact in relation to BFO. Only one spin-glass transition emerges directly from the 

paramagnetic phase in all these geometrically frustrated ordered compounds whereas 

BFO exhibits multiple spin-glass transition resulting from successive freezing of 

transeverse and longitudinal spin components of the 3d5Fe3+ spins in the LRO 

ferrimagnetic phase of BFO, which continues to coexist with the spin-glass phase in BFO. 

In this respect, the discovery of successive spin-glass transitions in BFO aquires special 

significance. 

5.4 Conclusions 

 (1). We have discovered four successive spin-glass transitions in BFO whose spin 

dynamics diverges at TSG ⁓ 46 K, ~ 25 K, ~ 15 K and ~ 4 K. The spin dynamics which 

can be modelled by both Vogel-Fulcher and power-laws. This is the first experimental 

report of four spin-glass transitions in an ordered system emerging from a LRO magnetic 

phase unlike the other geometrically frustrated pyrochlores, spinels where only one spin-

glass resulting directly from the paramagnetic phase has been reported. 

(2). We have presented signatures of the observed spin-glass transitions using 

temperature-dependent single-crystal neutron diffraction studies. The anomalous 
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behaviour of the integrated intensity of 006 and 101 reflections in the vicinity of the TSG 

(~ 4 K, ~ 15 K, ~ 25 K and ~ 46 K) validates the presence of the spin-glass phases in 

coexistence with the long-range ordered ferrimagnetic phase. 

(3). The attempt spin relaxation time is rather large (~ 10-4 s) suggesting the involvement 

of spin clusters similar to those observed in other geometrically frustrated 

compounds [301,310,312]. The exponent zν is found to be less than 1 and corresponds to 

unconventional spin glasses reported in the literature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


