LIST OF FIGURES

Fig 1.1(a):	Intel scaling trend trying to sustain the Moore's law to provide high performance, low power dissipation and low cost per transistors.	2
Fig 1.1(b):	Intel Technology Roadmap.	2
Fig 1.1(c):	Comparative Logic Area Scaling between Intel and other semiconductor industries.	2
Fig 1.2:	Schematic diagram of the bulk Si MOSFET.	2
Fig 1.3:	Cross-sectional view of an SOI MOSFET showing the internal parasitic fringe capacitance (M. J. Kumar, Gupta, and Venkataraman 2006).	10
Fig 1.4:	Schematic of an underlap DGMOS with two underlap and one overlap regions (Bansal and Poy 2007)	13
Fig 1.5:	Schematic of an tri-material stack gate SOI MOSFET (Chiang 2009).	15
Fig 1.6:	Non- classical MOSFET Tree.	19
Fig 1.7:	Some commonly used non-conventional planer MOSFET structures	19
Fig 1.8:	Some commonly used non-conventional non-planer MOSFET structures	20
Fig 1.9:	DG-MOSFET with RSD structure proposed by Holtij <i>et al.</i> (Holtij et al. 2012).	24
Fig 1.10:	Ultra Shallow Junction Elevated Source/Drain Double gate MOSFET (top) and Lateral doping profile in the source extension region for three values of lateral doping gradient (bottom) (Shenoy et al. 2003).	26
Fig 2.1(a):	Schematic view of underlap DG MOSFET.	36
Fig 2.1(b):	Lateral doping profile in the Source/Drain extension region for different values of straggle parameter.	36
Fig 2.2:	Central potential along channel length. Parameters used: $V_{GS} = 0.1 \text{ V}$, $L_G = 18 \text{ nm}$, $L_{ul} = 10 \text{ nm}$, $t_{si} = 7 \text{ nm}$, $t_{ox} = 1 \text{ nm}$.	46
Fig 2.3:	Central potential along channel length. Parameters used: $V_{DS} = 0.1V$, $L_G = 18 \text{ nm}$, $L_{ul} = 10 \text{ nm}$, $t_{ox} = 1 \text{ nm}$, $t_{si} = 7 \text{ nm}$.	46
Fig 2.4:	Central potential along channel length, Parameters used: $V_{GS} = 0.1V$, $L_{G} = 18$ nm, $L_{ul} = 10$ nm, $V_{GS} = 0.1V$, $t_{ox} = 1$ nm.	47

Fig 2.6:Threshold Voltage vs. Underlap Channel Length for different values of σ_L Parameters used: $t_{si} = 7 \text{ nm}$, $t_{ox} = 1 \text{ nm}$, $V_{DS} = 0.1 \text{ V}$, $L_G = 18 \text{ nm}$.Fig 2.7:Threshold Voltage vs. Lateral Straggle for different values of L_{ul} and V_{DS} .Parameters used: $t_{si} = 7 \text{ nm}$, $t_{ox} = 1 \text{ nm}$, $L_G = 18 \text{ nm}$.Fig 2.8:Threshold Voltage vs. Gate oxide thickness for different values of σ_L and L_G .Parameters used: $V_{DS} = 0.1 \text{ V}$, $L_u = 10 \text{ nm}$, $t_{si} = 7 \text{ nm}$.Fig 2.9:Threshold Voltage vs. Gate oxide thickness for different values of σ_L and L_d .Parameters used: $V_{DS} = 0.1 \text{ V}$, $L_G = 18 \text{ nm}$, $t_{si} = 7 \text{ nm}$.Fig 2.10:Threshold Voltage vs. Channel thickness for different values of σ_L and L_G .Parameters used: $V_{DS} = 0.1 \text{ V}$, $L_G = 18 \text{ nm}$, $t_{ox} = 1 \text{ nm}$.Fig 2.11:Threshold Voltage vs. Channel thickness for different values of σ_L and L_d .Parameters used: $V_{DS} = 0.1 \text{ V}$, $L_G = 18 \text{ nm}$, $t_{ox} = 1 \text{ nm}$.Fig 2.12:DIBL vs. Underlap Channel Length for different values of σ_L and L_{si} .Parameters used: $V_{DS} = 0.1 \text{ V}$, $L_G = 18 \text{ nm}$, $t_{ox} = 1 \text{ nm}$.Fig 2.13:Loss in Switching Speed by DIBL vs. Underlap Channel Length for different values of σ_L and t_{si} .Parameters used: $V_{DS} = 0.1 \text{ V}$, $L_G = 18 \text{ nm}$, $t_{ox} = 1 \text{ nm}$.Fig 3.1:Schematic view of underlap USJ DG MOSFET.Fig 3.3:Subthreshold Current vs. Gate to Source Voltage. Parameters used: $V_{DS} = 0.05 \text{ V}$, $L_G = 18 \text{ nm}$, $L_{ul} = 10 \text{ nm}$, $t_{si} = 7 \text{ nm}$.Fig 3.4:Subthreshold Current vs. Gate to Source Voltage. Parameters used: $V_{DS} = 0.05 \text{ V}$, $L_G = 18 \text{ nm}$, L_{u	Fig 2.5:	Central potential along channel length, Parameters used: $V_{DS} = 0.1 \text{ V}$, $t_{si} = 7 \text{ nm}$, $L_{ul} = 10 \text{ nm}$, $V_{GS} = 0.1 \text{ V}$, $t_{ox} = 1 \text{ nm}$.	47
Fig 2.7:Threshold Voltage vs. Lateral Straggle for different values of L_{ul} and V_{DS} . Parameters used: $t_{si} = 7 \text{ nm}$, $t_{ox} = 1 \text{ nm}$, $L_G = 18 \text{ nm}$.Fig 2.8:Threshold Voltage vs. Gate oxide thickness for different values of σ_L and L_G . Parameters used: $V_{DS} = 0.1 \text{ V}$, $L_{ul} = 10 \text{ nm}$, $t_{si} = 7 \text{ nm}$.Fig 2.9:Threshold Voltage vs. Gate oxide thickness for different values of σ_L and L_{ul} . Parameters used: $V_{DS} = 0.1 \text{ V}$, $L_G = 18 \text{ nm}$, $t_{si} = 7 \text{ nm}$.Fig 2.10:Threshold Voltage vs. Channel thickness for different values of σ_L and L_G . Parameters used: $V_{DS} = 0.1 \text{ V}$, $L_G = 18 \text{ nm}$, $t_{ox} = 1 \text{ nm}$.Fig 2.11:Threshold Voltage vs. Channel thickness for different values of σ_L and L_{ul} . Parameters used: $V_{DS} = 0.1 \text{ V}$, $L_G = 18 \text{ nm}$, $t_{ox} = 1 \text{ nm}$.Fig 2.12:DIBL vs. Underlap Channel Length for different values of σ_L and t_{si} . Parameters used: $V_{DS} = 0.1 \text{ V}$, $L_G = 18 \text{ nm}$, $t_{ox} = 1 \text{ nm}$.Fig 2.13:Loss in Switching Speed by DIBL vs. Underlap Channel Length for different values of σ_L and t_{si} . Parameters used: $V_{DS} = 0.1 \text{ V}$, $L_G = 18 \text{ nm}$, $t_{ox} = 1 \text{ nm}$.Fig 3.1:Schematic view of underlap USJ DG MOSFET.Fig 3.2:Subthreshold Current vs. Gate to Source Voltage. Parameters used: $V_{DS} = 0.05 \text{ V}$, $L_G = 18 \text{ nm}$, $t_{si} = 7 \text{ nm}$.Fig 3.3:Subthreshold Current vs. Gate to Source Voltage. Parameters used: $V_{DS} = 0.05 \text{ V}$, $L_G = 18 \text{ nm}$, $L_{ul} = 10 \text{ nm}$, $t_{si} = 7 \text{ nm}$.Fig 3.4:Subthreshold Current vs. Gate to Source Voltage. Parameters used: $V_{DS} = 0.05 \text{ V}$, $L_G = 18 \text{ nm}$, $L_{ul} = 10 \text{ nm}$, $t_{si} = 7 \text{ nm}$.	Fig 2.6:	Threshold Voltage vs. Underlap Channel Length for different values of σ_L Parameters used: $t_{si} = 7 \text{ nm}$, $t_{ox} = 1 \text{ nm}$, $V_{DS} = 0.1 \text{ V}$, $L_G = 18 \text{ nm}$.	50
Fig 2.8:Threshold Voltage vs. Gate oxide thickness for different values of σ_L and L_G . Parameters used: $V_{DS} = 0.1V$, $L_{ul} = 10 \text{ nm}$, $t_{si} = 7 \text{ nm}$.Fig 2.9:Threshold Voltage vs. Gate oxide thickness for different values of σ_L and L_{ul} . Parameters used: $V_{DS} = 0.1 \text{ V}$, $L_G = 18 \text{ nm}$, $t_{si} = 7 \text{ nm}$.Fig 2.10:Threshold Voltage vs. Channel thickness for different values of σ_L and L_G . Parameters used: $V_{DS} = 0.1 \text{ V}$, $L_u = 10 \text{ nm}$, $t_{ox} = 1 \text{ nm}$.Fig 2.11:Threshold Voltage vs. Channel thickness for different values of σ_L and L_u . Parameters used: $V_{DS} = 0.1 \text{ V}$, $L_G = 18 \text{ nm}$, $t_{ox} = 1 \text{ nm}$.Fig 2.12:DIBL vs. Underlap Channel Length for different values of σ_L and t_{si} Parameters used: $V_{DS} = 0.1 \text{ V}$, $L_G = 18 \text{ nm}$, $t_{ox} = 1 \text{ nm}$.Fig 2.13:Loss in Switching Speed by DIBL vs. Underlap Channel Length for different values of σ_L and t_{si} .Parameters 	Fig 2.7:	Threshold Voltage vs. Lateral Straggle for different values of L_{ul} and V_{DS} .Parameters used: $t_{si} = 7 \text{ nm}$, $t_{ox} = 1 \text{ nm}$, $L_G = 18 \text{ nm}$.	50
Fig 2.9:Threshold Voltage vs. Gate oxide thickness for different values of σ_L and L_{ul} . Parameters used: $V_{DS} = 0.1 \text{ V}$, $L_G = 18 \text{ nm}$, $t_{si} = 7 \text{ nm}$.Fig 2.10:Threshold Voltage vs. Channel thickness for different values of σ_L and L_G . Parameters used: $V_{DS} = 0.1 \text{ V}$, $L_{ul} = 10 \text{ nm}$, $t_{ox} = 1 \text{ nm}$.Fig 2.11:Threshold Voltage vs. Channel thickness for different values of σ_L and L_{ul} . Parameters used: $V_{DS} = 0.1 \text{ V}$, $L_G = 18 \text{ nm}$, $t_{ox} = 1 \text{ nm}$.Fig 2.12:DIBL vs. Underlap Channel Length for different values of σ_L and t_{si} Parameters used: $V_{DS} = 0.1 \text{ V}$, $L_G = 18 \text{ nm}$, $t_{ox} = 1 \text{ nm}$.Fig 2.13:Loss in Switching Speed by DIBL vs. Underlap Channel Length for different values of σ_L and t_{si} . Parameters used: $V_{DS} = 0.1 \text{ V}$, $L_G = 18 \text{ nm}$, $t_{ox} = 1 \text{ nm}$.Fig 3.1:Schematic view of underlap USJ DG MOSFET.Fig 3.2:Subthreshold Current vs. Gate to Source Voltage. Parameters used: $V_{DS} = 0.05 \text{ V}$, $L_G = 18 \text{ nm}$, $t_{ul} = 10 \text{ nm}$, $t_{si} = 7 \text{ nm}$.Fig 3.4:Subthreshold Current vs. Gate to Source Voltage. Parameters used: $V_{DS} = 0.05 \text{ V}$, $L_G = 18 \text{ nm}$, $L_{ul} = 10 \text{ nm}$, $t_{si} = 7 \text{ nm}$.	Fig 2.8:	Threshold Voltage vs. Gate oxide thickness for different values of σ_L and L_G . Parameters used: $V_{DS} = 0.1 V$, $L_{ul} = 10 \text{ nm}$, $t_{si} = 7 \text{ nm}$.	51
Fig 2.10:Threshold Voltage vs. Channel thickness for different values of σ_L and L_G . Parameters used: $V_{DS} = 0.1 V$, $L_{ul} = 10 \text{ nm}$, $t_{ox} = 1 \text{ nm}$.Fig 2.11:Threshold Voltage vs. Channel thickness for different values of σ_L and L_{ul} . Parameters used: $V_{DS} = 0.1 V$, $L_G = 18 \text{ nm}$, $t_{ox} = 1 \text{ nm}$.Fig 2.12:DIBL vs. Underlap Channel Length for different values of σ_L and t_{si} Parameters used: $V_{DS} = 0.1 V$, $L_G = 18 \text{ nm}$, $t_{ox} = 1 \text{ nm}$.Fig 2.13:Loss in Switching Speed by DIBL vs. Underlap Channel Length for different values of σ_L and t_{si} . Parameters used: $V_{DS} = 0.1 V$, $L_G = 18 \text{ nm}$, $t_{ox} = 1 \text{ nm}$.Fig 3.1:Schematic view of underlap USJ DG MOSFET.Fig 3.2:Subthreshold Current vs. Gate to Source Voltage. Parameters used: $V_{DS} = 0.05 V$, $L_d = 10 \text{ nm}$, $t_{si} = 7 \text{ nm}$, $t_{si} = 7 \text{ nm}$.Fig 3.4:Subthreshold Current vs. Gate to Source Voltage. Parameters used: $V_{DS} = 0.05 V$, $L_G = 18 \text{ nm}$, $L_{ul} = 10 \text{ nm}$, $t_{si} = 7 \text{ nm}$.	Fig 2.9:	Threshold Voltage vs. Gate oxide thickness for different values of σ_L and L_{ul} . Parameters used: $V_{DS} = 0.1 \text{ V}$, $L_G = 18 \text{ nm}$, $t_{si} = 7 \text{ nm}$.	51
Fig 2.11:Threshold Voltage vs. Channel thickness for different values of σ_L and L_{ul} . Parameters used: $V_{DS} = 0.1V$, $L_G = 18 \mathrm{nm}$, $t_{ox} = 1 \mathrm{nm}$.Fig 2.12:DIBL vs. Underlap Channel Length for different values of σ_L and t_{si} Parameters used: $V_{DS} = 0.1V$, $L_G = 18 \mathrm{nm}$, $t_{ox} = 1 \mathrm{nm}$.Fig 2.13:Loss in Switching Speed by DIBL vs. Underlap Channel Length for different values of σ_L and t_{si} . Parameters used: $V_{DS} = 0.1V$, $L_G = 18 \mathrm{nm}$, $t_{ox} = 1 \mathrm{nm}$.Fig 3.1:Schematic view of underlap USJ DG MOSFET.Fig 3.2:Subthreshold Current vs. Gate to Source Voltage. Parameters used: $V_{DS} = 0.05 \mathrm{V}$, $L_G = 18 \mathrm{nm}$, $t_{si} = 7 \mathrm{nm}$, $t_{ox} = 1 \mathrm{nm}$.Fig 3.3:Subthreshold Current vs. Gate to Source Voltage. Parameters used: $V_{DS} = 0.05 \mathrm{V}$, $L_G = 18 \mathrm{nm}$, $L_{ul} = 10 \mathrm{nm}$, $t_{si} = 7 \mathrm{nm}$.Fig 3.4:Subthreshold Current vs. Gate to Source Voltage. Parameters used: $V_{DS} = 0.05 \mathrm{V}$, $L_G = 18 \mathrm{nm}$, $L_{ul} = 10 \mathrm{nm}$, $t_{si} = 7 \mathrm{nm}$.	Fig 2.10:	Threshold Voltage vs. Channel thickness for different values of σ_L and L_G . Parameters used: $V_{DS} = 0.1 V$, $L_{ul} = 10 \text{ nm}$, $t_{ox} = 1 \text{ nm}$.	52
Fig 2.12:DIBL vs. Underlap Channel Length for different values of σ_L and t_{si} Parameters used: $V_{DS} = 0.1 V$, $L_G = 18 \text{nm}$, $t_{ox} = 1 \text{nm}$.Fig 2.13:Loss in Switching Speed by DIBL vs. Underlap Channel Length for different values of σ_L and t_{si} .Parameters used: $V_{DS} = 0.1 V$, $L_G = 18 \text{nm}$, $t_{ox} = 1 \text{nm}$.Fig 3.1:Schematic view of underlap USJ DG MOSFET.Fig 3.2:Subthreshold Current vs. Gate to Source Voltage. Parameters used: $V_{DS} = 0.05 V$, $L_{ul} = 10 \text{nm}$, $t_{si} = 7 \text{nm}$, $t_{ox} = 1 \text{nm}$.Fig 3.3:Subthreshold Current vs. Gate to Source Voltage. Parameters used: $V_{DS} = 0.05 V$, $L_G = 18 \text{nm}$, $L_{ul} = 10 \text{nm}$, $t_{si} = 7 \text{nm}$.Fig 3.4:Subthreshold Current vs. Gate to Source Voltage. Parameters used: $V_{DS} = 0.05 V$, $L_G = 18 \text{nm}$, $L_{ul} = 10 \text{nm}$, $t_{si} = 7 \text{nm}$.	Fig 2.11:	Threshold Voltage vs. Channel thickness for different values of σ_L and L_{ul} . Parameters used: $V_{DS} = 0.1V$, $L_G = 18$ nm , $t_{ox} = 1$ nm.	52
Fig 2.13:Loss in Switching Speed by DIBL vs. Underlap Channel Length for different values of σ_L and t_{si} . Parameters used: $V_{DS} = 0.1 V$, $L_G = 18 \text{ nm}$, $t_{ox} = 1 \text{ nm}$.Fig 3.1:Schematic view of underlap USJ DG MOSFET.Fig 3.2:Subthreshold Current vs. Gate to Source Voltage. Parameters used: $V_{DS} = 0.05 \text{ V}$, $L_{ul} = 10 \text{ nm}$, $t_{si} = 7 \text{ nm}$, $t_{ox} = 1 \text{ nm}$.Fig 3.3:Subthreshold Current vs. Gate to Source Voltage. Parameters 	Fig 2.12:	DIBL vs. Underlap Channel Length for different values of σ_L and t_{Si} Parameters used: $V_{DS} = 0.1V$, $L_G = 18$ nm, $t_{ox} = 1$ nm.	54
Fig 3.1:Schematic view of underlap USJ DG MOSFET.Fig 3.2:Subthreshold Current vs. Gate to Source Voltage. Parameters used: $V_{DS} = 0.05 \text{ V}$, $L_{ul} = 10 \text{ nm}$, $t_{si} = 7 \text{ nm}$, $t_{ox} = 1 \text{ nm}$.Fig 3.3:Subthreshold Current vs. Gate to Source Voltage. Parameters used: $V_{DS} = 0.05 \text{ V}$, $L_G = 18 \text{ nm}$, $L_{ul} = 10 \text{ nm}$, $t_{si} = 7 \text{ nm}$.Fig 3.4:Subthreshold Current vs. Gate to Source Voltage. Parameters used: $V_{DS} = 0.05 \text{ V}$, $L_G = 18 \text{ nm}$, $L_{ul} = 10 \text{ nm}$, $t_{si} = 7 \text{ nm}$.	Fig 2.13:	Loss in Switching Speed by DIBL vs. Underlap Channel Length for different values of σ_L and t_{si} . Parameters used: $V_{DS} = 0.1V$, $L_G = 18$ nm, $t_{ox} = 1$ nm.	54
Fig 3.2:Subthreshold Current vs. Gate to Source Voltage. Parameters used: $V_{DS} = 0.05 \text{ V}$, $L_{ul} = 10 \text{ nm}$, $t_{si} = 7 \text{ nm}$, $t_{ox} = 1 \text{ nm}$.Fig 3.3:Subthreshold Current vs. Gate to Source Voltage. Parameters used: $V_{DS} = 0.05 \text{ V}$, $L_G = 18 \text{ nm}$, $L_{ul} = 10 \text{ nm}$, $t_{si} = 7 \text{ nm}$.Fig 3.4:Subthreshold Current vs. Gate to Source Voltage. Parameters used: $V_{DS} = 0.05 \text{ V}$, $L_G = 18 \text{ nm}$, $L_{ul} = 10 \text{ nm}$, $t_{si} = 7 \text{ nm}$.	Fig 3.1:	Schematic view of underlap USJ DG MOSFET.	58
Fig 3.3:Subthreshold Current vs. Gate to Source Voltage. Parameters used: $V_{DS} = 0.05 \text{ V}$, $L_G = 18 \text{ nm}$, $L_{ul} = 10 \text{ nm}$, $t_{si} = 7 \text{ nm}$.Fig 3.4:Subthreshold Current vs. Gate to Source Voltage. Parameters used: $V_{DS} = 0.05 \text{ V}$, $L_G = 18 \text{ nm}$, $L_{ul} = 10 \text{ nm}$, $t_{si} = 7 \text{ nm}$.	Fig 3.2:	Subthreshold Current vs. Gate to Source Voltage. Parameters used: $V_{DS} = 0.05 \text{ V}$, $L_{ul} = 10 \text{ nm}$, $t_{si} = 7 \text{ nm}$, $t_{ox} = 1 \text{ nm}$.	65
Fig 3.4: Subthreshold Current vs. Gate to Source Voltage. Parameters used: $V_{DS} = 0.05 \text{ V}$, $L_G = 18 \text{ nm}$, $L_{ul} = 10 \text{ nm}$, $t_{si} = 7 \text{ nm}$.	Fig 3.3:	Subthreshold Current vs. Gate to Source Voltage. Parameters used: $V_{DS} = 0.05 \text{ V}$, $L_G = 18 \text{ nm}$, $L_{ul} = 10 \text{ nm}$, $t_{si} = 7 \text{ nm}$.	65
	Fig 3.4:	Subthreshold Current vs. Gate to Source Voltage. Parameters used: $V_{DS} = 0.05 \text{ V}$, $L_G = 18 \text{ nm}$, $L_{ul} = 10 \text{ nm}$, $t_{si} = 7 \text{ nm}$.	68
Fig 3.5: Subthreshold Current vs. Underlap Channel Length. Parameters used: $V_{DS} = 0.05 \text{ V}$, $V_{GS} = 0.1 \text{ V}$, $t_{si} = 7 \text{ nm}$, $t_{ox} = 1 \text{ nm}$.	Fig 3.5:	Subthreshold Current vs. Underlap Channel Length. Parameters used: $V_{DS} = 0.05 \text{ V}$, $V_{GS} = 0.1 \text{ V}$, $t_{si} = 7 \text{ nm}$, $t_{ox} = 1 \text{ nm}$.	68
	Fig 3.6:	Subthreshold Current vs. Underlap Channel Length. Parameters used:	69

 $V_{\rm DS}=0.05~V\,,~V_{\rm GS}=0.1~V\,,~t_{\rm si}=7\,nm$, $L_{\rm G}=18\,nm.$

- Fig 3.7: Subthreshold Current vs. Underlap Channel Length. Parameters used: 69 $V_{DS} = 0.05 \text{ V}, V_{GS} = 0.1 \text{ V}, L_G = 18 \text{ nm}, t_{ox} = 1 \text{ nm}.$
- Fig 3.8: Subthreshold Swing vs. Underlap Channel Length. Parameters used: 70 $V_{DS} = 0.05 \text{ V}, t_{si} = 7 \text{ nm}, t_{ox} = 1 \text{ nm}, V_{GS} = 0.1 \text{ V}.$
- Fig 3.9: Subthreshold Swing vs. Underlap Channel Length. Parameters used: 70 $V_{DS} = 0.05 \text{ V}, t_{si} = 7 \text{ nm}, V_{GS} = 0.1 \text{ V}, L_G = 18 \text{ nm}.$
- Fig 3.10: Subthreshold Swing Vs Underlap Channel Length. Parameters used: 71 $V_{DS} = 0.05 \text{ V}, t_{ox} = 1 \text{ nm}, V_{GS} = 0.1 \text{ V}, L_G = 18 \text{ nm}.$
- Fig 4.1(a): Schematic view of the underlap elevated source/drain DG MOSFET 75 with following device parameters: source/drain width, $W_{SD} = 25 \text{ nm}$, gate-underlap length, $L_{ul} = 10 \text{ nm}$, gate length, $L_G = 18 \text{ nm}$, gate side spacer length, $W_{SP} = 20 \text{ nm}$, gate oxide thickness, $t_{ox} = 1 \text{ nm}$, and channel thickness, $t_{si} = 7 \text{ nm}$.
- **Fig 4.1(b):** Dimensions of various channel regions used for simulation along **75** with the lateral doping profile in the source/drain extension region for different values of straggle parameter $\sigma_{\rm L}$.
- Fig 4.2(a): Drain current variations as a function of elevation height h_{SD} for the 77 four side spacer dielectrics namely Air, SiO₂, Si₃N₄ and HfO₂: On current versus h_{SD} plot for $V_{DS} = 1.0$ V and $V_{GS} = 1.0$ V.
- Fig 4.2(b): Drain current variations as a function of elevation height h_{sD} for the 77 four side spacer dielectrics namely Air, SiO₂, Si₃N₄ and HfO₂: Off current versus h_{sD} plot for $V_{DS} = 1.0$ V and $V_{GS} = 0.0$ V.
- Fig 4.3(a):Variation of recombination rate per unit volume along the channel for79different values of h_{SD} with Air as the side dielectric spacer.
- Fig 4.3(b): Vertical electric field, E_{y} , along the lateral direction (x-axis) of 79 channel center for different values of h_{sD} with Air side dielectric spacer as considered in (a).
- **Fig 4.4(a):** Variation of recombination rate per unit volume along the channel for **80** different values of h_{SD} with SiO₂ as the side dielectric spacer.
- Fig 4.4(b): Vertical electric field, E_{Y} , along the lateral direction (x-axis) of 80 channel center for different values of h_{SD} with SiO₂sidedielectric spacer as considered in (a).

Fig 4.5(a):	Variation of recombination rate per unit volume along the channel for different values of h_{SD} with Si ₃ N ₄ as the side dielectric spacer.	81
Fig 4.5(b):	Vertical electric field, $E_{\rm Y}$, along the lateral direction (x-axis) of channel center for different values of $h_{\rm SD}$ with Si ₃ N ₄ side dielectric spacer as considered in (a).	81
Fig 4.6(a):	Variation of recombination rate per unit volume along the channel for different values of h_{sD} with HfO ₂ as the side dielectric spacer.	82
Fig 4.6(b):	Vertical electric field, E_{Y} , along the lateral direction (x-axis) of channel center for different values of h_{SD} with HfO ₂ side dielectric spacer as considered in (a).	82
Fig 4.7(a):	Drivability characteristics for SiO ₂ spacer dielectric: I_{on}/I_{off} ratio versus the lateral straggle σ_L of the drain/source Gaussian doping profile for different h_{SD} values.	83
Fig 4.7(b):	Variation of I_{on}/I_{off} ratio as a function of σ_L for different side spacer dielectric materials but with a fixed value of $h_{SD} = 2.15$ nm.	83
Fig 4.8:	Variation of I_{on} / I_{off} ratio as a function of the drain/source elevation height h_{SD} for different side spacer dielectrics under study.	84
Fig 4.9(a):	Variations of drain current and transconductance with respect to the gate to source voltage for different h_{SD} values but for the fixed spacer dielectric SiO ₂ and straggle parameter $\sigma_L = 4$ nm.	85
Fig 4.9(b):	Variations of drain current and output conductance due to the drain to source voltage for different h_{sD} values but for the fixed spacer dielectric SiO2 and straggle parameter $\sigma_L = 4$ nm.	85
Fig 4.10(a):	Plots of drain current and transconductance as functions of the gate to source voltage for the four different side spacer dielectric materials namely Air, SiO_2 , Si_3N_4 and HfO_2 and $h_{SD} = 21.5$ nm.	86
Fig 4.10(b):	Variations of the drain current and output conductance due to the drain to source voltage for the four dielectric spacer materials Air, SiO_2 , Si_3N_4 and HfO_2 with a fixed $h_{SD} = 21.5$ nm.	86
Fig 5.1(a):	Schematic view of the underlap elevated source/drain GAA MOSFET with following device parameters: source/drain width, $W_{SD} = 25 \text{ nm}$, gate-underlap length, $L_{ul} = 10 \text{ nm}$, gate length, $L_G = 18 \text{ nm}$, gate side spacer length, $W_{SP} = 20 \text{ nm}$, gate	94

oxide thickness, $t_{ox} = 1 \text{ nm}$, and channel thickness, $t_{si} = 7 \text{ nm}$.

- **Fig 5.1(b):** Dimensions of various channel regions used for simulation along with the lateral doping profile in the source/drain extension region for different values of straggle parameter σ_{L} .
- Fig 5.2: Drain current variations as a function of elevation height h_{SD} :[Left] 96 On current versus h_{SD} plot for $V_{DS} = 1.0$ V and $V_{GS} = 1.0$ V; [Right] Off current versus h_{SD} plot for $V_{DS} = 1.0$ V and $V_{GS} = 0.0$ V for the four side spacer dielectrics namely Air (a), SiO₂ (b), Si₃N₄ (c) and HfO₂(d).
- **Fig 5.3(a):** Drivability characteristics for SiO₂ spacer dielectric: I_{on}/I_{off} ratio **97** versus the lateral straggle σ_L of the drain/source Gaussian doping profile for different h_{SD} values
- **Fig 5.3(b):** Variation of I_{on}/I_{off} ratio as a function of σ_L for different side spacer **97** dielectric materials but with a fixed value of $h_{SD} = 2.15$ nm.
- **Fig 5.4:** Variation of I_{on}/I_{off} ratio as a function of the drain/source elevation **98** height h_{SD} for different side spacer dielectrics under study.
- Fig 5.5(a): Variations of drain current and transconductance with respect to the 100 gate to source voltage for different h_{SD} values but for the fixed spacer dielectric SiO₂ and straggle parameter $\sigma_L = 4$ nm.
- Fig 5.5(b): Variations of drain current and output conductance due to the drain to 100 source voltage for different h_{sD} values but for the fixed spacer dielectric SiO₂ and straggle parameter $\sigma_L = 4$ nm
- **Fig 5.6(a):** Plots of drain current and transconductance as functions of the gate to source voltage for the four different side spacer dielectric materials namely Air, SiO_2 , Si_3N_4 and HfO_2 and $h_{SD} = 21.5$ nm.
- Fig 5.6(b): Variations of the drain current and output conductance due to the drain to source voltage for the four dielectric spacer materials Air, SiO_2 , Si_3N_4 and HfO₂ with a fixed $h_{SD} = 21.5$ nm.