LIST OF FIGURES

Figure No.	Figure Caption	Page No.
Figure 1.1	Structural representation of coordination polymer.	1
Figure 1.2	Illustration of face to face π - π interactions.	7
Figure 1.3	Illustration of edge to face π - π interactions.	7
Figure 1.4	Illustration of metal-aromatic interaction.	8
Figure 1.5	Anionic organic linkers used in the synthesis of coordination	9
	polymers.	
Figure 1.6	Neutral organic linkers used in the synthesis of coordination	10
	polymers.	
Figure 1.7	Coordination frameworks with various dimensionalities; here	11
	M-metal ions, S-spacer and L-linker [Janiak, 2003].	
Figure 1.8	Possible shape of 1–D coordination framework.	11
Figure 1.9	1–D coordination polymer networks.	13
Figure 1.10	N-coordinated Ag(I); (a) [$\{Ag(4,4'-bipyridine)BF_4\}_n$] [Blake	16
	et al., 1999] (b) [{Ag ₂ (1,2-bis((2-	
	pyrimidinyl)sulphanylmethyl)–benzene) ₃ $(ClO_4)_2]_n$ [Hong et	
	al., 2000] and (c) [{Ag(1,3-bis(4-pyridyl)propane) ₂ }SbF ₆] _n	
	[Carlucci et al., 2002]	
Figure 1.11	Silver attached with five and six donor atoms in	17
	$[{Ag_2(HL)_2(H_2O)_3} \cdot H_2O]_n (H_2L=5-Sulphosalicylic acid).$	
Figure 1.12	The aurophilic interaction in the solid state structure of [Ph-	18
	$C \equiv C - Au - C \equiv N - t - Bu_2C_6H_2 - N \equiv C - Au - C \equiv C - Ph].$	
Figure 1.13	Schematic diagram of Mg ²⁺ molecular recognition by	20
	$[Au_3(Triphos) \{C \equiv CC_6H_4 - p - (OCH_2CH_2)_2OMe\}_3]$	
	coordination framework.	
Figure 1.14	Fluorescence Spectra of Mg ²⁺ absorption by	20
	$[Au_3(Triphos) \{C \equiv CC_6H_4 - p - (OCH_2CH_2)_2OMe\}_3].$	
Figure 1.15	Supramolecular structures with phosphane-alkynyl-Au(I)	20
	entities.	
Figure 1.16	Photoswitching modulation mechanism facilitated by Ag(I).	21

Figure 1.17	The channels, layers and pillers shown in 3–D structure of	23
	${[Cu_2(pzdc)_2(dpyg)] \cdot 8H_2O}_n$	
Figure 1.18	Diagrammatic illustration for the adjustment of CPs.	25
Figure 1.19	Summary of re-solvation and desolvation reaction in	25
	[Zn(bdc)].	
Figure 1.20	Anionic replacements of silver coordination framework by	26
	aq. solutions of NaClO ₄ , NaNO ₃ and LiCF ₃ SO _{3.}	
Figure 1.21	(a) 3–D structure of [Tb ₂ (O ₂ CPh) ₆ (4,4'–bipyridine)] _n ;	27
	Benzoate molecules and Tb ions of 1-D chains are linked	
	through bipyridine moiety, (b) 1–D chain in	
	[Tb(O ₂ CPh) ₃ (CH ₃ OH) ₂ (H ₂ O)] _n ; Tb ions are octa–coordinted	
	with methanol, benzoates and water molecules.	
Figure 1.22	Coordination network of [Mn{Cu(pyridine-2,4-	30
	dicarboxylate) $_4(H_2O)_4]_n$.	
Figure 1.23	Anthracenebisresorcinol (H ₄ L).	31
Figure 1.24	Catalytic activity of $\{[Zr_2(L)(O^tBu)_2]\}_n$ in Diels–Alder	32
	reaction.	
Figure 1.25	Structure of 1,1'–2,2'–binaphtol based ligand.	32
Figure 1.26	Catalytic activity of ${[Ti_2(\mu - O)_2(binol)]}_n$ in asymmetric	33
	carbonyl-ene reaction.	
Figure 1.27	SEM micrograph of [Gd ₂ (BDC) ₃ (H ₂ O)] nanorods designed	41
	with $w = 5$ (a) and $w = 10$ (b), [Gd(1,2,4–BTC)(H ₂ O) ₃] nano–	
	plates (c) [Rieter et al., 2006], [Mn(BDC)(H ₂ O)] nano-rods	
	(d), $[Mn_3(BTC)_2(H_2O)_6]$ (e), and TEM micrograph of	
	$[Mn_3(BTC)(H_2O)_6]$ nano-rods (f) [Taylor et al., 2008].	
Figure 1.28	SEM micrograph of MIL-100 (a), MIL-88A (b), PEGylated	42
	MIL-88A nanoparticle (c), [Horcajada et al., 2010]	
	nanoporous cube of MOF-5 (d) [Xin et al., 2010], RE-BTB	
	hollow microspheres (e) and TEM micrograph of RE-BTB	
	hollow spheres (f) [Zhong et al., 2011].	
Figure 1.29	TEM micrograph of samples with different concentrations of	42
	H_3BTC and dodecanoic acid in microwave radiation at 140 °C	
	for 10 min.	

Figure 1.30	SEM micrograph of $[Cu_3(BTC)_2]$ nanoparticles (a)	43
	[Li et al., 2010], Zn(BDC)(H ₂ O) nanoplates (b) [Li et al.,	
	2008], [Tb(BTC)(H ₂ O) ₆] nanowires (c) [Hu et al., 2012)],	
	$Zn_3(BTC)_2 \cdot 12H_2O$] nanoparticles (d), nanowires (e) and	
	straw-sheaf like (f) hierarchical architetures of	
	[Gd(BDC) _{1.5} (H ₂ O) ₂ [Jin et al., 2012].	
Figure 1.31	(a) The luminescence spectra of $Tb(BTC)(H_2O)_6$ in $Cu(NO_3)_2$	45
	aqueous solution at various concentrations (excition	
	wavelength 300 nm). (b) The emission spectra of	
	$Tb(BTC)(H_2O)_6$ aqueous suspension in the presence of	
	various acetone contents (excitation wavelength 300 nm).	
Figure 1.32	(a) Longitudinal and transverse relaxivity curves of	46
	$[Gd_2(BDC)_3(H_2O)]$ of ~ 40 nm diameter and ~100 nm length	
	(b) Longitudinal and transverse relaxivity curves of	
	$[Gd_2(BDC)_3(H_2O)]$ of ~ 40 nm diameter and ~100 nm length.	
Figure 1.33	Schematic representation of the post-synthetic modification	46
	of MIL-101(Fe) nano with a chemotherapeutic agents,	
	successive silica coating, and their intracellular release.	
Figure 1.34	Annual literature available in coordination and nano-	62
	coordination polymer based on SciFinder reports.	
Figure 2.1	Reaction scheme for synthesis of coordination Polymer	67
	DMTD–Au.	
Figure 2.2	FT-IR spectra of (a) DMTD-Au and (b) DMTD.	70
Figure 2.3	Raman spectra of (a) DMTD-Au and (b) DMTD.	70
Figure 2.4	XRD of (a) DMTD–Au, (b) DMTD and (c) Gold, taken from	71
	JCPDS file CAS number 7440–57–5.	
Figure 2.5	XPS spectra of DMTD-Au for Au(4f) (a), S(2p) (b), N(1s)	72
	(c) and C(1s) (d) regions.	
Figure 2.6	HRTEM image (left) and corresponding SAED pattern (right)	73
	of DMTD–Au.	
Figure 2.7	¹³ CNMR spectra of DMTD–Au in DMSO– d_6 at room	74
	temperature.	
Figure 2.8	Proposed structure of synthesized Coordination Polymer	74

DMTD-Au.

Figure 2.9	Gel permeation chromatogram of DMTD-Au.	76
Figure 2.10	UV-Vis spectrum of coordination polymer DMTD-Au.	76
Figure 2.11	TGA (a) and DTA (b) plot of DMTD-Au.	76
Figure 2.12	Thermal Activation Energy plot of DMTD-Au.	77
Figure 2.13	CV for 0.02 M Fe(II) / Fe(III) in 0.1 M PBS (pH 7) at	78
	unmodified carbon paste electrode (a) and (DMTD-Au)	
	modified carbon paste electrode (b).	
Figure 2.14	Differential Pulse Voltammetric response of unmodified	79
	carbon paste electrode (a), (DMTD-Au) modified carbon	
	paste (b) and DMTD-Au modified carbon paste + RS (c) in	
	phosphate buffer solution.	
Figure 2.15	Schematic representation of voltammetric sensing mechanism	80
	of resorcinol.	
Figure 2.16	Differential pulse voltammogram of RS at various	80
	concentrations (112.60 $\times 10^{-9}$ to 1.09 $\times 10^{-6}$ M) in 0.1 M	
	phosphate buffer (pH 7.0) at DMTD-Au modified carbon	
	paste electrode (a) and Corresponding standard addition	
	calibration plot of current vs. resorcinol concentration (b).	
Figure 3.1	FT-IR spectra of (a) DMTD and (b) DMTD-Ag.	90
Figure 3.2	Raman spectrum of DMTD-Ag.	90
Figure 3.3	UV–Vis absorption spectra of (a) DMTD and (b) DMTD–Ag.	92
	Inset shows the enlarge view from 270 nm to 420 nm.	
Figure 3.4	XRD of (a) DMTD–Ag (b) DMTD and (c) Ag(0) obtained	92
	from JCPDS file CAS number 89–3722.	
Figure 3.5	XPS spectra of the DMTD–Ag, (a) Ag(3d) (b) S(2p) (c) N(1s)	93
	and (d) C(1s) regions binding energy spectrum.	
Figure 3.6	(a), (b) FE–SEM, (c) TEM, (d) corresponding SAED pattern	94
	and EDX pattern for FE–SEM of DMTD–Ag.	
Figure 3.7	Ball-stick model structure of DMTD-Ag in syn orientation	95
	(a) and <i>anti</i> -orientation (b) generated by CS 3D Chembio	
	draw with simple structural energetic minimization. Here	

	blue, white, golden, pale grey, dark grey and pink ball	
	represent N, H, S, C, Ag atoms and lone pairs present in	
	DMTD–Ag.	
Figure 3.8	Proposed network of DMTD-Ag.	96
Figure 3.9	TGA and corresponding DTA plot of AMT-Ag.	97
Figure 3.10	Cyclic Voltammetry for 0.01 M Fe(II)/Fe(III) in 0.1 M PBS	98
	(pH 10) at unmodified CPE and DMTD–Ag/CPE scans vs.	
	Ag/AgCl at 50 mV s ⁻¹ .	
Figure 3.11	DPV of (a) unmodified CPE (b) DMTD–Ag/CPE and (c) DMTD–Ag/CPE + atropine sulphate in PBS pH 10.	98
Figure 3.12	(a) DPV response for successive addition of Atropine	100
	sulphate in PBS pH 10 (a-j) and (b) corresponding calibration	
	plot.	
Figure 3.13	A schematic illustration for Atropine oxidation at modified	101
	electrode. Here X is –OCH(OH)CH(CH ₂ OH)C ₆ H ₅ .	
Figure 3.14	(a) DPV response for successive addition of eye drop in PBS	102
	pH 10 (a–h) and (b) corresponding calibration plot.	
Figure 4.1	The synthesis of AMT–Ag.	110
Figure 4.1 Figure 4.2	The synthesis of AMT–Ag. Controlled experiments for the formation of AMT–Ag using	110 110
C		
C	Controlled experiments for the formation of AMT-Ag using	
Figure 4.2	Controlled experiments for the formation of AMT–Ag using TEMPO and BHT.	110
Figure 4.2	Controlled experiments for the formation of AMT–Ag using TEMPO and BHT.	110
Figure 4.2 Figure 4.3	Controlled experiments for the formation of AMT–Ag using TEMPO and BHT. A Plausible mechanism for AMT–Ag formation. FT–IR spectra of AMT (1) and AMT–Ag (2). XPS spectra of AMT–Ag for Ag(3d), S(2p), N(1s) and C(1s)	110 111
Figure 4.2 Figure 4.3 Figure 4.4 Figure 4.5	Controlled experiments for the formation of AMT–Ag using TEMPO and BHT. A Plausible mechanism for AMT–Ag formation. FT–IR spectra of AMT (1) and AMT–Ag (2). XPS spectra of AMT–Ag for Ag(3d), S(2p), N(1s) and C(1s) regions.	110 111 114
Figure 4.2 Figure 4.3 Figure 4.4	Controlled experiments for the formation of AMT–Ag using TEMPO and BHT. A Plausible mechanism for AMT–Ag formation. FT–IR spectra of AMT (1) and AMT–Ag (2). XPS spectra of AMT–Ag for Ag(3d), S(2p), N(1s) and C(1s)	110 111 114 114
Figure 4.2 Figure 4.3 Figure 4.4 Figure 4.5	Controlled experiments for the formation of AMT–Ag using TEMPO and BHT. A Plausible mechanism for AMT–Ag formation. FT–IR spectra of AMT (1) and AMT–Ag (2). XPS spectra of AMT–Ag for Ag(3d), S(2p), N(1s) and C(1s) regions. (a) XRD of AMT (1), AMT–Ag (2) and Ag(0), taken from	110 111 114 114
Figure 4.2 Figure 4.3 Figure 4.4 Figure 4.5	Controlled experiments for the formation of AMT–Ag using TEMPO and BHT. A Plausible mechanism for AMT–Ag formation. FT–IR spectra of AMT (1) and AMT–Ag (2). XPS spectra of AMT–Ag for Ag(3d), S(2p), N(1s) and C(1s) regions. (a) XRD of AMT (1), AMT–Ag (2) and Ag(0), taken from JCPDS file CAS number 89–3722 (3); and (b) Le–Bail fit of	110 111 114 114
Figure 4.2 Figure 4.3 Figure 4.4 Figure 4.5 Figure 4.6	Controlled experiments for the formation of AMT–Ag using TEMPO and BHT. A Plausible mechanism for AMT–Ag formation. FT–IR spectra of AMT (1) and AMT–Ag (2). XPS spectra of AMT–Ag for Ag(3d), S(2p), N(1s) and C(1s) regions. (a) XRD of AMT (1), AMT–Ag (2) and Ag(0), taken from JCPDS file CAS number 89–3722 (3); and (b) Le–Bail fit of AMT–Ag.	110 111 114 114 115
Figure 4.2 Figure 4.3 Figure 4.4 Figure 4.5 Figure 4.6 Figure 4.7	Controlled experiments for the formation of AMT–Ag using TEMPO and BHT. A Plausible mechanism for AMT–Ag formation. FT–IR spectra of AMT (1) and AMT–Ag (2). XPS spectra of AMT–Ag for Ag(3d), S(2p), N(1s) and C(1s) regions. (a) XRD of AMT (1), AMT–Ag (2) and Ag(0), taken from JCPDS file CAS number 89–3722 (3); and (b) Le–Bail fit of AMT–Ag. Field–Emission SEM micrograph of AMT–Ag.	 110 111 114 114 115 115
Figure 4.2 Figure 4.3 Figure 4.4 Figure 4.5 Figure 4.6 Figure 4.7 Figure 4.8	Controlled experiments for the formation of AMT–Ag using TEMPO and BHT. A Plausible mechanism for AMT–Ag formation. FT–IR spectra of AMT (1) and AMT–Ag (2). XPS spectra of AMT–Ag for Ag(3d), S(2p), N(1s) and C(1s) regions. (a) XRD of AMT (1), AMT–Ag (2) and Ag(0), taken from JCPDS file CAS number 89–3722 (3); and (b) Le–Bail fit of AMT–Ag. Field–Emission SEM micrograph of AMT–Ag. EDX of AMT–Ag provided by FE–SEM micrograph.	 110 111 114 114 115 115 116
Figure 4.2 Figure 4.3 Figure 4.4 Figure 4.5 Figure 4.6 Figure 4.7 Figure 4.8	Controlled experiments for the formation of AMT–Ag using TEMPO and BHT. A Plausible mechanism for AMT–Ag formation. FT–IR spectra of AMT (1) and AMT–Ag (2). XPS spectra of AMT–Ag for Ag(3d), S(2p), N(1s) and C(1s) regions. (a) XRD of AMT (1), AMT–Ag (2) and Ag(0), taken from JCPDS file CAS number 89–3722 (3); and (b) Le–Bail fit of AMT–Ag. Field–Emission SEM micrograph of AMT–Ag. EDX of AMT–Ag provided by FE–SEM micrograph. Ball–stick model structure of AMT–Ag in the <i>syn</i> (left) and	 110 111 114 114 115 115 116

	cyan, light grey, golden, dark grey (large size) and pink balls	
	represent N, H, C, S, Ag atoms and lone pairs.	
Figure 4.10	Proposed structural network of AMT-Ag.	117
Figure 4.11	UV–Vis of AMT (1) and AMT–Ag (2).	118
Figure 4.12	TGA (1) and corresponding DTA (2) plot of AMT–Ag.	119
Figure 4.13	Thermal Activation Energy plot of AMT-Ag.	119
Figure 4.14	CV of the electrodes in 0.01M Fe(III) in PBS pH 7	120
	unmodified CPE (1) and AMT–Ag/CPE (2) scans vs	
	Ag/AgCl at 50 mVs ⁻¹ .	
Figure 4.15	(a) CV of AMT–Ag/CPE in 18 μ M CFX at scan rates 10, 30,	122
	50, 70 and 100 mV. (b) Plots of the CFX anodic peak	
	potentials against $\log v$ and (c) anodic peak current against	
	$v^{1/2}$.	
Figure 4.16	(a) Differential pulse voltammetric (DPV) response by the	123
	serial addition of CFX to AMT-Ag/CPE in PBS pH 7, (b)	
	corresponding calibration plot. Inset shows the cyclic	
	voltammetric (CV) response by serial addition (scans vs	
	Ag/AgCl at 50 mVs ⁻¹).	
Figure 4.17	Proposed schematic illustration for the electro-oxidation of	124
	CFX at AMT–Ag/CPE.	
Figure 4.18	(a) DPV response by the serial addition of eye drop at AMT-	126
	Ag/CPE in PBS pH 7, (b) corresponding calibration plot.	
	Inset shows the CV response by successive additions (scans	
	vs Ag/AgCl at 50 mVs ⁻¹).	
Figure 4.19	(a) DPV response by the serial addition of CFX in biological	126
	fluid at AMT–Ag/CPE in PBS pH 7, (b) corresponding	
	calibration plot. Inset shows the CV response by successive	
	additions (scans vs Ag/AgCl at 50 mVs ⁻¹).	
Figure 4.20	The analytical superiority of the present work.	126
Figure 5.1	Scheme for DMTD-Au synthesis.	131
Figure 5.2	Scheme for DMTD–Ag synthesis.	132
Figure 5.3	Scheme for AMT–Ag synthesis.	133