

CERTIFICATE

It is certified that the work contained in the thesis titled "DEVELOPMENT AND EVALUATION OF TARGETED NANOMEDICINE FOR LUNG CANCER THERAPY" by MATTE KASI VISWANADH has been carried out under my supervision and that this work has been not submitted elsewhere for a degree.

It is further certified that the student has fulfilled all the requirements of Course work, Comprehensive, Candidacy, SOTA and Pre-submission seminar.

Dr. M.S. Muthu Associate Professor Dept. of Pharm. Engg. & Tech Dr. M.S. Muthudian Institute of Technology Varanasi-221005 Department of Pharmaceutical Engineering & Technology Indian Institute of Technology (BHU), Varanasi

DECLARATION BY THE CANDIDATE

I, *Matte Kasi Viswanadh*, certify that the work embodied in this Ph.D. thesis is my own bonafide work and carried out by me under the supervision of *Dr. M.S. Muthu* from *July, 2016 to August, 2021* at the *Department of Pharmaceutical Engineering & Technology*, Indian Institute of Technology (B.H.U.), Varanasi. The matter embodied in this thesis has not been submitted for the award of any other degree/diploma.

I declare that I have faithfully acknowledged and given credits to the research workers wherever their works have been cited in my work in this thesis. I further declare that I have not willfully copied any other's work, paragraphs, text, data, results, etc., reported in journals, books, magazines, reports, dissertations, theses, etc., or available at websites and have not included them in this Ph.D. thesis and have not cited as my own work.

Date: 20/12/2021 Place: varanas?

M. Kasillijusuad

(Matte Kasi Viswanadh)

CERTIFICATE FROM THE SUPERVISOR

It is certified that the above statement made by the student is correct to the best of my/our knowledge.

(Dr. M.S. Muthu) Supervisor Dr. M. S. Muthu Associate Professor Dept. of Pharm. Engg. & Tech. Indian Institute of Technology (BHU, Varanasi-221005

S. Hemalatha 20/12/21

Head of the Department विभागाध्यक्ष / Head भैषजकीय अभियांत्रिकी एवं प्रौद्योगिकी विभाग / Department of Pharmaceutical Engineering & Technology भारतीय प्रौद्योगिकी संख्यान / INDIAN INSTITUTE OF TECHNOLOGY (बनारस हिन्दू विश्वविद्यालय) / (BANARAS HINDU UNIVERSITY) वाराणसी – २२१००५ / Varanasi-221005

Scanned with CamScanner

COPYRIGHT TRANSFER CERTIFICATE

Title of the Thesis: "DEVELOPMENT AND EVALUATION OF TARGETED NANOMEDICINE FOR LUNG CANCER THERAPY"

Name of the Student: Mr. MATTE KASI VISWANADH

Copyright Transfer

The undersigned hereby assigns to the Indian Institute of Technology (B.H.U.), Varanasi all rights under copyright that may exist in and for the above thesis submitted for the award of the "*Doctor of Philosophy*".

Date: 20/12/21

M · Kasilliswanadh (Matte Kasi Viswanadh)

Place: Varanasi

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for author's personal use provided that the source and the Institute's copyright notice are indicated.

Acknowledgement

First of all, I bow with reverence to thank the ALMIGHTY who has enriched me with such a golden opportunity and infused the power in my mind to fulfill the task assigned to me. Words are less to express my sincere heartfelt to Bharat Ratna Mahamana Pandit Madan Mohan Malaviya Ji, founder of the prestigious temple of knowledge and, Prof. Mahadev Lal Schroff, The Father of Indian Pharmaceutical Education, Who laid the foundation stone of our esteemed Department of Pharmaceutics.

A research supervisor is a person who always talks good about you despite all your tantrums. I learnt (and still learning) a great deal from my Guru, Dr. M.S. Muthu, how to nurture a thought from idea to a presentable work, how to present a work well, and how to make your student go through a night-out for even a rebuttal. His ability to manage students amidst his administrative work is something which puzzles me a lot. He allowed me to work independently on problems that interested me and showed full trust in my limited ability. I thank him with deep gratitude for his conscientious suggestions, creative ideas, scientific acumen, critical evaluation, boundless enthusiasm, perspicacious remarks and homely atmosphere in which he makes one work, are some of the supreme qualities that will be cherished as a quintessential example of the brilliant guidance.

I am indeed obliged and sincerely thankful to Prof. S. K. Shrivastava, Head, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU) for his affection and kindly allowing me to use the facilities required to complete my research work.

I remain thankful and obliged to my RPEC members Prof. B. Mishra, Dr. Jeyakumar Kandasamy for their encouragement, insightful comments and unconditional support leading me to the completion of the research work. I wish to express deep regards to all the distinguished and respected faculty members of the department Prof. S. K. Singh, Prof. Sanjay Singh, Prof. S. Hemalatha, Prof. K. Sairam, Dr. Senthil Raja A., Dr. A. N. Sahu, Dr. S. K. Mishra, Dr. Ruchi Chawla, Dr. Ashok k. Maurya, Dr. Prasanta. K. Nayak, Dr. G. P. Modi, Dr. Shreyans. K. Jain, Dr. Vinod Tiwari, Dr. Ashish. K. Agrawal, Dr. Rajnish, Dr. Deepak Kamar and Dr. Dinesh Kumar for their kind cooperation at all moments during the progress of my research. I express my gratitude to Dr. Sanjeev Kumar Mahto, School of Biomedical Engineering & Technology, IIT BHU, for kindly providing cell culture and fluorescence microscopy facilities. I remain thankful to Dr. Nand Kishore Prasad, Associate Professor and Mr. Asnit Gangwar, research scholar, Department of Metallurgical Engineering, IIT BHU for their unconditional support in cell culture experiments. I shall

fail in my duty if I do not convey my regards to all the non-teaching staff members of the department for their support and help during the research work.

I take this opportunity to sincerely acknowledge Ministry of Education, Government of India for providing financial support in the form of Research Fellowship that immensely helped me to manage my livelihood in Varanasi and achieve my research goals.

I am indeed thankful to my friendly lab mates Mr. Abhishesh Kumar Mehata, Mr. Datta Maroti Pawde, Mr. Roshan Sonkar, Mr. Narendra, Mr. Abhishek Jha, Ms. Ankita Sanjay Burande, Ms. Vishnu Priya, Mr. Vikas, Mr. Sheik Azad, Ms. Nishi Agrawal, Dr. Chandra Sekhar Singh, Ms. Nikita, Mr. Ankit Malik, Mr. Gokul who are like my extended family and ever ready to provide me with all possible help and they created a happy and fun-filled working environment and foster camaraderie within the laboratory. I am deeply indebted and remain always thankful to my dear friend Dr. Sandeep Kumar Reddy, who is the reason behind my decision to enter into this temple of education and be the moral support in all my good and bad times. I also extend my gratitude to my batchmates, Mr. Kaushik Neogi, Mr. Ramakrishna, Mr. Charan, Mr. Vishwanath Shukla, Mr. Jitendra, Mr. Yashpal, Mr. Ankit and Mr. Quadir Alam who always ready to extend help and from whom I comprehended many research related aspects. I remain thankful to all those, who have been directly or indirectly helped and related to my project work.

I take this opportunity to express my deepest gratitude to my parents for being a constant source of encouragement and always be the support in my growth and endeavors. Last but not least, I express my sincere thanks to my wife Kumari, who has been part of everything I have been doing and not doing.

No thanks to my kids, Karthika and Raghuveer who made me to learn that research is lot more easier than parenting. Their Innocence, love and pranks made me to leave my negative thoughts outside home to enjoy *now and here*.

Place

Date

(Matte Kasi Viswanadh)

CONTENTS

List of tables List of figures Abbreviations Preface

ChaptersPag	
1. Introduction	. 1-18
2. Literature Review	. 19-54
2.1.Treatment of lung cancer	19
2.1.1.Surgery	19
2.1.2. Radiation therapy	20
2.1.3. Photodynamic therapy	22
2.1.4. Chemotherapy	23
2.2. Docetaxel	23
2.2.1. Chemical structure	24
2.2.2. IUPAC Name	24
2.2.3. Solubility	24
2.2.4. Molecular weight	24
2.2.5. Pharmacokinetics	24
2.2.6. Mechanism of action	25
2.2.7. Safety	25
2.2.8. Recent studies	26
2.3. Targeted therapy of lung cancer	. 28
2.3.1. VEGFR inhibitors	28
2.3.1.1. Bevacizumab	29
2.3.1.2. Ramucirumab	29
2.3.2. EGFR inhibitors	31
2.3.2.1. Cetuximab	31
2.3.3. ALK inhibitors	34
2.3.4. Drugs that target cells with BRAF gene changes	34
2.4. Nanomedicine in the treatment of NSCLC	35
2.4.1. Advantages of nanomedicine	36
2.4.2. Polymers used in nanomedicine	37
2.4.3. Chitosan as a polymer material for nanoformulation	39
2.4.3.1. Chemical structure	39
2.4.3.2. Synonyms	39
2.4.3.3. Molecular formula and molecular weight	39
2.4.3.4. IUPAC name	39

	2.4.3.5. Applications in nanomedicine
2.5	. Methods of producing polymeric nanoparticles
	2.5.1. Solvent evaporation
	2.5.2. Dialysis method
	2.5.3. Coacervation/Precipitation
	2.5.4. Emulsion-droplet coalescence
	2.5.5. Reverse micellization
	2.5.6. Ionotropic gelation
2.6	. TPGS as surfactant/emulsifier in nanoformulation
	2.6.1. Chemical structure
	2.6.2. IUPAC name
	2.6.3. Synonyms
	2.6.4. Molecular formula and molecular weight
	2.6.5. Advantages
	2.6.6. Recent studies
27	Cancer cell lines for anticancer studies
2.8	Lung carcinogenesis using chemical carcinogens
2.0	
3. Bioa	dhesive chitosan nanoparticles for lung cancer therapy
3.1	. Objective.
	5
3.2	. Plan of study
3.3	. Material
3.4	. Methods
	3.4.1. Cause–effect relationship: Ishikawa fishbone
	3.4.2. Risk assessment: Plackett–Burman design
	3.4.3. Optimization of nanoformulation: 3 ³ factorial design
	3.4.4. Nanoparticle preparation
	3.4.5. NP characterization
	3.4.5.1. Solid-state characterization by X-ray diffraction (XRD)
	3.4.5.2. Surface chemistry by XPS
	3.4.5.3. Physicochemical characterization
	3.4.5.4. Scanning electron microscopy (SEM)
	3.4.5.5. Transmission electron microscopy (TEM)
	3.4.5.6. Atomic force microscopy (AFM)
	3.4.5.7. Estimation of entrapment efficiency
	3.4.5.8. The extent of CTX conjugation
	3.4.6. <i>In-vitro</i> studies
	3.4.6.1. Drug release studies
	3.4.6.2. Cellular bioadhesion study
	3 4 6 3 Cellular uptake study
	3 4 6 4 Time-dependent cellular uptake study
	3465 Cytotoxicity study in $\Delta 549$ cells
	3 4 6 6 Wound-healing assessment
	3 4 6 7 Cellular apontosis study
	$1 \rightarrow 11$ / $1 \rightarrow 111101$ (100000000000000000000000000000

3.4.7. Stability studies of prepared nanoformulations
3.4.7.1. Freeze-drying & reconstitution
3.4.7.2. Stability in plasma
3.4.7.3. Stability in serum
3.4.7.4. Effect of storage
3.4.8. In-vivo studies
3.4.8.1. Pharmacokinetic study in rats
3.4.8.2. Histopathology study in rats
3.4.8.3. Evaluation of anticancer efficacy of NP
3.4.9. Statistical analysis
5.Results & discussion
3.5.1. Risk identification & risk assessment screening
3.5.2. 3 ³ Factorial design
3.5.3. NP characterization
3.5.3.1. Solid-state characterization by XRD
3.5.3.2. Surface chemistry by XPS
3.5.3.3. Electron microscopy (SEM,TEM & AFM)
3.5.3.4. Bioadhesion study of NP
3.5.3.5. Drug entrapment efficiency
3.5.3.6. The extent of CTX conjugation
3.5.4. <i>In-vitro</i> studies
3.5.4.1. Drug release study
3.5.4.2. Qualitative cellular uptake study
3.5.4.3. Time-dependent cellular uptake study
3.5.4.4. Cytotoxicity study in A549 cells
3.5.4.5. Wound healing assessment
3.5.4.6. Cellular apoptosis assay
3.5.5. Stability studies
3.5.6. In-vivo studies
3.5.6.1. Pharmacokinetic study
3.5.6.2. Histopathology study in rats
3.5.6.3. Anticancer efficacy of nanoformulations
3.6. Conclusion
edox sensitive TPGS-SH nanoparticles for lung cancer therapy
4.1. Objective of the study
4.2. Plan of the study
+.3. Waterlal.
4.4. Methods.
4.4.1. Cause-effect relationship: Ishikawa fishbone
4.4.2. KISK assessment: Plackett–Burman design
4.4.5. Optimization of nanoformulation: 3° factorial design
4.4.4. Synthesis of thiolated IPGS (IPGS-SH)
4.4.5. Chemical characterization of TPGS-SH

4.4.6. Preparation of redox sensitive nanoparticles
4.4.7. Evaluation of physicochemical characteristics of NP
4.4.7.1. Particle size and polydispersity
4.4.7.2. Zeta potential measurement
4.4.7.3. Electron microscopy (SEM & TEM)
4.4.7.4. Surface texture by atomic force microscope (AFM)
4.4.7.5. Entrapment efficiency (EE)
4.4.7.6. Evaluation of CTX concentration
4.4.8. In-vitro studies
4.4.8.1. Drug release study
4.4.8.2. pH/redox sensitivity studies
4.4.8.3. Cellular uptake study
4.4.8.4. Cytotoxicity study
4.4.8.5. Apoptosis study
4.4.8.6. Wound-healing assay
449 Stability studies
4 4 10 In-vivo studies
44101 Pharmacokinetic studies of NP in rats
4 4 10 2 Histonathology studies
4 4 10 3 Evaluation of anticancer efficacy of NP
4 4 11 Statistical evaluation
4.5 Results and discussion
4.5.1 Risk identification & risk assessment screening
4.5.2.33 Factorial design
4 5 3 Characterization of TPGS-SH
4 5 3 1 Characterization of TPGS-SH by FTIR
4.5.3.2 Characterization of TPGS-SH by NMR
4 5 4 Physicochemical characterization
4541 DLS analysis
4542 SFM TFM and AFM studies
4543 Entranment efficiency
4.5.4.3. Entrupment efficiency
A 5.5 In-vitro studies
4.5.5.1 Drug release studies
4.5.5.2 nH/redox sensitivity of nanonarticles
4.5.5.2. ph/redux sensitivity of hanoparticles
4.5.5.4 Cytotoxicity study
4.5.5.5. Wound healing accessment
4.5.5.6 Apontosis assay
4.5.5.0. Apoptosis assay
4.5.0. Stability studies
4.5. /. In-vivo studies.
4.5.7.1. Pharmacokinetic evaluation
4.5.7.2. Histopathology studies.
4.5./.3. Anticancer efficacy of redox sensitive NP
4.0. Conclusion

5. Summary and conclusions	133
6. References	141
7. Publications	165
8. Curriculum Vitae	167

Líst of Tables

Table No.	Description	Page No.
3.1	Composition of docetaxel loaded chitosan NP with the levels of various factors and the results of observed mean values of various responses by Plackett–Burman design & list of the selected three factors and their levels for the 3^3 factorial design along with the responses	59
3.2	The 3^3 factorial design matrix and results of observed mean values of various responses & The predicted and the actual values of the selected responses considered for optimized formulation	62
3.3	Physicochemical and <i>in-vitro</i> release data of non-targeted and targeted NP	78
3.4	Comparison of various critical pharmacokinetic parameters of non- targeted and targeted NP with respect to Docel TM	86
4.1	Composition of docetaxel loaded redox sensitive NP with the levels of various factors and the results of observed mean values of various responses by Plackett–Burman design & list of the selected three factors and their levels for the 3^3 factorial design along with the responses.	96
4.2	The 3^3 factorial design matrix and results of observed mean values of various responses & the predicted and the actual values of the selected responses considered for optimized formulation	99
4.3	Formulation of different redox sensitive TPGS-SH NP	100
4.4	Physicochemical evaluation parameters of different redox sensitive NP	115
4.5	Pharmacokinetic parameters of non-targeted and targeted redox sensitive TPGS-SH NP	127

Líst of Fígures

Figure No.	Description	Page No.
1.1	Schematic representation of different nanomedicine approaches in lung cancer therapy	11
1.2	Schematic illustration of doxorubicin-loaded MSNs-DOX@PDA- TPGS	17
2.1	3D structure of cetuximab	32
3.1	Ishikawa fishbone diagram showing the cause-effect relationship between variables for the critical quality attributes of DTX loaded chitosan nanoparticles and risk analysis by failure mode and effects analysis (FMEA) method	58
3.2	Pareto charts showing the influence of significant factors on responses (particle size, zeta potential and percentage entrapment efficiency) of DTX loaded chitosan NP	60
3.3	The 3D response surface plots and the contour plots showing the effect of polymer concentration (PC), temperature (T) and crosslinker concentration (CC) on particle size $[A \& D]$, zeta potential $[B \& E]$ and % entrapment efficiency $[C \& F]$.	73
3.4	i) XRD overlay spectrum of pure DTX and non-targeted and CTX decorated targeted NP; ii) XPS spectra of non-targeted and CTX decorated targeted NP	75
3.5	SEM micrographs [A & B] and TEM micrographs [C & D] of non- targeted NP and targeted NP respectively; AFM 3D micrographs [E & F] of non-targeted NP and targeted NP and SEM micrographs [G & H] of A549 cells treated with PBS control and CTX decorated targeted NP revealing the excellent bioadhesive behavior of targeted NP on the cell surface	77
3.6	Comparative <i>in-vitro</i> drug release from non-targeted and targeted NP at pH 5.5 and pH 7.4	79
3.7	Fluorescence micrographs showing A) qualitative uptake of free CM6, CM6 loaded non-targeted and targeted NP by DAPI stained A549 cells; B) time-dependent uptake of free CM6, CM6 loaded non-targeted and targeted NP by A549 cells for the duration of 60 min	80
3.8	A) comparison of mean fluorescence intensity produced by A549 cells after uptake of free CM6, CM6 loaded non-targeted and targeted NP, B) Graph showing comparative percent cell viability against different equivalent concentrations of DTX for Docel TM , non-targeted and targeted NP	81

3.9	A) Light microscopic images of wound healing assessment of A549 cells treated with control (PBS), non-targeted and targeted NP; B) Fluorescent images of morphology assay of A549 cells treated with control (PBS), Docel TM , non-targeted and targeted NP	83
3.10	Graphs showing the effect of A) lyophilization, B) plasma incubation, C) serum incubation and D) storage on particle size, polydispersity, zeta potential of NP	85
3.11	Plasma level-time profile of Docel TM , non-targeted and targeted NP constructed from plasma samples analyzed by reverse-phase HPLC	86
3.12	Histological images after H&E staining of the sections of vital organs such as heart, lung, liver, and kidney of rats after treatment with control, Docel TM , non-targeted & targeted formulations	88
3.13	Colour deconvoluted images of the H&E stained histological sections of lung cancer tissues by ImageJ [®] after treatment with control, Docel TM , non-targeted & targeted formulations	89
3.14	A) Graph showing the comparative <i>in-vivo</i> tumor inhibition by $Docel^{TM}$, non-targeted and targeted formulations in comparison to saline control and Model control. (***p<0.0001, *p<0.05), B) Kaplan-Meier survival analysis of mice treated with negative control, model control, non-targeted, targeted NP and Docel TM .	90
4.1	Ishikawa fishbone diagram showing the cause-effect relationship between variables for the critical quality attributes of DTX loaded redox sensitive nanoparticles	95
4.2	Pareto charts showing the influence of factors on responses (particle size, zeta potential and percentage entrapment efficiency) of DTX loaded redox sensitive NP	97
4.3	Scheme for the preparation of targeted redox sensitive NP	102
4.4	The 3D response surface plots and the contour plots showing the effect of polymer concentration (PC), temperature (T) and crosslinker concentration (CC) on particle size [A & D], zeta potential [B & E] and % entrapment efficiency [C & F].	111
4.5	FTIR spectra of TPGS-COOH, 4-ATP and TPGH-SH	112
4.6	¹ H-NMR spectra of A) TPGS-COOH and B) TPGS-SH; ¹³ C-NMR spectra of C) TPGS-COOH and D) TPGS-SH	114
4.7	A) SEM micrographs, B) TEM micrographs, C) & D) 2D and 3D AFM images of non-targeted and targeted redox sensitive nanoparticles	116
4.8	<i>In-vitro</i> drug release study in media containing different GSH concentrations in A) pH 5.5 and B) pH 7.4 buffer	119
4.9	A) fluorescence microphotographs of A549 cells treated with plain CM6, CM6 loaded non-targeted and targeted redox sensitive TPGS-SH nanoparticles following counterstaining with DAPI; B) in-vitro cytotoxicity assay of Docel TM , non-targeted and targeted	120

redox sensitive TPGS-SH NP in A549 cell lines at different concentrations of DTX

- A) Brightfield microscopy images showing extent of migration of and B) fluorescent images of in-vitro morphology assay on A549 cells following treatment with saline control, DocelTM, non-targeted and targeted redox sensitive nanoparticles
- **4.11** *In-vitro* stability studies particle size, zeta potential and **124** polydispersity index before and after A) lyophilization; B) incubation with plasma; C) incubation with serum; D) effect of storage on the stability of targeted redox sensitive TPGS-SH nanoparticles
- **4.12** A) Plasma level-time profile after i.v. administration of the **126** formulations; B) H&E stained images from histopathological evaluation of vital organs such as heart, lung, liver and kidney after i.v. administration DocelTM, non-targeted and targeted redox sensitive TPGS-SH NP
- **4.13** Colour deconvoluted images of the H&E stained histological **128** sections of lung cancer tissues by ImageJ[®] after treatment with control, DocelTM, non-targeted & targeted redox sensitive TPGS-SH formulations
- 4.14 A) Graph showing the comparative *in-vivo* tumor inhibition by DocelTM, non-targeted and targeted redox sensitive TPGS-SH formulations in comparison to saline control and Model control. (**p<0.001, *p<0.05), B) Kaplan-Meier survival analysis of mice treated with negative control, model control non-targeted and targeted redox sensitive TPGS-SH formulations and DocelTM.

List of Abbreviations and Symbols

%	Percentage
4-ATP	4-aminothio phenol
°C	Temperature on the Celsius scale
AD	Adenocarcinoma
AFM	Atomic force microscopy
ANOVA	Analysis of variance
ATR	Attenuated total internal reflectance
AUC	Area under the curve
A549 cells	Human lung cancer cells
B(a)P	Benzo(a)pyrene
Cmax	Maximum plasma concentration
C6	Coumarin-6
CQA	Critical quality attributes
CPP	Critical process parameters
CS	Chitosan
СТХ	Cetuximab
DMEM	Dulbecco's modified eagle's medium
DLS	Dynamic light scattering
DMSO	Dimethyl sulfoxide
DNA	Deoxyribonucleic acid
DOE	Design of experiments
Docel TM	Marketed docetaxel preparation
EDC	1-ethyl-3-(3-dimethylaminopropyl)-N-carbodiimide hydrochloride
EE	Entrapment efficiency
EPR	Enhanced permeability and retention
FBS	Fetal bovine serum
FD	Factorial design
FDA	United States Food and Drug Administration
FTIR	Fourier transform infrared spectroscopy
GNP	Gold nanoparticle

h	Hour(s)
HPLC	High-performance liquid chromatography
i.p.	Intraperitoneal
<i>i.v.</i>	Intravenous
kDa	Kilodalton
MDR	Multi drug resistance
mV	Milli volts
NIR	Near infrared
NMR	Nuclear magnetic resonance
mAb	Monoclonal antibody
mg	Milligram
min	Minute
ml	Milliliter
MRT	Mean residence time
MTT	3-(4,5-dimethylthiazolyl-2-yl)-2, 5 diphenyl-tetrazolium-bromide
NaOH	Sodium hydroxide
Na-TPP	Sodium tri poly posphate
NHS	N-hydroxy-succinimide
nm	Nanometer
NP/NPs	Nanoparticles
NSCLC	Non-small cell lung cancer
NT	Non-targeted
PBD	Plackett–Burman design
PBS	Phosphate buffered saline
PEG	Polyethylene glycol
PDI	Polydispersity index
P-gp	P-glycoprotein
PS	Particle size
QbD	Quality by design
RES	Reticuloendothelial system
rpm	Revolutions per minute
S.D.	Standard deviation
SCLC	Small cell lung carcinoma

sec	Seconds
Tmax	Time to reach maximum plasma concentration
TEM	Transmission electron microscopy
TPGS	D-α-tocopheryl polyethylene glycol 1000 succinate
TPGS-COOH	Acid functionalized TPGS
μg	Microgram
μl	Microliter
μΜ	Micromole
XPS	X-ray photoelectron spectroscopy
XRD	X-ray diffraction spectroscopy
ZP	Zeta potential

Preface

The application of nanotechnology to medicine is the basis for the development of nanomedicine. It is a technology in which the drug-loaded nanomedicine of 1-1000 nm exhibit strong interaction between drugs and their targets. Recent advancements in nanotechnology have contributed to the development of nanomedicine systems that enabled specific delivery of several drugs and/or macromolecules including drugs, antibodies, protein, targeting ligands and imaging agents. Anti-cancer drugs usually suffer from low solubility, rapid *in-vivo* degradation, poor pharmacokinetics, undesirable biodistribution and poor permeability across biological barriers. During chemotherapy, large doses are recommended for treatment, which may induce adverse effects on normal cells and the surrounding healthy organs. Thus, the objective of this study was to design and develop targeted delivery systems with the aim of restricting high dose administration and reducing the dose-related adverse side effects and also the frequency of dosing.

Chitosan is a nontoxic, semicrystalline, biodegradable and biocompatible linear polysaccharide of randomly distributed N-acetyl glucosamine and glucosamine units. The amino as well as carboxyl groups of the chitosan molecule usually form a hydrogen bond by lipoprotein interaction with the cell membrane, bringing out an ideal adhesive effect. Docetaxel is a second-generation taxane derived from the needles of the European yew tree. Unlike paclitaxel, docetaxel exhibits linear pharmacokinetics and, due to differences in drug efflux, is retained intracellularly for a longer period. D- α - tocopherol glycol 1000 succinate (TPGS) is a surfactant used for pharmaceutical dosage form preparations. It is a water-soluble derivative of natural Vitamin E, which is formed by esterification of vitamin E succinate with PEG. The TPGS can be used as an absorption enhancer, emulsifier, solubilizer, additive, permeation enhancer and stabilizer. The novelty of this work thus lies in the development of low-dose, bioadhesive and EGFR targeted chitosan nanosystem and redox sensitive nanosystem of docetaxel for the advanced therapy of non-small cell lung cancer. The redox sensitive nanomedicine has high efficacy, specificity and sensitivity and facilitates in vivo imaging in lung cancer applications when loaded with an imaging material. The high levels (>20 mM) of glutathione (GSH, a cysteine-containing tri-peptide) in cancer cell microenvironment, compared to that of in blood circulation (2–20 μ M),

facilitates for quicker release of the anti-neoplastics from redox-responsive NP that are composed of redox-sensitive disulfide (S–S) bonds. These S–S bonds will be cleaved to trigger the drug delivery from NP in the vicinity of cancer cells.

The design, development, and optimization of nanoformulations were done by employing systematic design of experiments (DoE). DoE involves stepwise assessment of critical quality attributes, screening of factors, experimental design and optimization with minimal consumption of time and resources. PBD (Placket-Burman design) was employed to evaluate the effect of independent factors on the dependent responses and Pareto chart was employed to select the most important factors that highly influence the selected responses. The effect of independent variables on the responses was illustrated by 3D response surface methodology. A graphical and numerical optimization procedure was carried out to obtain the predicted value of various factors and responses. The final optimized batch of the nanoformulation was evaluated and validated.

Further, the prepared nanoformulations were subjected to detailed *in-vitro* evaluations for solid-state characterization, physicochemical characterization, stability studies, *in-vitro* drug release, stability, *in-vitro* cellular uptake, cytotoxicity, wound-healing and apoptosis studies in A549 cell lines. Also, *in-vivo* pharmacokinetic and histopathology studies in Wistar rats, *in-vivo* anticancer efficacy studies in Swiss albino mice were performed and the results are discussed in detail. These results indicate that the newly developed nanoparticulate systems could prove to be promising drug delivery systems for prolonging the drug release and achieving the drug concentration at the tumor site at desired rate and amount for longer duration resulting in improved therapeutic efficacy of the drug in the treatment of lung cancer.