Table of Contents

Preface	xi
List of symbols	X
List of abbreviations	ix
List of schemes	viii
List of tables	vi-vii
List of figures	i-v

Chapters

Page No.

1. Introduction	1-14
1.1. Alzheimer's disease (AD)	1-2
1.2. Statistics of AD	2-3
1.3. Pathophysiology of AD	3-12
1.3.1. Role of acetyl and butyrylcholines in AD	3-5
1.3.2. Role of amyloid beta $(A\beta)$ and tau proteins in AD	5-7
1.3.3. Role of metals in AD	7-9
1.3.4. Role of oxidative stress in AD	9-11
1.3.5. Role of β -secretase in AD	11-12
1.4. Current drug targets for AD	12-14
1.4.1. Cholinesterases (ChEs)	12-13
1.4.1.N-methyl-D-aspartate (NMDA) receptor	14
2. Literature Review	15-50
2.1. Current therapies for AD	15-17
2.1.1. Cholinesterase inhibitors (ChEIs)	15-16
2.1.2. Noncompetitive NMDA antagonists	16-17
2.2. Antioxidant therapy for AD	17-18
2.3. Ferulic acid (FA) and AD	18-21
2.4. FA as a potential therapeutic agent for AD	21-24
2.4.1. Water-soluble ferulic acid (FA) derivatives	21
2.4.2. Dimeric derivative of FA	22
2.4.3. Development of FA ester as a memory enhancer	23-24
2.5. FA based hybrid molecules for AD	25-51
2.5.1. FA-Donepezil based hybrid molecules for AD	24-29
2.5.1.1. FA-alkylamine-benzylpiperidine hybrids (FAHs)	24-25
2.5.1.2. <i>N</i> -benzylpiperidine (NBP)-FA hybrid derivatives	25-26
2.5.1.3. FA-O-alkylamine derivatives	26
2.5.1.4. FA-N-alkyl benzyl piperidinediamide derivative	27
2.5.2. FA-tacrine based hybrid molecules for AD	30-34
2.5.2.1. FA-tacrine alkylenediamine hybrid molecules (TFAHs)	30
2.5.2.2. FA-tacrine-diamide side-chain derivatives	30
2.5.2.3. FA-ethylenediamine tacrine derivatives	31
2.5.2.4. FA-tacrine-melatonin hybrids (FATMHs)	32
2.5.2.5. FA-tacrine piperazine amine side chain hybrids	33
2.5.2.6. FA tacrine-nitric oxide donor trihybrid derivatives	33-34
2.5.3. FA-rivastigmine derivatives	37
2.5.4. FA-N-benzyl-piperidine and N, N-dibenzyl (N-methyl) amine derivatives.	37-38
2.5.5. FA and memantine derivatives	38-39
2.5.6. FA-isoquinoline hybrids	39-40

2.5.7. FA-O-carbamoyl ferulamide derivative	. 40-41
2.5.8. FA–carbazole hybrid derivatives	41-42
2.5.9. FA-tertiary amine side chain derivatives	42-43
2.5.10. FA-mamoquin hybrids	. 43
2.5.11. Isosorbide-2-benzylcarbamate-5-ferulate or lipoic acid ester derivatives.	47
2.5.12. FA and 1,3,4-oxadiazole derived hybrids	. 48
2.5.13. 7-O-Esters of taxifolin and FA derived hybrids	. 48-49
2.5.14. FA-quinolone hybrids	. 49
2.5.15. FA-berberine hybrid analogs	. 49-50
3. Objectives, Rational and Plan of Work	. 51-57
3.1. Objectives and Rationale	. 53-54
3.2. Plan of Work	. 56
3.2. Schemes for the synthesis of FA template based novel compounds	. 57-58
4. Results and Discussion	. 58-138
4.1. Chemistry involved in synthesizing the first series of compounds	58-59
4.2. Biological evaluation of the first series of compounds	. 59
4.2.1. <i>In-vitro</i> cholinesterases inhibition (AChE and BChE) studies	. 59-68
4.2.2. Evaluation of antioxidant property	. 69-70
4.2.3. <i>In-vitro</i> cholinesterases (AChE and BChE) inhibition kinetic studie	es with the
lead molecules	71
4.2.4. Measurement of propidium iodide displacement from the peripheral a	inionic site
(PAS) of AChE	
4.2.5. Evaluation of iron chelation property of the lead molecules	
4.2.6. Evaluation of $A\beta_{1-42}$ aggregation modulation activity of lead molecule	e 75-76
4.2.7. Molecular docking study with AChE and BChE	
4.2.8. Molecular dynamics (MD) simulation studies with AChE	· /ð-/9 00 01
4.2.9. Molecular dynamics (MD) simulation studies with BCHE	00-01 91 93
4.2.10. Calculation of physicochemical parameters	01-0J 83 84
4.2.11. Evaluation of cytotoxicity of lead molecule	03-04 death and
morphological alterations	84-87
A > 13 Intracellular ROS modulation studies with 7 ₉ (F 24)	. 0 4 -07 87-88
4.2.14 Protective affects of 7 ₂ (F24) against H ₂ O ₂ induced DNA fragmen	totion and
apontosis	88-80
4.2.15 Neuroprotection Studies against AB _{1.42} induced aggregation r	nodulation
$-1.2.15$. Real opticization Studies against Rp_{1-42} induced aggregation in property of 7a (F24)	90
4 2 16 <i>In-vitro</i> blood-brain barrier (BBB) permeation study	. 90 91
4.2.17. Evaluation of <i>in-vivo</i> efficacy of 7a in the AD model of Drosophila	92-93
4.2.18. Molecular docking and dynamics simulations studies of 7a (F24)	with AB_{1-42}
fibrils	.94-96
4.2.19. Evaluation of A β_{1-42} fibrils disintegration property of 7a (F24) using	molecular
dynamics simulations	96-99
4.2.20. Principal component analysis (PCA) of protofibril and protofibri	l-7a (F24)
complex	. 99-100
4.2.21. Acute toxicity studies on mice	. 101
4.2.22. Evaluation of <i>in-vivo</i> efficacy of 7a in scopolamine-induced AD mid	ce model
4.2.23. Ex-vivo neurochemicals estimation and antioxidant property evaluate	tion 103
4.2.24. Evaluation of <i>in-vivo</i> efficacy of 7a (F24) in scopolamine-induced	AD mice
model (Watermaze)	. 105-107
4.3.1. Chemistry involved in synthesizing the second series of compounds	108
4.3.2. Biology involved with the second series of compounds	. 108
4.3.2.1. Design of second series of novel naturally inspired FA analogs	108-110
4.3.2.2. Cholinesterases inhibition studies	110-116
4.3.2.3. Antioxidant activity (DPPH radical scavenging activity)	117-118

4.3.2.4. Kinetic studies of ChEs inhibition	. 118-119
4.3.2.5. Peripheral anionic site (PAS) binding study	119-120
4.3.2.6. Molecular modeling studies	120-131
4.3.2.6.1. Molecular docking	. 120-122
4.3.2.6.2. Interaction of ligands 13k and 23b with hAChE	122-125
4.3.2.6.3. Interaction of ligands 13k and 23b to hBChE	125-127
4.3.2.6.4. Analysis of binding free energy	127-129
4.3.2.6.5. Analysis of structural stability, compactness and solvent accessbil	ity surface
area	. 129-131
4.3.2.7. Calculation of physicochemical parameters	. 129-130
4.3.2.8. Metal chelation study	. 132-133
4.3.2.9. <i>In-vitro</i> evaluation of cytotoxicity of compound 23b	
4.3.2.10. Neuroprotective effect of 23b on H ₂ O ₂ induced SH-SY5Y cell inj	ury135
4.3.2.11. In-vitro blood-brain barrier permeation assay	
4.3.2.12. 23b ameliorates scopolamine-induced cognitive impairment in	the Morris
water maze test	. 137-139
5. Experimental Section	140-192
5.1. Materials and methods	140-169
5.2. Biological evaluation	. 169-192
6. Summary and Conclusions	193-198
References	. 199-215
Appendix	216-227
List of Publications	228-229
Curriculum Vitae	230-234

List of Figures

Figure No.	Description					
1.1	Diagrammatic representation of acetylcholine synthesis, metabolism, and its	4				
	mode of action.					
1.2	Mechanism of substrate cleavage through AChE.					
1.3	Fenton reaction by which H_2O_2 forms hydroxyl radical in iron rich environment.	8				
1.4	Schematic representation of role of iron in AD.	9				
1.5	Diagrammatic representation indicating the role of ROS and metals in AD	10				
	progression.					
1.6	Diagrammatic representation indicating the role of β -secretase in A β	11				
	aggregation.					
1.7	Schematic view of the active site of AChE.					
1.8	NMDA receptor complex as therapeutic target in AD.					
2.1	Chemical structures of the drugs for the treatment of AD.					
2.2	Chemical structures of the natural products known for the anti-AD effect.					
2.3	Structures of novel ferulate ester derivatives with improved water solubility and					
	potency in AD model.					
2.4	Chemical structures of ferulic acid (FA)-donepezil (DPZ) based hybrid	28				
	molecules.					
2.5	Chemical structures of FA -tacrine derived hybrid molecules.	34				
2.6	Chemical structures of FA -rivastigmine based hybrid molecules hybrid.	37				
2.7	Chemical structures of various developed potent hybrids based on ferulamide	40				
	derivatives of NBP, DMBA, tetrahydroisoquinoline and memantine.					
2.8	Chemical structures of potent FA based hybrid analogs derived using fragments	44				
	from memoquin, rivastigmine, carbazole, and tertiary amine side chain.					
2.9	Chemical structures of FA based miscellaneous hybrid analogs.	50				
3.1	Overview of the designed study.	54				
4.1	2D interaction diagram of (A) DPZ and (B) FA with various amino acids of the					
	AChE cavity.					
4.2	Overlay of docked donepezil and co-crystallized donepezil.	61				

4.3	Schematic pipeline toward the development of novel FA derivatives with				
	favorable properties.				
4.4	2D interaction diagram of (A) 4f with AChE (PDB #4EY7); (B) 4f with BChE				
	(PDB #4BDS); (C) 7a with AChE; and (D) 7a with BChE.				
4.5	Binding interactions (2D) of 7a (A) Pose I and (B) Pose II with various amino	66			
	acids of AChE active cavity (two different binding modes).				
4.6	Binding interactions (2D) of 10b with various amino acids of AChE active	68			
	cavity.				
4.7	Structural optimization and a brief summary of SAR with FA analogs.	68			
4.8	Percent radical scavenging activity of 4f , 4g , 4i , 4j , 7a , 7b , 10b and FA .				
4.9	Proposed mechanism for radical scavenging activity of 7a .				
4.10	Kinetics study on the mechanism of ChE inhibition by compound 7a .				
4.11	UV absorbance spectrum of compounds 7a and 4f alone and in the presence of				
	FeCl ₃ in water at various pH.				
4.12	Inhibition of self-induced A β_{1-42} aggregation in the presence of 7a , FA and DPZ.				
	(AFM images).				
4.13	(A) Docked pose of 7a and acetylcholine into the active site of AChE. (B)				
	Overlaid docked pose of 7a and DPZ into the active site of AChE.				
4.14	(A) Protein-ligand RMSD. (B) RMSF (C) 7a interactions with the key amino	79			
	acid residues. (D) Bar charts of protein interaction with ligand 7a as monitored				
	throughout the simulation.				
4.15	(A) Protein RMSD and ligand RMSD indicate the stability of the ligand 7a with	80			
	respect to BChE and its active pocket. (B) RMSF plot based on C α atoms of				
	BChE for the BChE– 7a complex.				
4.16	The simulation interactions diagram (SID) plot showing the protein-ligand	81			
	interactions between the amino acid residues of the BChE binding site and 7a.				
4.17	Binding interactions (2D) of 7a with various amino acids of BChE (PDB ID:	81			
	4BDS) active site.				
4.18	Effect of 7a on cell viability.				
4.19	Effect of 7a (F24) against H_2O_2 mediated cell death.	85			

4.20	Representative images of SH-SY5Y cells morphological alterations induced by					
	H_2O_2 and the effect of 7a (F24).					
4.21	Intracellular ROS modulation studies with 7a (F24).					
4.22	Detection of TUNEL-positive apoptotic strand breaks.					
4.23	Protective effect of 7a (F24) against A β induced cell death.	91				
4.24	The histogram represents the <i>in-vivo</i> effects of 7a (F24) on wild type and $A\beta_{42}$ expressing flies.	93				
4.25	(A) Interaction of 7a (F24) with $A\beta_{1-42}$ protofibrils. (B) Surface representation	94				
	7a (F24) docked into the pocket of $A\beta_{1-42}$ protofibrils. (C) 2D interaction					
	diagram of 7a (F24) with $A\beta_{1-42}$ protofibril.					
4.26	Binding free-energy (kJ/mol) contribution of critical individual residues of					
	different chains in binding 7a (F24) to $A\beta_{1-42}$ protofibril.					
4.27	(A) RMSD, (B) radius of gyration, (C) solvent accessibility surface area, and					
	(D) change in secondary structure content of protofibrils and protofibrils-7a					
	(F24) complex obtained from molecular dynamics simulation data.					
4.28	Root mean square fluctuation (RMSF) of each residue for $A\beta_{42}$ and $A\beta_{1-42}$ - F24					
	complex					
4.29	Projection of the motion of (A) $A\beta_{1-42}$, and (B) $A\beta_{1-42}$ -F24 complex in phase	100				
	space along the first two principal eigenvectors at 300 K.					
4.30	The eigenvalue rank along with proportion of variance (%) for (A) $A\beta_{1-42}$ and	100				
	(B) $A\beta_{1-42}$ - F24 complex.					
4.31	Histomorphological appearance of liver of mice.	101				
4.32	Scopolamine-induced memory deficit in mice.	103				
4.33	The <i>ex-vivo</i> AChE, BChE and antioxidant effect of DPZ, compound 7a (F24),	104				
	FA and scopolamine.					
4.34	Scopolamine-induced memory deficit mice model study.	106				
4.35	Design of the multifunctional ChEs inhibitors by integrating the structural	113				
	features of FA derivatives.					
4.36	ChEs inhibitory activities of selected compounds.	114				
4.37	Brief summary of structural activity relationship (SAR).	115				
4.38	DPPH scavenging activity by 13k, 23a, 23b, 23c and FA.	117				

4.39	Lineweaver-Burk double reciprocal plot showing the mechanism of <i>h</i> AChE and					
	eqBChE inhibition over a range of substrate concentrations					
4.40	2D interaction diagram of (A) 13k with AChE, (B) 23b with AChE, (C) 13k					
	with BChE, and (D) 23b with BChE.					
4.41	Interactions fraction histogram of (A) DPZ, (B) 13k , and (C) 23b with hAChE.	123				
4.42	Top panel shows the total number of specific contacts the $hAChE$ makes with	124				
	the (A) DPZ, (B) 13k, and (C) 23b over the course of the trajectory frame.					
4.43	Interactions fraction histogram of (A) Tacrine, (B) DPZ, (C) 13k, and (D) 23b	125				
	with <i>h</i> BChE.					
4.44	Top panel shows the total number of specific contacts the $hBChE$ makes with	126				
	the (A) Tacrine, (B) DPZ, (C) 13k, and (D) 23b over the course of the trajectory					
	frame.					
4.45	Binding free energy of (A) AChE with ligands 13k and 23b , and (B) BChE with					
	ligands 13k, and 23b					
4.46	Backbone RMSD plot for (A) apo-AChE in comparison with AChE-DPZ,					
	AChE-13k, and AChE-23b, (B) apo-BChE in comparison with BChE-DPZ,					
	BChE-Tacrine, BChE-13k, and BChE-23b.					
4.47	The radius of gyration plot for (A) apo-AChE in comparison with AChE-DPZ,	129				
	AChE-13k, and AChE-23b, and (B) apo-BChE in comparison with BChE-					
	DPZ, BChE-Tacrine, BChE-13k, and BChE-23b.					
4.48	Percentage decrease in SASA of active site residues (20 Å) away from the bound	129				
	ligand) of (A) AChE and (B) BChE.					
4.49	2D interaction diagram of (A) hAChE with DPZ (B) hBChE with DPZ and (C)	130				
	hBChE with Tacrine.					
4.50	UV absorbance spectra of $23b$ alone or in the presence of FeCl ₃ in methanol (pH	132				
	4.2 and 7.4).					
4.51	Effect of 23b on cell viability.	133				
4.52	Effect of 23b against H ₂ O ₂ mediated cell death.	134				
4.53	Schematic schedule of experimental design to study the anti-amnestic effect of					
	compound 23b .					

4.54	Escape latency time (in second) from Day 1 to Day 4.				
4.55	Scopolamine-induced memory deficit mice model study.				
A1-A3	¹ H-NMR, ¹³ C-NMR and HRMS spectra of (E) -N-(4-hydroxy-3-	216-			
	methoxyphenyl)-N-(2-((3-methoxyphenyl)amino)-20x0ethyl)acrylamide (4f).				
A4-A6	⁶ ¹ H-NMR, ¹³ C-NMR and HRMS spectra of (<i>E</i>)-N-(2-((1H-indol-5-yl) amino)-2-				
	oxoethyl)-3-(4-hydroxy-3-methoxyphenyl)acrylamide (7a).				
A7-A9	9 ¹ H-NMR, ¹³ C-NMR and HRMS spectra of (E) -1-(4-(3-fluorobenzyl) piperazin-				
	1-yl)-3-(4-hydroxy-3-methoxyphenyl)prop-2-en-1-one (13k.HCl).				
A10-	¹ H-NMR, ¹³ C-NMR and HRMS spectra of (<i>E</i>)-3-(4-hydroxy-3-				
A12	methoxyphenyl)-N-(2-((2-(5-methoxy-1H-indol-3-yl)ethyl)amino)-2- oxoethyl)acrylamide (23b).	227			

List of Tables

Table No.	Description	Page No.		
2.1	In-vitro biological data for evaluating the therapeutic potential of hybrid	29		
	analogs based on novel ferulic acid (FA)-donepezil (DPZ) and their mode			
	of action.			
2.2	In-vitro biological data for the evaluation of the therapeutic potential of			
	hybrid analogs based on novel FA-tacrine-based hybrid analogs and their			
	mode of action.			
2.3	In-vitro biological data for evaluating the therapeutic potential of hybrid	45-46		
	analogs based on FA and their mode of action.			
4.1	Cholinesterase inhibitory activities of the target compounds.			
4.2	Antioxidant activity (DPPH assay) of 4f, 4g, 4i, 4j, 7a, 10b, and FA.			
4.3	Displacement of propidium iodide from the peripheral anionic site of AChE			
	by 7a, FA and DPZ at the indicated concentrations.			
4.4	Theoretical prediction of physiochemical parameters of the developed			
	compounds.			
4.5	Permeability in the PAMPA-BBB assay for 7a , testosterone, imipramine,			
	corticosterone, hydrocortisone, and DPZ with their predictive BBB-			
	penetration.			
4.6	Binding free energy between $A\beta_{1-42}$ protofibrils and 7a (F24) in the last 10	96		
	ns MD simulation.			
4.7	Time-average and standard deviation of RMSD, Rg, and SASA value along	97		
	with the sum of Eigen values for A $\beta_{1\text{-}42}$ protofibril and A $\beta_{1\text{-}42}$ protofibril-7a			
	(F24) Complex.			
4.8	Average binding free energy along with its individual contributing terms for	99		
	chain C and D of protofibril in presence and absence of 7a (F24).			
4.9	Structures, ChEs inhibitory activities, cLogP, and tPSA of compounds 13a-	113-114		
	13p, 18a-18c and 23a-23c.			
4.10	Antioxidant activity (DPPH assay) of 13a, 13c, 13f, 13h, 13i, 13k-13l, 18a-	116		
	18c, 23a-23c and FA.			

4.11	Displacement of propidium iodide from the peripheral anionic site of AChE					
	by 13k, 23b, 23c, and DPZ at the indicated concentrations.					
4.12	Docking results (docking score, XP GScore, glide gscore, and glide emodel)					
	and interaction details between the $hAChE$ and different FA analogs.					
4.13	Docking results (docking score, XP GScore, glide gscore, and glide emodel)					
	and interaction details between the BChE and different FA analogs.					
4.14	The average ΔG_{bind} and its different contributing energy terms for 13k and					
	23b against hAChE and hBChE calculated from MD trajectories (last 25)					
	ns.					
4.15	Calculation of physicochemical parameters of the developed molecules.					
4.16	Permeability in the PAMPA-BBB assay for 13k, 23b, DPZ, testosterone,	135				
	corticosterone, and hydrocortisone with their predictive BBB penetration.					

List	of	Sch	emes
------	----	-----	------

Schemes	Description	Page No.
Scheme 1	Synthesis of FA-acetamide derivatives 4a-4q .	55
Scheme 2	Synthesis of FA-Indole or quinoline derivatives.	55
Scheme 3	Synthesis of FA tethered to <i>N</i> -phenyl-piperazine scaffolds 10a-10g .	56
Scheme 4	Synthesis of benzylpiperazine derivatives 13a-13p .	56
Scheme 5	Synthesis of FA-alanine-amide compounds 18a-18c.	57
Scheme 6	Synthesis of FA-tryptamine-glycine amide 23a-23c .	57