DEDICATED TO THE PEOPLE SUFFERING FROM CHRONIC PAIN

DEDICATED TO THE PEOPLE SUFFERING FROM CHRONIC PAIN

CERTIFICATE

It is certified that the work contained in the thesis titled "Investigating Aurora Kinase Mediated Regulation of Kinesin Nanomotors as A Novel Therapeutic Target for The Treatment of Chronic Pain" by ANKIT UNIYAL has been carried out under my supervision and that this work has been not submitted elsewhere for a degree.

It is further certified that the student has fulfilled all the requirements of Course work, Comprehensive, Candidacy, SOTA and Pre-submission seminar.

Dr. Vinod Tiwari

Department of Pharmaceutical Engineering & Technology Indian Institute of Technology (BHU), Varanasi I, *Ankit Uniyal*, certify that the work embodied in this Ph.D. thesis is my own bonafide work and carried out by me under the supervision of *Dr. Vinod Tiwari* from *January, 2019 to February, 2022* at the *Department of Pharmaceutical Engineering* & *Technology*, Indian Institute of Technology (B.H.U.), Varanasi. The matter embodied in this thesis has not been submitted for the award of any other degree/diploma.

I declare that I have faithfully acknowledged and given credits to the research workers wherever their works have been cited in my work in this thesis. I further declare that I have not willfully copied any other's work, paragraphs, text, data, results, etc., reported in journals, books, magazines, reports, dissertations, thesis, etc., or available at websites and have not included them in this Ph.D. thesis and have not cited as my own work.

Date: Place:

(Ankit Uniyal)

CERTIFICATE FROM THE SUPERVISOR

It is certified that the above statement made by the student is correct to the best of my/our knowledge.

(Dr. Vinod Tiwari) Supervisor (Prof. S. Hemalatha) Head of the Department

COPYRIGHT TRANSFER CERTIFICATE

Title of the Thesis	:	"Investigating	Aurora	Kinase	Me	diat	ed
		Regulation of	Kinesin	Nanomot	tors	as	A
		Novel Therape	utic Targ	et for the	Trea	atme	ent
		of Chronic Pai	n"				

Name of the Student : Mr. Ankit Uniyal

Copyright Transfer

The undersigned hereby assigns to the Indian Institute of Technology (B.H.U.), Varanasi all rights under copyright that may exist in and for the above thesis submitted for the award of the "**Doctor of Philosophy**"

Date: Place: (Ankit Uniyal)

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for author's personal use provided that the source and the Institute's copyright notice are indicated.

ACKNOWLEDGEMENTS

My first and foremost heartfelt gratitude and indebtedness would be towards Bharat Ratna Mahamana Pandit Madan Mohan Malviya Ji, the founder of Banaras Hindu University, who sacrificed his entire life and efforts in establishing this artistic temple of knowledge and wisdom.

I would like to express my sincere gratitude to my supervisor Dr. Vinod Tiwari for the continuous support and supervision of my Ph.D. research work. I have benefited greatly from his wealth of knowledge, vast research experience and valuable suggestions during the course of my work. His insightful feedback pushed me to sharpen my thinking and brought my work to a higher level. I am extremely grateful that he took me on as his student and continued to have faith in me over the years. I do not have enough words to describe my gratitude towards him for teaching me how to not only be a better researcher and but also a better person.

I owe my sincere thanks to Prof. S. Hemalatha, Head, Department of Pharmaceutical Engineering & Technology, I.I.T. (B.H.U.), Varanasi, for providing the necessary infrastructure facilities during the course of the work. I would also like to thank our former Head of the Department Prof. Sushant Kumar Shrivastava, for providing infrastructure and instrumental facilities for my thesis work.

I would also like to express my sincere thanks to RPEC member's Dr. A. N. Sahu, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University) and Dr. Marshal, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), for their valuable inputs and criticism which incented me to widen my research from various perspectives.

I would like to thank all the faculty members of the department Prof. B. Mishra, Prof. S. K. Singh, Prof. Sanjay Singh, Dr. A. K. Srivastava, Prof. K. Sairam, Dr. Ashok Kumar, Dr. A. Senthil Raja, Dr. A. N Sahu, Dr. S. K. Mishra, Dr. Ruchi Chawla, Dr. M.S.Muthu, Dr. Prasanta Kumar Nayak, Dr. Gyan Prakash Modi, Dr. S. K. Jain, Dr. Ashish Agarwal, Dr. Deepak, Dr. Dinesh and Dr. Arun Khatri for their kind support during the progress of my research.

I greatly acknowledge the Central Instrumentation Lab, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U), and Interdisciplinary School of Life Sciences (ISLS), BHU, for providing the instrumental facility for the research work.

During the course of my PhD, I had the chance to interact with our international collaborator, Professors Srinivasa N Raja, Director of Pain Research at Johns Hopkins University School of Medicine, Baltimore, USA. I sincerely thank Prof. Raja for their valuable insights and suggestions which played a significant role in giving direction to my research. I also thank our collaborator Prof. Natalia Shestakova, Sechenov Institute of Evolutionary Physiology and Biochemistry Russian Academy of Sciences, Saint-Petersburg, Russia, for their support, suggestions and scientific views in my research work. I am very thankful to Prof. S.P. Singh, Professor in the Department of Biochemistry, BHU, and Dr. Rajnish, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U), for providing the research support and facilities that I needed to successfully complete my studies.

The efforts of the non-teaching staff Mr. Yashwant Singh, Mr. Atul, Mr. Anand, Mr. A.N. Upadhyay, Mr. Arun, Mr. Virendra, Mr. Jameel, and other non-teaching staff members of the department could never go unnoticed who continuously lent their support and technical assistance during the tenure of the research.

I am indeed thankful to my PhD colleagues and juniors Mr. Akhilesh Kotiyal, Ms. Anagha Gadepalli, Mr. Deepak Chouhan, Mr. Obulapathi Ummadisetty who provided stimulating discussions as well as happy distractions to rest my mind outside of my research. I would like to thank all my M. Pharm. and B. Tech IDD juniors Mr. Tapas, Mr. Somesh, Ms. Sneha, Mr. Narendra, Mr. Nagendra, Mr. Lavan, Mr. Akash, Mr. Ajay, Ms. Mousmi Rani, Ms. Shreya Khanna and Ms. Shreya Solanki for their pleasant company, co-operation, and maintaining a positive environment in the lab. I would be amiss if I did not mention Dr. Hareram Birla, Dr. Soumitra Singh Sen, Dr. Raghunath Singh, Ms. Aaina Singh Rathore, Ms. Priyanka Kumari Keshri, Ms. Hagera Dilnashin and Mr. Shekhar for their support and cooperation. The moral support and constant motivation which I have always received from my friends cannot be expressed in words and I feel blessed with such wonderful friends. Some of them who deserve special thanks are Mr. Sankata Tiwari, Mr. Ajay, Ms. Manisha, Mr. Nihar, Mr. Harsh, Mr. Mayank and Mr. Gaurav Chabra.

My family deserves endless gratitude for their unconditional, unequivocal, and loving support. My forever interested, encouraging and always enthusiastic my mother Mrs. Subodhani Uniyal, my father Mr. Ramesh Chandra Uniyal, my brother Mr. Bhushan Uniyal, my sister-in-law Mrs. Ankita Uniyal, my sister Mrs. Suman Joshi: they were always keen to know what I was doing and how I was proceeding. I would also like to thank my life partner Dr. Sonali for her unfailing support who was always by my side. She gave me the strength and kept me balanced throughout the course of my research.

I express my sincere thanks to the funding organizations without whose support this work would not have been possible: Indian Council of Medical Research (ICMR), Ministry of Human Resource Development (MHRD), Science & Engineering Research Board (SERB) and Indian Institute of Technology (B.H.U.).

Finally, I bow with reverence and gratitude to thank the Lord Shiva, Maa Shree Rajrajeshwari Devi and Kal Bhairav who has enriched me with such an excellent opportunity and infused the power in my mind to fulfill the work assigned to me.

Date:

Place: Varanasi

(Ankit Uniyal)

Title	Page No.
Certificate	iii
Declaration by the Candidate	iv
Copyright Transfer Certificate	v
Acknowledgements	vi
Contents	ix-xiv
LIST OF FIGURES	xv-xvii
LIST OF TABLES	xviii
LIST OF ABBREVIATIONS	xix-xx
PREFACE	xxi-xxv
CHAPTER 1: Introduction and Literature Review	1-41
1.1 Introduction	1
1.2 Normal v/s pathophysiological pain	2
1.3 Epidemiology of chronic pain	3
1.4 Pain ontology	4
1.5 Functional anatomy of pain	6
1.5.1 Primary afferents	6
1.5.2 Spinal cord	8
1.5.3 Ascending pain pathway	10
1.5.4 Brain	11
1.5.5 Descending pain pathway	12
1.6 Molecular mechanisms of pain	12
1.6.1 Neurobiology of chronic pain	14
1.6.2 Peripheral sensitization	15
1.6.3 Central sensitization	16
1.7 Neuropathic pain	18
1.8 Inflammatory pain	20
1.9 Pharmacotherapeutics for the treatment of chronic pain and their limitations	22

CONTENTS

1.9.1 Nonsteroidal anti-inflammatory drugs (NSAIDs)	23
1.9.2 Anticonvulsants	23
1.9.3 Antidepressants	24
1.9.4 Opioids	25
1.9.5 NMDA antagonists	26
1.9.6 Other pharmacological treatment	26
1.10 Kinesin superfamily proteins and their role in intracellular trafficking	26
1.11 Kinesin nanomotors mediated trafficking of NMDA-loaded cargo as a novel target in chronic pain	28
1.11.1 NMDA receptor system: A key player in the pathophysiology of chronic pain	29
1.11.2 NMDA mediated central sensitization across the ascending and descending pain pathways	30
1.11.3 NR2B assembly sub-unit of NMDA critically mediates chronic pain	33
1.11.4 KIF17 as a major mediator for the trafficking of NR2B subunit	35
1.12 Aurora kinase and its inhibitor tozasertib/VX680	39
CHAPTER 2: Rationale, Objectives and Plan of Work	42-46
2.1 Rationale	42
2.2 Objectives	43
2.3 Plan of work	44
2.3.1 Study I	44
2.3.2 Study II	45
2.2.3 Study III	46
CHAPTER 3: Materials & Methods	47-69
3.1 Drugs, chemicals and antibodies	47
3.2 Equipment and software	50
3.3 In-silico studies	51
3.3.1 Molecular dynamics simulation study	51
3.4 In-vivo studies	52

	3.4.1 Experimental animals		52
	3.4.2 Ethical committee appro	val	53
	3.4.3 Animal model of neurop	athic pain and experimental design	53
	3.4.4 Formalin induced acute	inflammatory pain model	55
	3.4.5 Complete Freund's adju pain in rats	want induced chronic inflammatory	55
	3.4.6 Animal pain behavior te	sts	56
	3.4.6.1 Tail flick test: A	nalgesic assay	56
	3.4.6.2 Tail clip test		56
	3.4.6.3 Pinprick test		57
	3.4.6.4 Hargreaves test:	Thermal hyperalgesia	57
	3.4.6.5 von-Frey hair Te	est: Static allodynia	57
	3.4.6.6 Cotton swab tes	t: Dynamic mechanical test	58
	3.4.6.7 Ice floor test		58
	3.4.6.8 Acetone evapora	ation test	59
	3.4.6.9 Conditioned pla pain assay	ce preference: Spontaneous ongoing	59
	3.4.7 Behavioral neurotoxicity	v assays	60
	3.4.7.1 Rota-rod test		60
	3.4.7.2 Open field test		61
	3.4.8 Tissue harvesting and sto	orage	61
	3.4.9 Biochemical assays		61
	3.4.9.1 Lipid peroxidati	on	61
	3.4.9.2 Nitrite estimation	n	62
	3.4.9.3 Glutathione esti	mation	62
	3.4.10 Molecular biology stud	ies	63
	3.4.10.1 Western blot and	alysis	63
	3.4.10.2 Reverse transc (rtPCR) analysis	ription polymerase chain reaction	65
3.5	5 Acute toxicity study in rats		66
	3.5.1 Animals		66

	3.5.2 Anim	al grouping and experimental design	67
	3.5.3 Body	weight and food water consumption	67
	3.5.4 Gross	observations and mortality	67
	3.5.5 Hema	tological index	68
	3.5.6 Blood	biochemical analysis	68
	3.5.7 Histor	pathological analysis	68
3.6	Statistical a	nalysis	69
Ner	ve Injury	Deciphering the Role of KIF17-NR2B Signaling in Mediated Evoked and Ongoing Pain and its Pan-Aurora Kinase Inhibition	70-105
4.1	Introductio	n	70
4.2	Experiment	al procedure	72
4.3	Results and	discussion	73
	4.3.1 In-sili	co studies	73
	4.3.2 Effect in rate	of tozasertib on nerve injury-induced pain-like behavior	79
	4.3.2.	1 Tozasertib treatment attenuates thermal hyperalgesia in nerve injured rats	79
	4.3.2.	2 Tozasertib treatment inhibits mechanical allodynia (static but not dynamic) and hyperalgesia in nerve- injured rats	82
	4.3.2.	3 Tozasertib attenuates cold allodynia and cold hyperalgesia in nerve injured rats	85
	4.3.3 Tozas rats	ertib did not altered the pain threshold of naïve uninjured	88
		ertib inhibits spontaneous ongoing pain behavior in -injured rats	90
		ertib does not affect locomotor or exploratory activity of injured rats	94
		ertib treatment attenuates inflammatory signaling in injured rats	96
		ertib interferes with KIF17 and NR2B expression in the cord and dorsal root ganglion of nerve-injured rats	99

	4.3.7.1	Tozasertib significantly reduced nerve injury induced-NR2B mRNA and protein expression in spinal and DRG tissue	99
	4.3.7.2	Tozasertib but not gabapentin suppressed the nerve injury-induced KIF17 expression	103
4.4	Outcomes		104
		odulation of KIF-17/NR2B Crosstalk by Tozasertib Pain Rat Model	106-127
5.1	Introduction		106
5.2	Experimenta	l design	108
5.3	Results and c	liscussion	109
		rtib attenuates only the second phase of formalin- l inflammatory pain	109
		of tozasertib on thermal, mechanical and cold pain ensitivities in CFA injected rats	111
	5.3.2.1	Pan aurora kinase inhibition decreases heat hyperalgesia in CFA injected rats	111
	5.3.2.2	Tozasertib attenuates cold-hyperalgesia in CFA injected rats	113
	5.3.2.3	Pan aurora kinase inhibition reduced CFA induced mechanical hyperalgesia in rats	114
	5.3.2.4	Tozasertib attenuates mechanical allodynia in CFA injected rats	116
	5.3.2.5	Tozasertib attenuates cold allodynia in chronic inflammatory pain rat model	117
		of tozasertib on CFA induced biochemical and lar alterations	118
	5.3.3.1	Tozasertib attenuates oxidative-nitrosative stress in the sciatic nerve of CFA-injected rats	118
	5.3.3.2	Tozasertib inhibits glial cell activation in dorsal root ganglion and spinal cord of CFA injected rats	121
	5.3.3.3	Tozasertib suppressed the KIF17/NR2B/mlin10 expression in dorsal root ganglion and spinal cord of CFA injected rats	123
5.4	Outcomes		127

CHAPTER 6: Acute Toxicity Study for Tozasertib in Rats	128-137
6.1 Introduction	128
6.2 Experimental design	129
6.3 Results and discussion	130
6.3.1 Tozasertib administration did not affect the on gross behavior in rats	130
6.3.2 Tozasertib did not altered body weight and food-water consumptions in rats	130
6.3.3 Hematology index	131
6.3.4 Tozasertib did not affected the blood biochemical profile of rats	132
6.3.5 Gross necroscopy	134
6.3.6 Tozasertib single dose administration has no effect on organ body weight of rats	134
6.3.7 Histopathology	135
6.4 Outcomes	137
CHAPTER 7: Summary & Conclusions	138-143
7.1 Summary	138
7.2 Conclusion	142
7.3 Limitations and outlook for future work	142
References	144-161
List of Publications	162-168

LIST OF FIGURES

		Page No.
Chapter I	Introduction and Literature review	
Fig. 1.1	Stimulus response function depicting normal v/s pathophysiological pain	3
Fig.1.2	Illustration representing the different categories of pain	5
Fig.1.3	Spinal organization of nociceptive central terminals	10
Fig.1.4	Neurobiology of pain processing	11
Fig.1.5	Peripheral sensitization under chronic pain	16
Fig.1.6	Molecular mechanism of central sensitization in chronic pain	17
Fig.1.7	Mechanism of kinesin mediated cargo transport	28
Fig.1.8	Role of NMDA receptor system in the neurobiology of chronic pain	31
Fig.1.9	Schematic representation of KIF17 and cargo (NR2B) binding	36
Fig.1.10	Kinesin mediated transport of NMDA receptor	37
Fig.1.11	2D chemical structure of tozasertib	40
Chapter III	Materials & Methods	
Fig. 3.1	CCI model being performed in our lab at IIT (BHU)	53
Fig. 3.2	Experimental timeline	54
Fig. 3.3	Redness and swelling in rat paw before and after CFA injection	56
Chapter IV	Deciphering the Role of KIF17-NR2B Signaling in Nerve Injury Mediated Evoked and Ongoing Pain and its Modulation by Pan-Aurora Kinase Inhibition in Rats	
Fig.4.1	A) The molecule of tozasertib bound in the binding site of human aurora kinase A according to X-ray data (structure code 3E5A) B) Comparative analysis of primary sequences of human and rat aurora kinase A	74
Fig.4.2	Protein-ligand RMSD for tozasertib and aurora kinase A	75
Fig.4.3	Protein-ligand contacts for tozasertib and aurora kinase	76

Fig.4.4	Root Mean Square Fluctuation for tozasertib and aurora kinase	77
Fig.4.5	Timeline representation of the interactions and contacts for tozasertib and aurora kinase A	78
Fig.4.6	A schematic of detailed ligand atom interactions with the protein residues	79
Fig.4.7	Effect of pan-aurora kinase inhibition on pain-like behavior in nerve-injured rats.	81
Fig.4.8	Effect of pan-aurora kinase inhibition on (A) Cotton swab test (D) Pinprick test (E) Acetone test (F) Cold hyperalgesia test	84
Fig.4.9	Effect of tozasertib on pain-like behavior in the contralateral paw of nerve injured rats	87
Fig.4.10	Effect of tozasertib on normal pain threshold of healthy naïve rats (A and B) tail flick test	89
Fig.4.11	Effect of tozasertib, a pan-Aurora kinase inhibitor, on spontaneous ongoing pain in nerve injured rats	91
Fig.4.12	Effect of tozasertib on spontaneous ongoing pain behavior in nerve injured rats	92
Fig.4.13	Effect of morphine on spontaneous ongoing pain behavior in nerve injured rats	93
Fig.4.14	Effect of gabapentin on spontaneous ongoing pain behavior in nerve injured rats	93
Fig.4.15	Effect of tozasertib on locomotor activity of nerve injured rats (A, B and C) using open field test	95
Fig.4.16	Effect of tozasertib on NFk β mRNA and protein expressions in dorsal root ganglion and spinal cord of nerve injured rats	97
Fig.4.17	Effect of pan-Aurora kinase inhibition on nerve injury- induced inflammatory signaling in dorsal root ganglion and spinal cord of rats	98
Fig.4.18	Effect of tozasertib on KIF17 and NR2B mRNA expressions in dorsal root ganglion (DRG) and spinal cord of nerve injured rats	100
Fig.4.19	Effect of tozasertib on KIF17 and NR2B mRNA expressions in contralateral dorsal root ganglion and spinal cord of nerve injured rats	102

Fig.4.20	Effect of pan-aurora kinase inhibition on protein expressions of KIF17 and NR2B in dorsal root ganglion and spinal cord of nerve injured rats	103
Chapter V	Modulation of KIF-17/NR2B Crosstalk by Tozasertil in Inflammatory Pain Rat Model	
Fig.5.1	Effect of tozasertib on formalin induced acute inflammatory pain	110
Fig.5.2	Effect of pan aurora kinase inhibition on CFA-induced thermal hyperalgesia in rats using Hargreaves apparatus	112
Fig.5.3	Effect of pan aurora kinase inhibition on CFA-induced cold hyperalgesia in rats	113
Fig.5.4	Effect of pan aurora kinase inhibition on CFA-induced mechanical hyperalgesia in rats	115
Fig.5.5	Effect of tozasertib on CFA induced mechanical allodynia in rats	116
Fig.5.6	Effect of tozasertib on CFA-induced oxido-nitrosative stress in sciatic nerve of rats	120
Fig.5.7	Effect of aurora kinase inhibitor on IBA1 and ICAM1 protein expressions in dorsal root ganglion and spinal cord of CFA injected rats	122
Fig.5.8	Effect of tozasertib treatment on KIF17 and NR2B expressions in DRG and spinal cord of CFA injected rats	125
Fig.5.9	Effect of pan-aurora kinase inhibition on mLIN10 mRNA expressions in dorsal root ganglion and spinal cord of CFA injected rats	126
Chapter VI	Acute Toxicity Study for Tozasertib in Rats	
Fig.6.1	Effect of tozasertib single dose administration on body weight and food consumption of rats	131
Fig.6.2	Effect of tozasertib on histopathological architecture of liver and kidney of rats	135
Chapter VII	CHAPTER 7: Summary & Conclusions	
Fig.7.1	Summary of the thesis work	141

LIST OF TABLES

		Page No.
Chapter II	Rationale, Objective & Work Plan	
Table 2.1	Animal grouping to investigate the effect of pan aurora kinase inhibition on evoked and ongoing pain behavior in nerve injured rats	44
Table 2.2	Animal grouping to investigate the effect of pan aurora kinase inhibition on normal pain threshold	45
Table 2.3	Animal grouping to investigate the effect of tozasertib on acute inflammatory pain rat model	45
Table 2.4	Animal grouping to study the effect of pan aurora kinase inhibition on chronic inflammatory pain model in rats	46
Table 2.5	Animal grouping to study the acute toxicity study of tozasertib in rats	46
Chapter III	Materials & Methods	
Table 3.1	List of drugs, chemicals and antibodies	47
Table 3.2	List of equipment & software	50
Table 3.3	Composition of RIPA buffer	63
Table 3.4	Loading buffer recipe	64
Table 3.5	Running buffer recipe	64
Table 3.6	Primers used in rtPCR analysis	66
Chapter VI	Acute Toxicity Study for Tozasertib in Rats	
Table 6.1	Effect of tozasertib on hematological profile of rats	132
Table 6.2	Effect of single dose administration of tozasertib on biochemical parameters of rats	133
Table 6.3	Effect of tozasertib single dose administration on body organ weight of rats	134

LIST OF ABBREVIATIONS

ACC	Anterior cingulate cortex
AMPA	α -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
ANOVA	Analysis of variance
ASIC	Acid sensing ion channels
ATP	Adenosine tri-phosphate
BDNF	Brain-derived neurotrophic factor
BSA	Bovine serum albumin
CaMKII	Calcium/calmodulin-dependent protein kinase II
cAMP	Cyclic adenosine monophosphate
CCI	Chronic constriction injury
CFA	Complete Freund's adjuvant
CGRP	Calcitonin gene-related peptide
CNS	Central nervous system
COX	Cyclooxygenase
CPCSEA	Committee for the Purpose of Control and Supervision of Experiments on Animals
СРР	Conditioned place preference
CREB	Camp response element-binding protein
DMSO	Dimethyl sulfoxide
DRG	Dorsal root ganglion
ECL	Enhanced chemiluminescence
EDTA	Ethylenediaminetetraacetic acid
EGTA	Ethylene glycol-bis(β -aminoethyl ether)-N,N,N',N'-tetraacetic acid
ERK	Extracellular signal-related kinase
GABA	Gamma-aminobutyric acid

GPCR	G protein coupled receptors
GSH	Reduced glutathione
IASP	International Association for the Study of Pain
ICAM1	Intercellular adhesion molecule 1
ICD	International Classification of Disease
KIFs	Kinesin superfamily proteins
LTP	Long-term potentiation
МАРК	Mitogen activated protein kinase
MDA	Malondialdehyde
NFKβ	Nuclear factor kappa β
NMDA	N-methyl-D-aspartate
NPT	Normal pressure and temperature
NS	Non-significant

PREFACE

International Association for the Study of Pain defines pain as "An unpleasant sensory and emotional experience associated with, or resembling that associated with, actual or potential tissue damage". Pain is a protective mechanism of our body that acts as an alarm against various tissue-damaging stimuli, thus it is regarded as the 6th sense which is essential for the survival and wellbeing of organisms. When pain becomes chronic it develops into a devastating medical condition imposing a huge burden on society and healthcare costs. Nociception is the neural process that encodes the noxious stimuli and manipulation in the nociceptive pathways can degrade the usefulness of pain as a protective phenomenon. Despite the progress made in unraveling the pathophysiology behind chronic pain the current therapeutics shows limited efficacy and elicits several side effects, ultimately leading to treatment withdrawal and poor quality of life. Opioids are the most frequently prescribed medication for chronic pain but carry several side effects including sedation, drug addiction, motor incoordination, respiratory depression, hypotension, sleep apnea, constipation, etc. Other treatment options including non-steroidal anti-inflammatory drugs, ion channel blockers, gammaaminobutyric acid analogs have raising contraindications with high reports of adverse effects along with drug-drug interaction. Thus, there is an unmet need for effective pharmacotherapeutics for the treatment of chronic pain without causing severe side effects.

Intracellular transport is essential for the cellular homeostasis and survival. Kinesins (KIFs) are the ATP dependent motor proteins that transport variety of receptors from cytosol to the synaptic membrane in an anterograde direction. Kinesin

xxi

generates mechanical force by utilizing ATP and cause displacement over the microtubule via hand-over-hand movement. On reaching the synaptic membrane the whole kinesin and cargo complex gets disassembled and the receptors are delivered to the cell surface making them functional. Any impairment in the expression and functioning of KIFs results in maladaptive neuronal circuits that cause improper propagation of neuronal signals. Recent literature has suggested the role of kinesin nanomotors in trafficking of various ion channels and thereby regulating the nociceptive response. KIF17 is a homodimeric kinesin motor protein that belongs to the osmotic avoidance abnormal protein-3 (OSM3)/KIF17 family, involved in trafficking of N-methyl D-aspartate receptor subtype 2B (NR2B) subunit of NMDA receptor system from cytosol to periphery. The NR2B subunit is essential for the localization of NMDARs into the synaptic membrane and plays crucial role in regulating synaptic plasticity and chronic pain pathophysiology. Central sensitization is a primary feature of chronic pain which develops due to the over-activity of NMDARs at the spinal and supra-spinal regions. Whereas in dorsal root ganglion (DRG) the NMDARs play critical role in development of peripheral hyperalgesia. Targeting NMDARs through direct pharmacological blockade affects the basal physiological role of this receptors system leading to severe side effects. Therefore, an indirect approach of targeting the NMDA receptor function by interfering with receptor maturation, synthesis, and transport to the synaptic membrane could be an attractive strategy for the treatment of neuropathic pain.

Many regulatory proteins govern the transit of receptors by activating kinesin, and aurora kinases are one of them. Aurora kinase is a serine-threonine class of enzymes belonging to the phosphotransferase group that maintains cellular processes including proliferation, mitosis, and several intracellular signaling. Tozasertib is a pan aurora kinase inhibitor with demonstrated efficacy against various type of cancers and promising potential against neurodegenerative, somatosensory, immune system and metabolism related disorders. In the present work, we have performed the *in-silico* molecular dynamics simulation to delineate the dynamic interaction of aurora kinase with its pharmacological inhibitor, tozasertib. Further, we investigated the effect of tozasertib, on nerve injury- and complete Freund's adjuvant-induced evoked and chronic ongoing pain and involvement of KIF17-NR2B crosstalk in the same.

The present thesis is divided into seven chapters and a brief description is given below:

Chapter 1 introduces pain as a protective mechanism and chronic pain as a devastating disorder with a wide literature survey. This chapter illustrates the motivation of work and the background of the study. Further, it includes definitions, terminologies, mechanisms, and limitations of currently available therapeutics for chronic pain. Moreover, the section presents the comprehensive literature on the interplay of kinesins in multifarious signaling involved in the neurobiology of chronic pain.

Chapter 2 of this thesis is dedicated to the rationale and objectives of the work. This chapter consists of the hypothesis of the study along with experimental design. It also includes the details of different objectives that were framed using a multidisciplinary state-of-the-art approach including *in-silico* and *in-vivo* tools.

Chapter 3 illustrates a detailed description of the material and methods used to carry out the present work. A complete overview of the different experimental techniques including the working principles and modifications performed is presented in this section. *In-silico* techniques, sample size, chronic pain models, surgical procedures,

tissues harvesting method, sample processing procedures, reagent preparation and composition, biochemical assays nd molecular biology techniques are discussed in a detailed manner along with the source of materials and reagents used in the experimental work.

Chapter 4 presents the experimental work and findings of the first study conducted to evaluate various aspects of the hypothesis. The sections started with the computational modeling of aurora kinase and tozasertib architectural interplay. Here, we investigated the effect of pan aurora kinase inhibition on nerve injury-induced neuropathic pain and KIF17-NR2B crosstalk in DRG and spinal cord in the same. This section consists of a behavioral battery for the assessment of tozasertib action on different stimulus-evoked pain hypersensitivities and CNS toxicity. The section also presents the comparison of tozasertib with gabapentin and morphine activity on spontaneous ongoing pain inhibition and the addictive potential profiling of these compounds. Next, the findings from molecular studies including rtPCR and western blotting, are discussed in detail to elucidate the mechanism of action of tozasertib.

Chapter 5 represents another part of the experimental work that has been carried out to study the effect of pan aurora kinase inhibitor on acute and chronic inflammatory pain models. The study revealed the effect of tozasertib in inflammatory pain and suggest the role of KIF17-NR2B interplay, microglial activity, and oxido-nitrosative signaling in modulation of the same.

Chapter 6 shows the experimental data for the acute toxicity study of tozasertib in rats using behavioral, necropsy, hematological, and histopathological approaches.

Chapter 7 summaries and the key findings of the experimental work of the thesis and includes the discussion on the results observed in the present work and describes the

xxiv

advantages of aurora kinase inhibition mediated kinesin regulation for the treatment of chronic pain. The section gives detailed insight on the novel mechanisms of tozasertib antinociceptive action against chronic pain. Finally, this chapter conclude the thesis work and illustrate the future scope of the research.