LIST OF FIGURES

Figure No.	Figure Caption	Page No
Figure 1.1:	Density of some light and heavy metals.	17
Figure 1.2:	Schematic illustration of ball-powder collision of powder mixture.	21
Figure 1.3:	Important variables affecting the final constitution of the milled powders.	22
Figure 1.4:	Refinement of crystallite or grain size as a function of milling time.	23
Figure 1.5:	Schematic diagram of ball mill used for high energy milling operations.	25
Figure 1.6:	Schematic drawing of a high-energy vibratory ball mill.	26
Figure 1.7:	Schematic cross-section of tumbler ball mill showing ball movement.	27
Figure 1.8:	Arrangement of rotating arms on a shaft in the attrition ball mill.	29
Figure 1.9:	Working principle of planetary ball mill.	30
Figure 1.10:	Composition of amorphous phase forming range achieved in the Ni-Nb system by different non-equilibrium processing routes.	35
Figure 1.11:	Phase transformations in Al-Cu-Mn system at various milling intensities in a planetary mill.	38
Figure 1.12:	Schematic representation of formation of metastable phase during ball milling.	39
Figure 1.13:	Breakup of dislocation pile ups: (a) microcrystalline regime and (b) nanocrystalline regime.	44
Figure 2.1:	Schematic of depicting the ball motion inside the two station	51

	high-energy ball mill.	
Figure 2.2:	Fritsch P-6 pulverisette planetary ball mill set up.	52
Figure 2.3:	Fourier optics.	54
Figure 2.4:	Schematic diagram of scanning electron microscopy.	58
Figure 2.5:	Schematic diagram of transmission electron microscopy.	60
Figure 2.6:	Schematic illustration of a DTA instrument.	62
Figure 2.7:	Schematic diagram of the Vickers indenter and an indentation	63
	diagonal length.	
Figure 2.8:	A schematic diagram of a nanoindenter that uses a load coil to	65
	impose the load and capacitive gages to measure the	
	displacement.	
Figure 2.9:	Typical load P as a function of depth h for indentation with a	65
	sharp indenter illustrating the depth of the residual hardness	
	impression h_f , the maximum indentation depth h_{max} , and the	
	unloading stiffness S.	
Figure 3.1:	XRD patterns of unreinforced EN AW6082 powder after 10,	67
	20, 30, 40 and 50 h of ball milling.	
Figure 3.2:	XRD patterns of EN AW6082/Garnet composite powder after	68
	10, 20, 30, 40 and 50 h of ball milling.	
Figure 3.3:	XRD patterns of Al/Garnet powder after 10, 20, 30, 40 and 50	69
	h of high energy ball milling.	
Figure 3.4:	Evolution of d_{111} peak intensity on powder XRD showing the	70
	broadening and reduction in intensity milled at different hours	
	for unreinforced EN AW6082.	
Figure 3.5:	Evolution of d ₁₁₁ peak intensity on powder XRD showing the	71
	broadening and reduction in intensity milled at different hours	
	for EN AW6082/Garnet.	
Figure 3.6:	Full width at half maximum intensity of diffraction planes as a	73
	function of milling time for unreinforced EN AW6082.	
Figure 3.7:	Full width at half maximum intensity of diffraction planes as a	74
	function of milling time for EN AW6082/Garnet.	

Figure 3.8:	Full width at half maximum intensity of diffraction planes as a	75
	function of milling time for Al/Garnet.	
Figure 3.9:	Variation in crystallite size and strain as a function of milling	76
	time for unreinforced EN AW6082.	
Figure 3.10:	Variation in crystallite size and strain as a function of milling	77
	time for EN AW6082/Garnet.	
Figure 3.11:	Variation in crystallite size and strain as a function of milling	77
	time for Al/Garnet.	
Figure 3.12:	Particle size distribution of milled powders after 50 h (a)	79
	unreinforced EN AW60882, (b) EN AW6082/Garnet and	
	Al/Garnet	
Figure 3.13	SEM micrographs of as-received powders (a) EN AW6082,	81
	(b) Pure Al and (c) Garnet.	
Figure 3.14	Morphology of milled powders for 50 h (a) unreinforced EN	83
	AW6082, (b) EN AW6082/Garnet, (c) Magnified view of EN	
	AW6082/Garnet and (d) its corresponding EDS, (e) Pure	
	Al/Garnet and (f) Magnified view of Pure Al/Garnet.	
Figure 3.15	Schematic diagram showing the formation of composite	84
	powder after high energy ball milling.	
Figure 3.16	(a) TEM micrographs of 50 h mechanically milled powder	85
	particles of EN AW8082 alloy. (b) Magnified view of 'a'.	
Figure 3.17	(a) TEM bright-field image of EN AW6082/Garnet MM for	86
	50 h and its corresponding SAD pattern and (b) Dark-field	
	image.	
Figure 3.18	(a) TEM bright-field image of Al/Garnet MM for 50 h and its	86
	corresponding SAD pattern and (b) Dark-field image.	
Figure 3.19	DTA curves of milled powders for 50 h of unreinforced EN	88
	AW6082, EN AW6082/Garnet and Al/Garnet.	
Figure 3.20	Powder hardness as a function of milling time for different	89
	systems	
Figure 3.21	Hardness of milled powders as a function of grain size (a)	93

	unreinforced EN AW6082, (b) EN AW6082/Garnet and (c)	
	Al/Garnet.	
Figure 3.22	Comparison of the model predictions via varying grain size	94
	with the experimental data for EN AW6082 and Al composite.	
Figure 3.23	Load versus penetration depth curves of unreinforced EN	96
	AW6082 and composite powders milled for 50 h.	
Figure 4.1:	XRD patterns of EN AW6082/MWCNT powders after	100
	various milling times.	
Figure 4.2:	XRD pattern of first peak from the diffracting plane (111) of	101
	composite.	
Figure 4.3:	Variation in grain size and lattice stain as a function of milling	103
	time.	
Figure 4.4:	Particle size distribution of 50 h ball milled EN	104
	AW6082/MWCNT composite powder.	
Figure 4.5:	(a) The morphology of as-received Al-alloy particle (b) as-	105
	received MWCNTs (c) The morphology of EN	
	AW6082/MWCNT composite powder after 50 h milling and	
	(d) Magnified view of 'c'.	
Figure 4.6:	TEM bright field micrographs of 50 h MM powder particles	107
	of EN AW6082/MWCNT composite and its corresponding	
	SAD pattern.	
Figure: 4.7:	(a) HRTEM micrograph of composite powders after 50 h of	108
	the ball milling time (b) Magnified view of 'a' and (c) the	
	corresponding SADP.	
Figure 4.8:	DTA scan of 50 h milled composite powder.	109
Figure 4.9:	Effect of hardness of unreinforced EN AW6082 and	111
	composite powders with increasing milling time.	
Figure 4.10:	Hall-Petch effect for unreinforced alloy and composite	114
	powders compared with experimental values for crystallite	
	size and hardness.	

Figure 4.11:	Load versus penetration depth curves of unreinforced EN	116
	AW6082 and composite powders as-milled for 50h.	
Figure 4.12:	Vickers micro and nano-indentation hardness of 50 h ball	117
	milled powders.	
Figure 4.13:	XRD patterns of as-received unreinforced EN AW6082 alloy	118
	and mechanically milled EN AW6082/Garnet and EN	
	AW6082/MWCNT composite powders.	
Figure 4.14:	TEM bright field image of 50 h MM powder particles of EN	120
	AW6082/Garnet composite and its corresponding SAD	
	pattern.	
Figure 4.15:	TEM bright field image of 50 h MM powder particles of EN	121
	AW6082/MWCNT composite and its corresponding SAD	
	pattern.	
Figure 4.16:	HRTEM images of EN AW6082/Garnet and EN	122
	AW6082/MWCNT composite powders at different	
	magnifications.	
Figure 4.17:	Microhardness of EN AW6082/Garnet and EN	124
	AW6082/MWCNT composite powders.	
Figure 4.18	Load vs. displacement curves for garnet and MWCNT as	125
	reinforcement.	
Figure 5.1:	Phase diagram of the Al-Fe system.	128
Figure 5.2:	XRD pattern of Al-25 at.%Fe as-cast alloy showing single θ -	130
	Al ₃ Fe intermetallic phase.	
Figure 5.3:	XRD patterns showing structural evolution of θ -Al ₃ Fe	131
	intermetallic phase during MM.	
Figure 5.4:	Structural evolution of Al-25 at.%Fe alloy powders during	132
	MM.	
Figure 5.5:	Variation of crystallite size and strain with milling duration	132
	for Al-25 at. %Fe showing a decrease in crystallite size and	
	an increase in strain with milling duration.	
Figure 5.6:	XRD patterns Al-35.4 at.%Fe as-cast alloy and after	133

	mechanically milled for 10, 20, 30 and 40 h showing	
	structural evolution with milling time.	
Figure 5.7:	Structural evolution of Al-34.5 at.%Fe alloy powders during	134
	MM.	
Figure 5.8:	SEM micrographs of final milled powders of (a) Al-25	136
	at.%Fe and (b) Al-34.5 at.%Fe alloy.	
Figure 5.9:	(a) TEM image of 50 h milled product of Al-25 at.%Fe alloy	137
	showing crystalline η -Al ₅ Fe ₂ and amorphous phase and its	
	corresponding SAD pattern and (b) a HRTEM image and the	
	corresponding FFT-SAD of Al-35.4 at.%Fe showing a	
	complete amorphous phase after 40 h of milling.	
Figure 5.10:	Gibbs free energy of the amorphous, solid solution and	145
	intermetallic phases of Al-Fe system as a function of	
	composition and grain size.	
Figure 5.11:	DTA traces of milled powders for (a) Al-25 at.%Fe and (b)	146
	Al-34.5 at.%Fe alloy.	
Figure 5.12:	Variation of microhardness as a function of milling time for	149
	Al-25 at.%Fe alloy showing the phase sequence and softening	
	behavior, (b) Variation of microhardness as a function of	
	square root of the grain size to test the Hall-Petch relationship	
	for Al-25 at.%Fe alloy.	
Figure 5.13:	Microhardness variation as a function of milling time for Al-	150
	34.5 at.%Fe alloy showing transition from hardening to	
	softening behavior.	
Figure 5.14:	Nanoindentation load-displacement curves for Al-25 at.%Fe	152
	and Al-345 at.%Fe alloy at varying milling time.	
Figure 6.1:	XRD pattern of as-cast of Al-30 at.% Fe alloy.	156
Figure 6.2:	XRD patterns showing structural evolution of Al ₅ Fe ₂	157
	intermetallic during MM.	
Figure 6.3:	Variation of crystallite size and lattice stain for Al ₅ Fe ₂	157
	intermetallic as a function of milling time.	

Figure 6.4:	Bright field image and dark field image of 50 h milled powder	158
	for Al-30 at.% Fe alloy.	
Figure 6.5:	Hall-Petch plot of hardness of Al ₅ Fe ₂ intermetallic against	160
	inverse square-root of grain size showing transition from	
	conventional Hall-Petch behavior to inverse Hall-Petch	
	behavior.	
Figure 6.6	Hardness vs grain size in IHP regime Observed values and	166
	calculated values obtained using equation 6.8.	