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Recent observations of several peculiar over- and under-luminous type Ia supernovae infer indirect
evidence for the violation of the Chandrasekhar mass-limit by suggesting the existence of super- and
sub-Chandrasekhar limiting mass white dwarfs. In an attempt to explain these phenomena in the
context of general relativistic extensions, we study these objects in Palatini f(R) gravity. We obtain
the super- and sub-Chandrasekhar limiting masses as well as the dynamical instability criteria
for white dwarfs in the given gravitational theory. We further demonstrate that the conventional
positivity condition ∂M/∂ρc > 0 with M being the WD’s mass with central density ρc, is also a
valid criterion for stability in Palatini gravity.
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1. INTRODUCTION

It is well known that General Relativity (GR) is by
far the most adequate theory of gravitation. It success-
fully fulfills the shortcomings of Newtonian gravity to
explain the various interesting phenomena like perihelion
precession of Mercury, gravitational lensing, the physics
of compact objects, and even predicts the gravitational
waves [1]. Despite its triumphs, some recent cosmologi-
cal observations and corresponding theoretical arguments
indicate the need for replacing GR with a more consis-
tent theory. Quite recently, the study of observational
cosmology provides the evidence that the universe has
undergone two phases of acceleration; the first one is the
exponential expansion of the early universe, called infla-
tion [2, 3], and the second phase occurs at a later time of
its evolution [4–6]. The ΛCDM model, which is derived
from GR with the cold dark matter and the cosmolog-
ical constant introduced, was then adequately able to
explain these observations at a large scale. Nevertheless,
the model lacks an explanation for the cosmological con-
stant problem and could not explain the small scale struc-
tures efficiently [7]. Another questionable issue is the lack
of an effective quantum theory of gravity. The two in-
credible theories of modern times, GR and quantum field
theory, successfully dominates their domains of gravita-
tional non-inertial systems and small-scale regimes, re-
spectively. One of the reasons for not being able to unify
these two theories is that the quantum gravitational ef-
fects become dominant only at the Planck scale due to
the weak interaction of gravity. Therefore, these issues
serve as a few of the motivations to go beyond GR, to-
wards the extended theories of gravity [8, 9].

Over the years, there have been proposals for a gener-
alized and modified theory of gravity such as the scalar-
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tensor theory [10, 11]. A simple form of scalar-tensor
theory is the f(R) gravity [12] with R being the scalar
curvature, which is based on generalizing the Lagrangian
of the Einstein-Hilbert action. Instead of using an action
linear in R as in GR, f(R) theory considers an action
in which the Lagrangian density is an arbitrary function
of R. Based on the form of f(R) and the values of the
model parameters, this theory has been extensively used
to study various phenomena, including inflation [13–15],
dark energy problem [16, 17], gravitational waves [18, 19],
compact objects like neutron stars [20–24], and also the
recently inferred super- and sub-Chandrasekhar limiting
mass white dwarfs (WDs) [25–28]. The so-called metric
approach to f(R) gravity, as studied in the works men-
tioned above, leads to the fourth-order field equations for
the metric,1 which can impose some practical difficulties
to work with. Moreover, as shown by Chiba [29], this
theory might not be compatible with the solar system
test if the scalar field is very light. Furthermore, the
metric f(R) gravity is flawed with the scalar curvature
instability, which can change the gravitational field of a
body greatly [30].

On the other hand, there is another approach to
the f(R) gravity, called Palatini formalism. In this
framework, the assumption on the metric dependence
of the connection is waived, therefore one deals with
the pair of independent objects (metric gµν , connection
Γαβγ) [31, 32]. Such an approach yields a second-order
field equation that is not only compatible with the so-
lar system test [33] but also gives the correct Newtonian
limit [34]. Unlike the metric formalism, no such instabil-
ities, as mentioned in [30], arise in the Palatini approach.
This is because the additional scalar degree of freedom
arising due to the generalization of the Lagrangian den-

1 however, when transformed to the scalar-tensor representation,
one deals with the second order differential equations for the
metric, and additional equations for the Ricci scalar R, carrying
dynamical properties of this object.
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sity is not dynamical in nature [35]. In metric f(R)
gravity, the square of the mass of scalar mode is given
by m2 = 1/3 {f ′(R0)/f ′′(R0)−R0} with R0 being the
background Ricci scalar [36]. Hence, m2 might be neg-
ative depending on the f(R) form and values of model
parameter, which gives rise to the ghost mode. In Pala-
tini gravity, such massive dynamical scalar mode does
not exist.

However, there have been some disagreements in the
past regarding the Newtonian limit of Palatini f(R) grav-
ity. According to Meng and Wang [37], the correct New-
tonian limit is always achieved in those models where the
action contains inverse powers of R and the weak field ex-
pansion yields a de-Sitter vacuum solution. However, it
was shown that a f(R) theory with a pole of order n
in R = 0 and f ′′(R0) 6= 0 does not give a good Newto-
nian limit [38]. They further proposed that those f(R)
theories with a singular f(R), satisfying the condition
f ′′(R0) = 0, are worthwhile to study. These disagree-
ments were settled in [39], where it was shown that the
Palatini gravity models with negative powers of R, as well
as their generalizations those include the positive powers,
give rise to correct Newtonian limit, provided the coef-
ficients of these powers are sufficiently small. Since the
Palatini approach is more general and comparatively eas-
ier to work with, several phenomena are being studied
using this model recently. Cosmological theories based
on the modified gravity using Palatini variational prin-
ciple has been used to study inflation and cosmic accel-
eration [31, 40–47]. Similarly, Palatani f(R) gravity has
been used to study neutron stars and the alterations in
the maximum mass-limit of WDs [48–50].

Depending on the battle between self-gravity and ther-
modynamics, the end state of a star can either lead to
the formation of a compact object like WD, neutron star,
black hole, or it may lead to an explosion dispersing all
matter into space and leaving behind nothing. WDs are
compact stellar remnants, supported by the electron de-
generacy pressure [51]. The end state of a progenitor star
with mass (10±2)M� is a WD [52]. In WDs, the outward
electron degeneracy pressure balances the inward gravi-
tational force, which arises due to the Pauli exclusion
principle, and thereby it maintains a stable equilibrium
condition. However, beyond a certain mass, the electron
degeneracy pressure is no longer sufficient to stop the star
from collapsing under gravity. Taking into account rel-
ativistic effects into the degenerate electron equation of
state (EoS), Chandrasekhar made the remarkable discov-
ery that the mass of a non-rotating and non-magnetized
WD cannot exceed approximately 1.44M� [53]. This is
known as the Chandrasekhar mass-limit. If a WD in a
binary system slowly accretes matter from the compan-
ion such that its mass is over this mass-limit, the pressure
balance no longer sustains. In such a situation, the WD
explodes releasing a tremendous amount of energy in the
form of a type Ia supernova (SN Ia) [54]. Due to this
fixed critical mass, the peak luminosities of SNe Ia are
consistent, and thus they are often used as a standard

candle [55]. However, several over-luminous [56–59] and
under-luminous [60–63] SNe Ia have been observed lately,
which are proposed to be originated from super- and sub-
Chandrasekhar mass WDs, respectively. This suggests
that the Chandrasekhar mass-limit of WDs may not be
unique. Over the years, it has been extensively studied
on the grounds of modified gravity [25, 26, 49, 64]. Ear-
lier Mukhopadhyay and collaborators used the metric for-
malism of f(R) gravity [25, 26], and by choosing suitable
values of the model parameter, they were able to obtain
super- as well as sub-Chandrasekhar limiting mass WDs.
On the other hand, some of us obtained the modified hy-
drostatic equilibrium equations for polytropic WDs using
Palatini f(R) gravity in the Newtonian limit [49], both
in the Einstein and Jordan frames, and studied the mass-
limit of WDs for various model parameters. In addition,
other modified gravity theories like the f(R, T ) gravity
theory has been used to study the equilibrium configu-
ration as well as the physical properties of WDs [65, 66].
This model was again able to provide an explanation to
the violation of the Chandrasekhar mass-limit in WDs.

In this paper, we consider the Newtonian limit of Pala-
tini f(R) gravity to study the mass–radius relation of
the WDs and their corresponding stability analysis in
the case of degenerate EoS for electrons. We also check
whether the standard stability criterion is valid for the
considered model of gravity.

This paper is organized as follows. In §2 and §3, we re-
call the formalism of Palatini f(R) gravity in the Einstein
as well as the Jordan frames, and the hydrostatic equi-
librium equations for the WDs in the Newtonian regime
in both these frames, respectively. We also discuss the
modified equations for radial oscillations in order to ex-
amine the stability of the WDs in this gravity model.
In §4, we present a discussion on the numerical results
concerning the mass–radius relations and stability anal-
ysis of the modified gravity induced WDs. We conclude
our work in §5 while in Appendix §A, we recall the rela-
tivistic stellar equations.

2. PALATINI f(R) GRAVITY

Let us begin by briefly describing Palatini f(R) grav-
ity and the corresponding field equations. As already
mentioned, this formalism considers the metric and the
connection to be independent of each other. Therefore,
to obtain the field equations, the action must be varied
with respect to both variables. Even though the form of
the action resembles f(R) gravity in the metric formal-
ism, the Riemann and Ricci tensors no longer depend on
the metric; instead, they are constructed with the inde-
pendent connection. More specifically, one can denote
Rµν ≡ Rµν(Γ), where Γ represents the connection. We
now recall the main properties of the so-called game of
frames [67] and the current interpretation, and therefore,
for the reader’s convenience, we provide the most relevant
equations in both cases.
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2.1. Jordan frame formulation

The generalized action in Palatini f(R) gravity is given
by

S =
1

2κ2

∫ √
−gf(R) d4x+ Sm(gµν , ψ), (2.1)

where κ2 = −8πG/c4, g = det(gµν), and Sm is the matter
action which depends on the metric gµν and matter field
ψ, and is independent of the connection. The Ricci scalar
appearing in Equation (2.1) is built of two structures, gµν
and Γ, that is, R = gµνRµν(Γ).

Varying Equation (2.1) with respect to gµν gives the
following modified field equations [68]

f ′(R)Rµν −
1

2
f(R)gµν = κ2Tµν , (2.2)

where f ′(R) = df(R)/dR , while Tµν is the energy-
momentum tensor, given by

Tµν = − 2√
−g

δSm
δgµν

,

which is further assumed to have the perfect-fluid form.
On the other hand, the result of variation with respect
to Γ can be written in the following form:

∇λ
(√
−gf ′(R)gµν

)
= 0, (2.3)

where ∇λ is the covariant derivative ruled by Γ. Defining
a new metric tensor ḡµν = f ′(R)gµν allows to rewrite
Equation (2.3) as

∇λ(
√
−ḡḡµν) = 0, (2.4)

providing that the connection Γ is Levi-Civita with re-
spect to ḡµν . It results that the independent connec-
tion is an auxiliary field which can be integrated out.
Therefore, all physical degrees of freedom are given by
the metric tensor g. It is quite evident that one may ob-
tain the standard GR equations by choosing the linear
f(R). Then it will turn out from Equation (2.3) that Γ
is the Levi-Civita connection of the metric g.

In order to present some useful interpretation of the
field equations, taking the trace of Equation (2.2) with
respect to g, we obtain

f ′(R)R− 2f(R) = κ2gµνTµν = κ2T, (2.5)

which provides the structural equation (T is the trace of
the energy-momentum tensor). It is worthwhile to note
that, unlike metric formalism, no kinetic term, such as
�f ′(R), arises in Equation (2.5). This ensures that the
oscillatory mode appearing in the metric formalism does
not exist in the Palatini approach. In case of vacuum
or pure radiation (T = 0), the theory reduces to the
Einstein vacuum solution with the cosmological constant,
independently of the f(R) form [34].

In this paper, we will work with the simplest extension
of the GR - that is, with the Starobinsky model [69],
given by

f(R) = R+ αR2, (2.6)

where αR2 is the higher-order correction to the GR with
α being the model parameter. When its sign is specified,
it will provide both the regimes of mass-limit in WDs.

2.2. Scalar-tensor representation and Einstein
frame

Let us now briefly describe the Palatini gravity in the
Einstein frame. Firstly we use the fact that the the-
ory possesses a scalar-tensor representation, however the
scalar field appearing there, as already discussed, does
not carries any extra degree of freedom [70, 71]. Provided
f ′′(R) 6= 02, the action in Equation (2.1) can be rewritten
in a mathematically equivalent form, given by [72–74]

S(gµν ,Γ
λ
ρσ, χ) =

1

2κ2

∫
d4x
√
−g [f ′(χ)(R− χ) + f(χ)]

+ Sm(gµν , ψ), (2.7)

where χ is a new scalar field. Redefining it via Φ = f ′(χ)
with the constraint χ = R, one may rewrite action (2.7)
into the form of Palatini-Brans-Dicke gravity as [74]

S(gµν ,Γ
λ
ρσ,Φ) =

1

2κ2

∫
d4x
√
−g [ΦR− U(Φ)]+Sm(gµν , ψ),

(2.8)
where U(Φ) = χ(Φ)Φ − f(χ(Φ)). Performing now the
conformal transformation of the metric g, one writes the
action in the Einstein frame as

S(ḡµν ,Φ) =
1

2κ2

∫
d4x
√
−ḡ
[
R̄− Ū(Φ)

]
+Sm(Φ−1ḡµν , ψ),

(2.9)
for which the field equations are obtained by variation
with respect to ḡ and Φ

R̄µν −
1

2
ḡµνR̄ = T̄µν −

1

2
ḡµνŪ(Φ), (2.10)

0 = ΦR̄−
(
Φ2Ū(Φ)

)′
, (2.11)

where prime denotes here the derivative with respect to
Φ. Moreover, it can be shown that the following rela-
tions are true: for the conformal metric ḡµν = gµνΦ, one
is equipped with R̄µν = Rµν , R̄ = ḡµνR̄µν = Φ−1R,
ḡµνR̄ = gµνR, Ū(Φ) = U(Φ)/Φ2, and T̄µν = Φ−1Tµν .
The structural equation in this case is given by

ΦŪ ′(Φ) + T̄ = 0, (2.12)

2 the linear Lagrangian is excluded in that case.
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where T̄ = ḡµν T̄µν and again it demonstrates the non-
dynamical aspect of Φ (recall that Φ(R(Γ))). This repre-
sentation is useful as it allows to study particular physical
problems represented by simpler equations, whose solu-
tions afterwards can easily be transformed to the physical
Jordan frame [71, 75].

3. STELLAR STRUCTURE EQUATIONS AND
CORRESPONDING STABILITY ANALYSIS

In this section, we will recall the hydrostatic equilib-
rium equations in the Newtonian regime, given in the
Einstein and Jordan frames. The full relativistic equa-
tions used here were obtained in [76], and for the reader’s
convenience, we recall them in the Appendix §A. There-
after, we derive the modified radial oscillation equations
for the stability analysis of the Palatini f(R) gravity in-
duced WDs.

3.1. Stellar structure equations

The Newtonian limit approximation is applicable to
systems exhibiting weak gravitation and slowly vary-
ing or static gravitational field. In order to study
WDs in Newtonian regime, one considers p(r) � ρ(r),
4πr3p(r) � M(r) and 2GM(r)/r � 1, where p(r) is
the pressure, ρ(r) is the density, and M(r) is the mass
of the object at a radius r. Therefore, in the Einstein
frame, from Equations (A.5) and (A.6), the pressure-
balance and mass-estimate equations are given by [77]

dp

dr̃
= −GMρ

Φr̃2
(3.1)

and

dM

dr̃
= 4πr̃2ρ. (3.2)

Let us comment that p and ρ are the physical quantities,
while only r̃ indicates that we are dealing with the Ein-
stein frame’s radial coordinate (see detailed discussion
in [77–79]). The p and ρ in the case of our WDs model
are related to each other by the Chandrasekhar EoS for
degenerate electrons, given by [53]

p =
πm4

ec
5

3h3

[
xF

(
2x2

F − 3
)√

x2
F + 1 + 3 sinh−1 xF

]
,

ρ =
8πµemH(mec)

3

3h3
x3

F,

(3.3)
where xF = pF/mec, pF is the Fermi momentum, me is
the mass of electron, h is the Planck’s constant, µe is
the mean molecular weight per electron and mH is the
mass of hydrogen atom. For our work, we choose µe = 2

indicating the carbon-oxygen WD. Moreover, in the New-
tonian limit, T ≈ −ρc2. Therefore, from Equation (2.6),
Φ = f ′(R(T )) becomes

Φ = 1 + 2ακ2c2ρ. (3.4)

Thus, Equations (3.1) and (3.2) are the hydrostatic bal-
ance equations for WDs in the Newtonian limit in the
Einstein frame.

One can also obtain the corresponding hydrostatic bal-
ance equations in the Jordan frame, through the confor-
mal transformation, r̃2 = Φr2, which are given by [49]

dp

dr
= −GMρ

Φ
3
2 r2

(
1 +

1

2
r

Φ′

Φ

)
(3.5)

and

dM

dr
= 4πr2ρΦ

3
2

(
1 +

1

2
r

Φ′

Φ

)
. (3.6)

These are the Newtonian hydrostatic equilibrium equa-
tions in the Jordan frame. Here, prime (‘′’) is the deriva-
tive with respect to the coordinate r while Φ′ can be
obtained from Equation (3.4).

3.2. Modified equations for radial oscillations

In the Newtonian gravity, a non-rotating, non-
magnetized finite temperature star, whose matter con-
tent is given by polytrope (with the polytropic parame-
ter γ), is unstable against adiabatic radial perturbations
if γ < 4/3. Later, Chandrasekhar showed that due to
the strong gravity in the framework of GR, instability
may arise at a larger value of γ [80]. Similarly, stability
analysis for compact stars has been done in the frame-
work of modified gravity theory [81, 82], demonstrating
that this critical value of γ differs, and also depends on
the model’s parameter [83] in the case of non-relativistic
regime. In more general context, it was also shown that
in the case of a relativistic star, one deals with the similar
to GR stability condition, that is, it depends on an EoS,
but also on the f(R) model in Palatini gravity [76].

Let us now discuss in details the stability problem. A
star is stable under radial perturbations if the frequencies
of normal modes are real. However, Pretel et al. con-
sidered the same stability equations for GR and solved
them to examine the stability of neutron stars in modified
gravity [82]. Moreover, in GR, ∂M/∂ρc > 0 provides the
necessary stability criterion, where M is the mass of and
ρc is the central density of the star. In this work, we
will also examine whether this criterion is valid for Pala-
tani f(R) gravity with the given EoS (3.3). To do so,
one needs to derive and solve the modified equations for
radial oscillations. Since we are interested in the WDs
in the Newtonian regime, we do not take the relativistic
effects into account.
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When a non-rotating, spherically symmetric star in hy-
drostatic and thermal equilibrium is subjected to a small
radial perturbation, it will cause oscillations in the ra-
dial direction such that a fluid element located at r0 will
be displaced to r0 + δr(t, r0) maintaining its spherical
symmetry. Here, δr is the Langrangian perturbation of
the WD’s radius. In our discussion of stability analy-
sis, the radial oscillations are assumed to be adiabatic
in nature, such that any heat exchange mechanism is
ignored [51, 84]. Even though such an adiabatic approx-
imation significantly simplifies the analysis and gives ac-
curate values of amplitude within the star, it does not
provide any information about the thermodynamics of
the star.

The radial oscillation equations can be derived using
the Eulerian as well as the Langrangian formalisms. The
Eulerian perturbation (∆f) and the Langrangian pertur-
bation (δf) of a variable f are related by

δf = ∆f +
df0

dr
δr. (3.7)

In general, Langrangian formalism is convenient while
dealing with the systems bearing one degree of freedom.
Since we assume spherically symmetric WDs in this work,
we derive the equations for radial oscillations utilizing
the Langrangian formalism. Considering small oscilla-
tions about the equilibrium position, the perturbed ra-
dius r̃(t, r̃0), density ρ(t, r̃0), and pressure p(t, r̃0) are
given by

r̃(t, r̃0) = r̃0

[
1 +

δr̃(t, r̃0)

r̃0

]
, (3.8)

ρ(t, r̃0) = ρ0

[
1 +

δρ(t, r̃0)

ρ0

]
, (3.9)

p(t, r̃0) = p0

[
1 +

δp(t, r̃0)

p0

]
, (3.10)

where δr̃(t, r̃0), δρ(t, r̃0), and δp(t, r̃0) are the Lan-
grangian perturbation in the radius, density, and pres-
sure, respectively. The subscript zero in the above rela-
tions denote the quantities in the static state. Moreover,
we assume the perturbations to be small enough such
that, |δr̃/r̃0| � 1, |δρ/ρ0| � 1, and |δp/p0| � 1, and
hence we can apply the linear theory by preserving only
the linear terms, neglecting the higher-order ones. Since
the adiabatic approximation is assumed, the mechanical
structure of the star can be described by the mass–radius
relation. Now, the mass conservation and the conserva-
tion of momentum equation are given by

∂M

∂r̃
= 4πr̃2ρ (3.11)

and

ρ
d~̃v

dt
= −

(
∇̃p+ ρ∇̃ψ

)
, (3.12)

where ~̃v is the fluid velocity and ψ is the gravitation po-
tential such that, ∇̃p = −ρ∇̃ψ in equilibrium. Note that

the ‘Tilde’ in the above equations denote the quantities
in the Einstein frame and d/dt is given by

d

dt
≡ ∂

∂t
+
(
~v · ∇̃

)
.

Since the quantities are now functions of both r0 and time
t, we explicitly introduce partial derivatives. Perturbing
Equations (3.11) and (3.12) and replacing r̃, ρ, p with
their perturbed values from Equations (3.8)–(3.10), we
obtain

r̃0
∂ (δr̃/r̃0)

∂r̃0
= −

(
3
δr̃

r̃0
+
δρ

ρ0

)
(3.13)

and

r̃0ρ0

¨(
δr̃0

r̃0

)
= −∂p0

∂r̃0

(
δp

p0
+ 4

δr̃

r̃0
+
δΦ

Φ0

)
− p0

∂ (δp/p0)

∂r̃0
,

(3.14)
where δΦ is the Langrangian perturbation in Φ. Let us
consider that the perturbations behave as a plane-wave,
such that a quantity f can be written as

δf(t, r̃0)

f0
=
δf(r̃0)

f0
eiσt, (3.15)

where σ is the characteristic frequency. Accordingly,
Equations (3.13) and (3.14) become

dζ̃

dr̃
= −1

r̃

(
3ζ̃ +

1

Γ

δp

p

)
(3.16)

and

d (δp/p)

dr̃
= −1

p

dp

dr̃

(
δp

p
+ 4ζ̃ +

δΦ

Φ
+
σ2r̃3Φζ̃

GM

)
, (3.17)

where

δΦ

Φ
=

2κ2c2αρ

ΦΓ

(
δp

p

)
. (3.18)

Here ζ̃ = δr̃(r̃0)/r̃0 and Γ = (∂ ln p/∂ ln ρ ). We have in-
troduced ordinary spatial derivatives in Equations (3.16)
and (3.17) because of the r̃-dependent variables and we
have also skipped the subscripts zero for simplicity as
all the quantities appearing are in their static configu-
ration. Thus, Equations (3.16) and (3.17) are the two
linear, first-order, time-independent, coupled differen-
tial equations governing the radial oscillation in Palatani
f(R) = R + αR2 gravity in the Newtonian regime. It
is quite evident that the above equations reduce to the
Newtonian radial oscillation equations if Φ = 1.

We also obtain the corresponding modified equations
for radial oscillations in the Jordan frame by following the
conformal transformation r̃2 = Φr2. Since ζ̃ is related to
ζ from the Jordan frame by the relation

ζ̃ = ζ +
1

2

δΦ

Φ
, (3.19)
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the corresponding radial oscillation equations are

dζ

dr
+

1

2

d (δΦ/Φ)

dr
= −1

r

(
1 +

r

2

Φ′

Φ

)[
3

(
ζ +

1

2

δΦ

Φ

)
+

1

Γ

δp

p

]
(3.20)

and

d (δp/p)

dr
= −1

p

dp

dr

[
δp

p
+ 4ζ + 3

δΦ

Φ
+
σ2r3Φ

5
2

GM

(
ζ +

1

2

δΦ

Φ

)]
.

(3.21)
These two equations must be solved simultaneously with
the appropriate boundary conditions in order to deter-
mine the frequencies of normal modes. Since we are deal-
ing with metric theory, that is, the independent connec-
tion is not coupled to the matter fields in Equation (2.1),
the particles are moving along the connection given by
g; hence the physical variables are given in the Jordan
frame only. However, we demonstrate in the next section
that the solutions in both frames do not quantitatively
differ because of slight modifications introduced by the
theory.

4. RESULTS AND DISCUSSION

In this section, we present the results obtained by
solving the stellar structure equations together with the
modified radial oscillation equations derived in the pre-
vious section. Our numerical solutions have a form of
the mass–radius relation of the WDs and their corre-
sponding stability analysis. Although the Jordan frame
is the physical one, we present our results in both frames,
demonstrating similar behavior of the curves.

4.1. Mass–radius relations in Palatini f(R) gravity

In order to obtain the interior solution of the WD,
we numerically solve the stellar structure equations (3.1)
and (3.2) for the Einstein frame, while Equations (3.5)
and (3.6) for the Jordan frame along with the Chan-
drasekhar EoS, given by Equation (3.3). The boundary
conditions used at the center of the WD are M(r = 0) =
0 and ρ(r = 0) = ρc and on the surface ρ(r = R) = 0
with R being the radius of the WD. In order to avoid
any violation of the conventional physical laws, α is cho-
sen in such a way that it is well within the bound given
by [85] (see also [86]), that is, |α| . 5× 1015 cm2. Let us
notice that in the case of neutron stars (since the curva-
ture is higher in high density regime), the bound should
be reduced to ∼ 1012 cm2 [87], while when electric forces
taken into account, to ∼ 109 cm2 in the case of Palatini
theories [88, 89].

Figure 1 illustrates the variation of R and ρc with re-
spect toM of WDs for different values of α in the Einstein
frame. The different mass–radius curves indicate that
the interior structure of the WDs with high density gets
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R
 (k

m
)

α= − 1× 1015
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α= 1× 1015
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M (M¯ )

108

1011

ρ
c
 (g

cm
−

3
)

FIG. 1: Upper panel: mass–radius relation, Lower
panel: variation of mass with respect to ρc for WDs for

different values of α in the Jordan frame in Palatini
f(R) gravity. In the label, the values of α are shown in

cm2 unit.
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 (g
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FIG. 2: Same as Fig. 1 except here the Einstein frame
is considered.

modified due to the influence of Palatini f(R) = R+αR2

gravity. We know that the Starobinsky model of f(R)
gravity reduces to GR on choosing α = 0. This is also
evident from Figure 1, where the mass–radius curve cor-
responding to α = 0 mimics the Newtonian case, with
a mass-limit of about 1.44M�. Moreover, all the curves
merge at low densities, indicating that the effect of mod-
ified gravity is negligible in this regime. This is because
R is nearly proportional to the density, and hence, in the
low-density regime, R2 or any other higher-order correc-
tions do not contribute significantly. However, as ρc in-
creases beyond 109 g cm−3, the curves deviate from the
Newtonian case due to the increased contribution of the
αR2 term; thereby showing the effect of modified gravity
on the mass–radius relation of WDs at the high-density



7

regime. For the case of α < 0, the curves follow the
usual trend of increasing mass with increasing ρc and
overshoot the Chandrasekhar mass-limit, thus indicating
super-Chandrasekhar WDs. As evident from Figure 1,
the mass increases with increasing α and can go beyond
2M� for high α, entering already the mass range reserved
usually for neutron stars. On the other hand, for α > 0,
as ρc increases, the mass increases to a maximum value,
and then the curve starts turning back, revealing the sub-
Chandrasekhar limiting mass WDs. In the next subsec-
tion, we show that the portion of the curve corresponds
to a decrease in the mass with increasing ρc of the WDs
is unstable. Thus, in this case, the limiting mass is the
maximum mass attained before the curve starts reced-
ing. From Figure 1, we see that the mass-limit decreases
further from the Chandrasekhar mass-limit for more pos-
itive values of α.

The mass–radius relations, as well as the variation of
mass with ρc in the Einstein frame, are plotted in Fig-
ure 2. Since it is evident from Equation (3.4) that for
WDs, Φ ≈ 1, applying the conformal transformation
r̃2 = Φr2 will not it change too much, and therefore we
obtain almost similar curves as in Figure 1. Moreover,
the mass-radius curves in metric formalism are given
by Das & Mukhopadhyay [26]. It is evident that for
f(R) = R+αR2 gravity, the results (i.e., the mass-radius
curves) are similar in metric or Palatini formalisms. This
is because Palatini and metric are just two different for-
malisms to explain the same phenomena. Hence, even
if the modified stellar structure equations look different,
they eventually result in similar mass-radius curves.

4.2. Stability analysis of the modified gravity
induced white dwarfs

Let us now study the stable and unstable branches
of the mass–radius curves by stability analysis of the
WDs in Palatini f(R) gravity. As mentioned in §3 3.2,
a star in hydrostatic equilibrium may either be stable or
unstable against small radial perturbations. According
to GR, a branch is considered to be stable if it follows
∂M/∂ρc > 0, which is also known as the positivity con-
dition – a necessary condition for stability [51, 90]. It
ensures that the stars whose mass increases with the in-
crease in ρc are stable, whereas the stars with decreasing
mass with the increase in ρc are unstable [91]. We want
to examine whether this condition is also valid in the
considered theory of gravity with the given equation of
state. In other words, whether the WDs on the receding
branch of the mass–radius curves in Figure 1 and 2 are
unstable or not under radial perturbations. To do so,
one needs to solve the modified radial oscillation equa-
tions derived in §3 3.2 with appropriate boundary con-
ditions in both the Jordan and the Einstein frames and
look for the normal modes of frequencies that are real.
The sufficient condition for stability in modified gravity
is σ2 > 0, where σ is the characteristic frequency of the

normal mode (see Equation (3.15)). This is so because
the perturbations travel as plane waves (∼ eiσt) and if
σ2 < 0, i.e., σ is imaginary, the amplitude of oscillations
may grow in time, making the star unstable.
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FIG. 3: Absolute value of L.H.S. of Equation (4.2) at
the center of the WD in the Einstein frame for a set of

trial values of ω2. The label shows ρc of the WDs in the
unit of g cm−3.

We now numerically solve the modified equations for
radial oscillations (3.16) and (3.17) for the Einstein
frame, and Equations (3.20) and (3.21) for the Jordan
frame. In the case of Einstein frame, the boundary con-
ditions on the surface of the WD, i.e., at r̃ = R, are given
by

ζ̃(r̃ = R) = 1,

δp

p
+ 4ζ̃ +

δΦ

Φ
+
σ2R3Φζ̃

GM
= 0.

(4.1)

The latter condition makes sure that d(δp/p)/dr̃ in
Equation (3.17) is finite everywhere. Moreover, in or-
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FIG. 4: Absolute value of L.H.S. of Equation (4.4) at
the center of the WD in the Jordan frame for a set of

trial values of ω2. The label shows ρc of the WDs in the
unit of g cm−3.

der to ensure the physical regularity of the solutions, ζ̃

and dζ̃
/

dr̃ in Equation (3.16) must be finite at the cen-

ter, making the term in the parenthesis of R.H.S. equal
to 0. Thus, the boundary condition at the center of the
star, i.e., at r = 0, is given by

3ζ̃ +
1

Γ

δp

p
= 0. (4.2)

In the same way, we also find the appropriate bound-
ary conditions in the Jordan frame. At the surface, the
following conditions need to be satisfied:

ζ(r = R) = 1,

δp

p
+ 4ζ + 3

δΦ

Φ
+
σ2R3Φ

5
2

GM

(
ζ +

1

2

δΦ

Φ

)
= 0,

(4.3)

whereas at the center, the boundary condition is given
by

3

(
ζ +

1

2

δΦ

Φ

)
+

1

Γ

δp

p
= 0. (4.4)

We now integrate the radial oscillation equations from
the surface to the center of the stars using these bound-
ary conditions for a range of ω2. Here, ω2 is the square of
the dimensionless frequency, given by ω2 = σ2R3/GM .
The values of ω2 which satisfies Equations (4.2) and (4.4)
in the Einstein and Jordan frame, respectively, are the
correct normal mode frequencies for the radial oscilla-
tions. In Figure 3 and 4, the normal mode frequencies
correspond to the minima in each curve. If the minima
occur for ω2 < 0, that particular WD is unstable under
radial perturbation and usually do not exist in nature.
As we have discussed in the previous section, the WD
structure is not much different in Einstein and Jordan
frames. Hence the normal mode frequencies are also al-
most the same in both the frames. It is evident from
the figures that the WDs up to ρc = 2 × 109 g cm−3 are
all stable, mimicking the Newtonian case. However, at
high enough densities due to the increased contribution
of αR2 term, modified gravity may render extra stability
to the WD or make the WD unstable under radial per-
turbations. Considering the case of α = 4 × 1015 cm2

in Figures 3(a) and 4(a), we see that the WDs with
ρc & 1010 g cm−3 are unstable as the first minimum oc-
curs at ω2 < 0. From the mass–radius curves in Fig-
ures 1 and 2, we notice that these range of WDs lie on
the receding branch of the mass–radius curve, for which
∂M/∂ρc < 0. Thus, the WDs, which are unstable in
the Newtonian regime of Palatini f(R) gravity, also vi-
olate the positivity condition. On the other hand, for
α = −4× 1015 cm2, modified gravity brings extra stabil-
ity to the WDs with ρc & 1010 g cm−3 as the first min-
imum shifts towards more positive values of ω2, which
is evident from Figures 3(b) and 4(b). From the mass–
radius curve corresponding to positive values of α, we also
notice that this branch satisfies the positivity condition,
i.e., ∂M/∂ρc > 0. Thus, in this case, the high-density
modified gravity induced WDs are more stable than the
intermediate-density WDs. In this way, we examine the
stability of WDs in Palatani f(R) gravity, thereby estab-
lishing that the positivity condition is also a valid condi-
tion for stability analysis in Palatini f(R) gravity in the
Newtonian regime.

5. CONCLUSIONS

The recent observations of several over- and under-
luminous SNe Ia suggest the violation of the Chan-
drasekhar mass-limit for WDs. This has led to an ex-
tensive study of super- and sub-Chandrasekhar limiting
mass WDs, on the grounds of Newtonian and relativistic
modified gravity [25, 26, 49, 65, 92]. In this work, we have



9

focused on the WDs in the Newtonian limit of Palatini
gravity with the quadratic Lagrangian f(R) = R+ αR2.

Solving the modified stellar structure equations for the
given gravity model with the Chandrasekhar EoS, the
mass–radius relations of the WDs were obtained for pos-
itive and negative values of the parameter α within the
physically accepted bounds. Positive values of α turn
out to provide sub-Chandrasekhar limiting mass WDs,
whereas negative values give the super-Chandrasekhar
ones. It should be noticed that there is no turn back
in the super-Chandrasekhar branch and this is the rea-
son why the maximum mass is only limited by the max-
imum possible density. At high densities, various nu-
clear reactions, for instance, pycno-nuclear reaction and
inverse β-decay, may be triggered [93]. However, the
rate of such reactions are quite uncertain, and hence
we have hypothetically extended our curves to approxi-
mately 1011 g cm−3. Analyzing the stellar structure equa-
tions or the mass–radius curves, it is clear that the Pala-
tini gravity model reduces to the Newtonian case for
α = 0 with the conventional Chandrasekhar mass-limit.
It is also evident that the deviations from the Newto-
nian case are profound at high densities of the WDs, i.e.,
about ρc & 109 g cm−3 due to the significant contribution
of αR2 term, which eventually leads to a possible expla-
nation for the violation of the Chandrasekhar mass-limit.

Regarding the stability problem, generally, modified
gravity models can induce extra stability to the high-
density WDs, or it can make them unstable. Let us notice
that such an analysis of compact stars in the framework
of modified gravity, however with respect to the GR cri-
terion (that is, using the same radial oscillation equations
as for the GR case without any modifications) might be
confusing [82]. Because of that fact, we have examined
our model with respect to the appropriate modifications
of the radial oscillation equations provided by the Pala-
tini gravity, and also confirmed that the positivity con-
dition ∂M/∂ρc > 0 still holds in this particular case.

As a concluding remark, let us comment that many
theories of gravity modify the Newtonian limit of the
hydrostatic equilibrium equations [94]; therefore they
also alter other stellar equations, such as, for example,
Schwarzschild criterion to determine the energy trans-
port through a given star [95], or energy produced in
its core [96–99]. Some parts of stellar evolution, for in-
stance, Hayashi tracks [95], Main Sequence [100], and
cooling models [101] are also affected by modified grav-
ity such that it can also have an impact on the prop-
erties of WDs and their formation processes. Research
along these lines is essential to understand those fascinat-
ing objects and fully exploit the upcoming observational
events. Detections of various compact objects, including
WDs, by the use of gravitational wave detectors, such as
aLIGO, Einstein Telescope, LISA, TianQin, BBO, DE-
CIGO [102, 103] can put constraints on these theories of
gravity, or they might shed light on features of the GR
extensions [19].
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Appendix A: Relativistic equations for stellar
structure in Palatini gravity

1. Schematic way to get TOV in modified gravity

Let us notice that field equations of many modi-
fied theories of gravity can be written in the following
form [104, 105]:

σ(ψi)(Gµν −Wµν) = κ2Tµν , (A.1)

where Gµν = Rµν − gµνR/2 is the usual Einstein tensor
and Wµν is an additional term including the theory mod-
ifications. They can have a geometric origin, for example,
as it happens in this work. ψi represents some field while
σ(ψi) is a coupling factor to gravity. For such a model,
assuming the following spherically symmetric metric

ds2 = −B(r)c2 dt2 +A(r) dr2 + r2 dθ2 + r2 sin θ2 dφ2 ,
(A.2)

the generalized TOV equations are given by [106]

(
Π

σ

)′
= −

GM(r)
r2

(
Q
σ + Π

σ

)(
1 +

4πr3 Π
σ

M(r)

)
1− 2GM(r)

r

+
2σ

κ2r

(
Wθθ

r2
− Wrr

A

)
(A.3)

and

M(r) =

∫ r

0

4πr′2
Q(r′)

σ(r′)
dr′ , (A.4)

where Q, Π are the generalized energy density and pres-
sure, respectively. M(r) stands for the stellar mass
within a radius r. The physical interpretation of the
terms appearing in the TOV equations because of the
modifications, can be found in [79, 107].

2. TOV equations for Palatini f(R) gravity

Comparing Equation (2.10) with Equation (A.1), we
notice that they have the similar form, and thus the
modified TOV equations for Palatini f(R) gravity can
be written as [49, 76]

d

dr̃

(
Π

Φ(r̃)2

)
= −GAM(r̃)

r̃2

(
Q+ Π

Φ(r̃)2

)(
1 +

4πr̃3 Π
Φ(r̃)2

M(r̃)

)
(A.5)
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and

M(r̃) =

∫ r̃

0

4πx̃2 Q(x̃)

Φ(x̃)2
dx̃ . (A.6)

Here the metric component A (A.2) is given by

A = 1− 2GM(r̃)

r̃
. (A.7)

The tilde in Equations (A.5) and (A.6) denotes the quan-
tities in the Einstein frame, and it is related to the Jordan
frame by the conformal transformation r̃2 = Φr2, where
Φ is the scalar field introduced in §2. Moreover, the con-
formally related energy density (Q̄) and pressure (Π̄) can

be written as

Q̄ = ρ̄+
Ū

2κ2c2
=

ρ

Φ2
+

U

2κ2c2Φ2
=

Q

Φ2
, (A.8)

Π̄ = p̄− Ū

2κ2
=

p

Φ2
− U

2κ2Φ2
=

Π

Φ2
, (A.9)

where ρ and p denote the density of matter and pressure
of the fluid, respectively.

For the quadratic model Φ is given by

Φ = f ′(R) = 1 + 2αR = 1− 2ακ2T, (A.10)

while from the structural equation (2.5) one obtains the
second expression in the above formula.
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tamäki, A&A 454, 707 (2006), arXiv:astro-ph/0510519
[astro-ph].

[43] M. Szyd lowski, A. Stachowski, A. Borowiec, and A. Wo-
jnar, European Physical Journal C 76, 567 (2016),
arXiv:1512.04580 [gr-qc].

[44] A. Borowiec, A. Stachowski, M. Szyd lowski, and A. Wo-
jnar, J. Cosmology Astropart. Phys. 2016, 040 (2016),
arXiv:1512.01199 [gr-qc].

[45] A. Borowiec and A. Kozak, J. Cosmology Astropart.
Phys. 2020, 003 (2020), arXiv:2003.02741 [gr-qc].

[46] L. Järv, A. Karam, A. Kozak, A. Lykkas, A. Racioppi,
and M. Saal, Phys. Rev. D 102, 044029 (2020),
arXiv:2005.14571 [gr-qc].

[47] I. D. Gialamas, A. Karam, T. D. Pappas, and
V. C. Spanos, Phys. Rev. D 104, 023521 (2021),
arXiv:2104.04550 [astro-ph.CO].

[48] G. Herzog and H. Sanchis-Alepuz, European Physical
Journal C 81, 888 (2021), arXiv:2102.05722 [gr-qc].

[49] A. Wojnar, International Journal of Geometric Meth-
ods in Modern Physics 18, 2140006-60 (2021),
arXiv:2012.13927 [gr-qc].

[50] S. Banerjee, S. Shankar, and T. P. Singh, J. Cosmology
Astropart. Phys. 2017, 004 (2017), arXiv:1705.01048
[gr-qc].

[51] S. L. Shapiro and S. A. Teukolsky, Black Holes, White
Dwarfs and Neutron Stars: The Physics of Compact Ob-
jects (1986).

[52] G. R. Lauffer, A. D. Romero, and S. O. Kepler, MNRAS
480, 1547 (2018), arXiv:1807.04774 [astro-ph.SR].

[53] S. Chandrasekhar, MNRAS 95, 207 (1935).

[54] K. Nomoto, K. Iwamoto, and N. Kishimoto, Science
276, 1378 (1997), arXiv:astro-ph/9706007 [astro-ph].

[55] B. S. Wright and B. Li, Phys. Rev. D 97, 083505 (2018),
arXiv:1710.07018 [astro-ph.CO].

[56] D. A. Howell, M. Sullivan, P. E. Nugent, R. S. Ellis,
A. J. Conley, D. Le Borgne, R. G. Carlberg, J. Guy,
D. Balam, S. Basa, D. Fouchez, I. M. Hook, E. Y. Hsiao,
J. D. Neill, R. Pain, K. M. Perrett, and C. J. Pritchet,
Nature 443, 308 (2006), arXiv:astro-ph/0609616 [astro-
ph].

[57] R. A. Scalzo, G. Aldering, P. Antilogus, C. Aragon,
S. Bailey, C. Baltay, S. Bongard, C. Buton, M. Chil-
dress, N. Chotard, Y. Copin, H. K. Fakhouri, A. Gal-
Yam, E. Gangler, S. Hoyer, M. Kasliwal, S. Loken,
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J. D. V. Arbañil, J. Cosmology Astropart. Phys. 2021,
064 (2021), arXiv:2012.03342 [gr-qc].

[82] J. M. Z. Pretel, S. E. Jorás, and R. R. R. Reis,
J. Cosmology Astropart. Phys. 2020, 048 (2020),
arXiv:2008.00536 [gr-qc].

[83] A. Wojnar, Acta Phys.Polon.Supp. 13, 249 (2020),
arXiv:2001.00388 [gr-qc].

[84] C. J. Hansen, S. D. Kawaler, and V. Trimble, Stellar
interiors : physical principles, structure, and evolution
(2004).
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