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Differential evolution (DE) has been a simple yet effective algorithm for global optimization problems. The per-
formance of DE highly depends on its operators and parameter settings. In the last couple of decades, many
advanced variants of DE have been proposed by modifying the operators and introducing new parameter tuning
methods. However, the majority of the works on advanced DE have been concentrated upon the mutation and
crossover operators. The initialization and selection operators are less explored in the literature. In this work, we
implement the orthogonal array-based initialization of the population and propose a neighborhood search strat-
egy to construct the initial population for the DE-based algorithms. We also introduce a conservative selection
scheme to improve the performance of the algorithm. We analyze the influence of the proposed initialization
and selection schemes on several variants of DE. Results suggest that the proposed methods highly improve the
performance of DE algorithm and its variants. Furthermore, we introduce an ensemble strategy for parameter
adaptation techniques in DE. Incorporating all the proposed initialization, selection, and parameter adaptation
strategies, we develop a new variant of DE, named OLSHADE-CS. The performance of OLSHADE-CS is found
to be highly competitive and significantly better in many cases when compared with the performance of the
state-of-the-art algorithms on CEC benchmark problems.

1. Introduction

In this paper, we evaluate the global bound-constrained optimization
problems. Without losing the generality, a global bound-constrained op-
timization problem is mathematically defined as follows:

£ =argmin f(%), X €Q, ¥=[x,X,,....xp", L; <x; <U; 1)

where f(.) represents the objective function of the given problem; D
is the number of decision-variables in the given problem; and x is a
D-dimensional vector with real-parameter elements in search-space Q.
Here, Q represents the D-dimensional search space where j-th dimen-
sion is bounded by [L ;»U;1. In Eqn. (1), we describe the optimization
problem as a minimization problem. Moreover, we consider the mathe-
matical expressions for only minimization problems throughout the pa-
per. Since the last three decades, research on single objective bound-
constrained optimization problems has been the basis on more com-
plex optimization areas such as multimodal, constrained, multi-, many-,
dynamic optimizations, etc [1]. Outcomes of the research done on the
bound-constrained optimization problems have directly influenced the
development of the above-mentioned optimization areas [2]. The re-
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search area has been evolving rapidly in recent years, and numerous
bound-constrained optimization algorithms have been proposed [3].
However, this research avenue is still open for further exploration as
a single algorithm cannot always perform satisfactorily on different op-
timization problem classes [4]. Real-world optimization problems bring
forth numerous challenging attributes to the algorithms such as a large
number of non-separable variables, asymmetric distribution of the local
minima, high multimodality, a mixture of aforementioned characteris-
tics, etc [5].

The problem defined in Eqn. (1) can be classified into two groups
on the basis of the budget of function evaluations. The first group in-
cludes problems with a small budget of function evaluations (100 x D),
called expensive optimization problems. On the other hand, problems with
a relatively large budget of function evaluations have been included in
the second group, denoted as inexpensive optimization problems. Inexpen-
sive optimization problems with larger budget for function evaluations
(defined in CEC2020 competition [6]) are considered in this paper. Al-
though the No Free Lunch theorem [4] states that an optimization al-
gorithm can not always perform better than other algorithms on all
problems, it is possible to design an algorithm that works better than
others on a specific class of problems [7]. With a larger budget for func-
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tion evaluations in inexpensive optimization problems, state-of-the-art
algorithms cannot provide an appropriate balance between exploration
and exploitation [8]. These algorithms are principally designed for low-
budget inexpensive problems, where convergence should be faster to
get an optimum solution within the budget [9]. Generally, exploratory
search should be emphasized during the initial phase of the optimization
process, while the exploitative search during the final stage [10]. In re-
cent time, the focus of optimization has gradually shifted more towards
exploitative search as the optimization process evolves [11]. Therefore,
even for high-budget problems, the optimization process switches to
exploitative search far early in the algorithms. Thus, they easily get
trapped inside the local basins of the problems, and the final results
of the algorithms may become non-optimal [12]. Moreover, these algo-
rithms cannot utilize the high budget appropriately to find the global
optimum solution. To deal with such issues, we develop a DE-based al-
gorithm to solve high-budget inexpensive problems effectively and ro-
bustly.

DE, one of the popular derivative-free population-based optimiza-
tion algorithms, is used to solve problems defined in Eqn. (1). DE is one
of the most popular optimization tools for real parameter optimization
problems as it is compact with simple structure, easy to use and under-
stand, and robust with moderate convergence. Although DE has adopted
the common concepts of the natural evolutionary processes, it has some
unique characteristics among the members of the family of evolutionary
algorithms [13]. The main characteristics of DE are (i) ways to gener-
ate trial solutions (offsprings) from solutions of the current population
(parents), and (ii) selection procedure to create a new population for
the next iteration. DE uses a one-to-one selection and spawning relation-
ship between each individual (parent) and its trial individual (offspring).
Although this feature of selection provides strength in DE, sometimes,
it turns into weakness when the global optimal solution is located be-
tween narrow boundaries. While selection mechanisms used in other
algorithms can possibly be adopted to improve the performance of DE,
very few attempts have been made in the past on this aspect.

Further, several efforts have been made in the last few decades to
enhance the application of DE over different kinds of problems, and
the quest is still there due to its versatile behavior [14]. Since the in-
troduction of DE in seminal paper [15], numerous modifications have
been proposed to enhance the performance. Research progress in the en-
hancement of DE can be found in [16-23]. Some of the research direc-
tions adopted in these attempts are: 1) Parameter adaptation technique
based on learning from past experiences, novel crossover and mutation
schemes, the ensemble of various mutation and crossover schemes, and
population resizing during the course of the search. Moreover, DE-based
algorithms have been successfully applied to the constrained, multi-
modal and high-dimensional optimization problems. In recent years, DE
algorithms have also been widely applied to many real-world complex
optimization problems in the domains of chemical engineering [24],
wireless sensor networks [25], electrical networks [26,27], general en-
gineering design [28], computer vision [29], data clustering [30], etc.
In these research problem areas, most of the DE-based algorithms are
coupled with other schemes due to DE’s simple framework yet robust
performance over complex search space. From the above discussion, it
is evident that DE-based variants have created a class of popular and ro-
bust algorithms for diverse optimization fields. These observations mo-
tivate the present work. Moreover, contrary to the earlier approaches
made on the enhancement of DE, we propose to modify the selection
operator along with other operators.

A one-to-one selection scheme has been used in the classical DE al-
gorithm to determine the next set of solutions for the ongoing iterations.
In this scheme, each individual of the population retains the best solu-
tion at its index-point, and the population also retains the best-so-far
solution. However, this scheme traces the improvement at only the in-
dividual level, and the improvement of other individuals does not affect
the selection of any individual’s trial solution. For example, a trial so-
lution is selected when it is better than an individual’s current solution,
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even if it is worse than some solutions currently available in the popu-
lation. Due to this phenomenon, the performance of DE may deteriorate
in highly multimodal problems. To address this issue, we propose a new
conservative selection procedure to select a trial solution in place of the
one-to-one selection procedure. In the proposed selection procedure, a
sub-population is created by selecting solutions from the current pop-
ulation and trial population for each trial solution. A trial solution is
only selected in the current population when it satisfies the following
criteria:

« The trial solution must be better than the corresponding current so-
lution.

» The trial solution must be better than p% of the solutions of its sub-
population.

Here, the size of sub-population and p are the user-defined param-
eters of the proposed selection scheme. By adding one more criterion
in the selection scheme of classical DE, this scheme promotes efficient
exploration without losing the exploitation capability in the population.
In this work, we employ this selection scheme in popular DE variants to
study its effectiveness.

As mentioned earlier, a review of literature on the variants of DE re-
veals that the improvements focused mainly on the adaptation of param-
eters (scale factor sF and crossover rate CR) and mutation strategies.
Other operators like initialization and selection have received minimal
attention. In DE, the random initialization should supposedly distribute
the population members uniformly over the entire search space. How-
ever, the 'random uniform’ generation of solutions does not produce
accurate uniform distribution. The population does not cover the entire
search space either as the population size is usually small. Therefore,
to distribute the initial solutions over the entire search space, we pro-
pose an orthogonal array and neighborhood search-based initialization
operator for DE. In this approach, a large number of solutions are ini-
tialized by using the orthogonal array-based design. Subsequently, we
apply neighborhood search on each solution for some iterations to dis-
tribute these solutions on lower objective function contours of search
space. After that, we pick a subset of better solutions from all solutions
as an initial population for DE. This initialization process improves the
performance of DE as the initial population is more concentrated near
the optimal locations in the search space. By consolidating the proposed
schemes within the framework of DE, we propose a new algorithm,
named OLSHADE-CS, to solve real parameter bound-constrained opti-
mization problems. In this algorithm, we incorporate the following op-
erations:

1. Orthogonal array and neighborhood search-based initialization to
generate the initial population for further processing in DE opera-
tions.

2. An improved version of the parameter adaptation technique for dy-
namic tuning of parameters during the search.

3. A conservative selection scheme to select the solutions from current
and trial populations for processing in the next iteration.

4. An ensemble of several mutation strategies for generating trial solu-
tions.

2. Primordial information and literature survey

In this section, we present a brief survey on DE algorithm and its
evolution in the last few decades.

2.1. Differential evolution

DE is a population-based global optimization algorithm that uses dif-
ferential vectors to generate trial solutions [17,18]. In general, DE uses
four evolutionary operators: initialization, mutation, crossover, and selec-
tion to update the population sequentially for finding the optimal solu-
tion.
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2.1.1. Initialization
DE initializes optimization with N, nos. D-dimensional solutions,
called population, where N, is the population’s size, and D is the number
of decision variables. Population, P, can be represented as a matrix of
size (N, X D), i.e.,
r
| @

P= [;‘cl,xz,...A,pr

where,

% =[x X2 wxipls i=1,2,...,N, 3
Here, the initial population is generated at random positions of search
space uniformly using the following equation.

x;; =xptrand.(xy —xp), i=1,2,... ,N, and j =1,2,....,D “4)

where rand represents a random number generated from a uniform dis-
tribution within range (0,1), x; and x;; are lower and upper bounds of
Jj-th dimension of search space, respectively.

2.1.2. Mutation

In this step, a mutation strategy is utilized to generate a mutant
vector for each solution of the current population. Numerous mutation
strategies have been proposed. The most popular one, DE/rand/1, in-
corporates the following mutation strategy to generate mutant vectors.

0 =%, + sF.(sc,2 - x,}) )
where sF is the user-defined parameter, called scaling factor, to scale the

difference vector (Scrz - X, ) Some other popular mutation strategies
are listed below.

1. DE/rand/2

Uy =X, + sF.(x',2 - X, X, - x;s) (6)
2. DE/rand-to-best/1

0 =%, + sF.(yc,,m, ~ %, + %, - x,}) @
3. DE/current-to-best/1

b =%+ sF.(J‘cbm — %+ %, - )'c,z) ®)
4. DE/current-to-rand/1

ﬁi:)'c,-+rand.<5cr] —J'cl-)+sF.()‘c,2 —X,}) 9
where X, , %,, X, X,,, and %, are mutually different solutions selected

from the current population and x,,,, is the best solution found so far.

2.1.3. Crossover

In this step, a crossover operator is employed to share elements of
each pair (7;, %;) for creating trial solutions. The frequently used uniform
or binomial crossover is described in the following equations.

_ T

i = [u,-l,u,-z,....,u,-D] (10)

and

uy, = vy if randj.< CROT j == jana an
J x;;, otherwise

where i; is the i-th trial solution created after crossover between x; and
0;; CR represents the user-defined parameter, called crossover rate, to
control the number of crossover elements in trial solutions; j,,,, is ran-
domly chosen within [1, D].

2.1.4. Selection
Selection is the final step of the optimization cycle in DE. In this

step, the population for the next iteration (k + 1) is created from the

current population and trial solutions. A better one is selected from each

pair (X;,#;) as a solution for the next population. Mathematically, the

selection operator is defined by the following equation:

ﬂﬂz{ﬁJHub<ﬂW)

1

12
i*, otherwise a2
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2.2. Orthogonal array
The orthogonal array (0a), denoted by Ly (N M) is a predefined table

with M factors and N levels per factor, where the size of Ly(N My is
(O x M) [31,32]. For example

L,2% = (13)

[NO TN S SN
[ S e S
—_ N N =

where L,(2°) has four combinations of levels, two levels per factor and
three factors. The properties of L,(N™) are as follows:

1. Each level comes Q/N times in each column of Ly(N My,

2. Each combination of two corresponding levels of any two columns
comes Q/N? times.

3. In any two-column of Ly(N M) there are Q combinations: (1,1),
1,2), ..., (1,0), (2,1), (2,2), ..., 2,0), (0, 1), (Q,2), ...., (O, 0).

4. The resulting array after swapping the two columns of an orthogonal
array is also an orthogonal array.

5. After taking away some columns of any orthogonal array, the result-
ing array is also an orthogonal array having a smaller number of
factors.

Due to the above properties, all combinations of factors are dis-
tributed uniformly over the search space of all feasible combinations
[33].

2.3. Ensemble of mutation strategies based variants of differential evolution

The performance of DE has been highly dependent upon parameter
settings and mutation strategies [19,34]. Numerous works have been
carried out to identify the optimal combination for particular optimiza-
tion applications. Although many DE variants had been proposed in the
literature, some studies also reported that a specific strategy could not
perform satisfactorily over all types of problems [30]. As a consequence
of the shortcomings of DE variants with a single mutation strategy, an
ensemble of mutation strategies has been getting more attention in the
community since the last decade [19,35].

Fan et al. [36] propose an auto-selection mechanism during the evo-
lutionary search for optimizing combinatorial problems. An adaptive
operator selection method is introduced by Sallem et al. [37] to select
a suitable mutation strategy using the functions landscape information
and success history of all mutation strategies available in the selection
pool. In [38], Elsayed et al. apply a fuzzy rule-based heuristic to select
the best performing evolutionary algorithm from the pool of many al-
gorithms during the evolutionary process.

An ensemble of discrete variants of DE is developed by Tasgetiren
et al. [39] to solve the traveling salesman problems. For the DE frame-
work, an ensemble of 16 combinations of mutation, crossover, and
constraint handling mechanisms is proposed by Elsayed et al. [40] to
solve constrained optimization problems effectively. In [19], a multi-
population-based framework is designed to select DE variants using
their performance characteristics. Zhang et al. [41] propose a multi-layer
competitive-cooperative framework to enhance the performance of DE
over global optimization problems. Another variant of the DE algorithm
is proposed in [42], where three mutation strategies with their associ-
ated control parameters are employed to improve the balance between
exploration and exploitation. Yu et al. [43] introduce a novel mutation
mechanism to accelerate convergence and maintain diversity. Similarly,
a triangular mutation operator is proposed by Mohamed [44] to provide
a balance between explorative and exploitative search in DE. Interested
readers can refer to the articles by Das et al. [18], Wu et al. [45], and a
recent survey paper by Wu et al. [46].
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2.4. Initialization techniques in evolutionary algorithms

For generating the initial population, evolutionary algorithms (EAs)
utilize a pseudo-random number generator, where a sequence of the
random numbers is generated from the uniform distribution [47]. Al-
though this initialization technique is simple, it encounters difficulties
where the search space dimension is high as the generated sequence of
random numbers may not be fully distributed [48]. The initial popula-
tion generated from uniform distribution can easily be transformed into
a biased population [48]. Some EAs incorporated with biased randomly
generated population have been proposed in the literature [49,50].

In addition to a uniform distribution, initialization techniques based
on chaotic theory [51] have also been utilized to generate initial popu-
lation in genetic algorithm (GA) [52], DE [53,54], artificial bee colony
(ABQ) [55], and particle swarm optimization (PSO) [52,54,56,57]. As
shown in these works, use of chaotic-based initialization techniques en-
hances the performance of EAs in terms of convergence speed, success
rate, and population diversity [58]. However, these techniques have
many disadvantages. One major disadvantage is that these methods are
devised only for one-, two-, or three-dimensional search space, not for
higher dimensions [59]. An investigation is required to examine the per-
formance of these initialization techniques on high-dimensional search
spaces.

Besides aforementioned stochastic techniques, deterministic tech-
niques have also been utilized to generate the initial population in EAs.
These techniques always generate the same population, where the se-
quence of generated points is evenly distributed over the entire search
space [60]. Recently, these techniques are gaining popularity as the
uniformly distributed initial population can improve the exploration
ability of EAs in case of inadequate prior knowledge about the search
space [61]. Consequently, the algorithm converges to a better solution
with a faster convergence speed [49]. Deterministic techniques, such
as uniform experimental design and orthogonal design, generate points
that are evenly distributed in a given range of search space [62]. How-
ever, developing points for a large population is expensive in uniform
experimental design. Thus, the orthogonal design-based initialization
schemes are preferred by the researchers. In the literature, these orthog-
onal design-based schemes improve the performance of several popular
algorithms, such as DE [63,64], PSO [65,66], and GA [67,68].

Apart from these techniques, Latin hypercube sampling
(LHS) [69] and opposition-based learning (OBL) [70] initializa-
tion techniques are also adopted in EAs. In LHS, variables are divided
into a fixed number of intervals to create grids. Thereafter, a random
number is generated within each grid. In OBL, the population can be
initialized using any of the above techniques; however, a heuristic
operator is employed to calculate opposite solutions from each popu-
lation solution. For more information about the initialization schemes
employed in EAs, interested readers can follow the survey paper [47].

3. The proposed algorithm

This section introduces the OLSHADE-CS algorithm which employs
orthogonal array-based initialization, an ensemble of four mutation
strategies, a parameter adaptation technique, and a conservative selec-
tion scheme to solve global optimization problems.

3.1. Orthogonal array-based initialization

Our proposed algorithm uses orthogonal array-based initialization to
generate the initial population members. When solving an optimization
problem, we do not know the location of the global optimal solution in
the beginning. Therefore, we need to generate initial solutions uniformly
such that the algorithm can explore the whole search space evenly. An
orthogonal array is able to provide combinations of locations that are
distributed evenly. This property of orthogonal array inspires us to uti-
lize orthogonal array for constructing initial solutions.
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3.1.1. Orthogonal array calculation

In this work, we utilize the procedure suggested in [71] to construct
an orthogonal array, L,(N™), where N is an odd integer and Q = N'.
Here, I is chosen in such a manner that it satisfies the following equa-
tion.
o' -1
0-1
In this work, the following steps are used to construct the orthogonal
array, A.

N = (14)

« Step 1: Calculation of basic elements of A:

i—1

m,kzltolandizltog (15)

ajj = L]
where,

Nk
R
U O T

+ Step 2: Calculation of nonbasic elements of A:

& smnyN-1 =Tem(at+a;, N), s=1to(j—1)ands=1to(N - 1)
(16)

where,
T
a; = [oyj 05, a0
+ Step 3: Deletion of last (M — D) columns of A to restrict the matrix
up to D columns.
+ Step 4: Deletion of randomly selected (N, » — Q) rows of A to restrict
the matrix up to N, rows.

After calculating matrix A, initial solutions are generated using the
following equation.

xpma | —Y T )y i=1,2,....N,andj=12,....D
Y Y\ max(A) — min(A) p
a7

3.1.2. Neighborhood search

In this step, we shift the location of each orthogonal initialized solu-
tion within its neighborhood. For this purpose, we adopt the neighbor-
hood search proposed in [72]. However, we employ this search operator
for 20% of the available budget of function evaluations in place of 60%
suggested in [72]. In [72], neighborhood search is applied as a local
search operator to improve the solutions. In contrast, we utilize this op-
erator to create initial solutions with a random shift from orthogonal
initialization for the proposed search operator. Following steps are uti-
lized in neighborhood search [72]:

» Step 1: We create a neighborhood for each solution. The neighbor-
hood members are defined as the nearest n; solutions based on the
euclidean distance.

» Step 2: We update the solutions according to the DE operators pro-
posed in [73] within the neighborhood members for 20% of the
available function evaluation budget.

3.2. Mutation strategies

In the proposed algorithm, we utilize an ensemble of four different
mutation strategies to evolve the solutions in each iteration.

» mutl: DE/current-to-best,/1 with external archive [74]:

b, =% + F, (xm,l R x,3> (18)
» mut2: DE/current-to-best, /1 without external archive [74]:

0 =% +5Fi()_‘beszl - X+ X —)_‘rz) 19)
» mut3: DE/best,/1 with external archive:

l_)i = )_Cbestl + SFi ("_CrZ - )_CrS) (20)
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» mut4: DE/scaled best,/1 with external archive:
17[ = SFI)_CbeSIZ + <)_Cr2 - )_Cr3) (21)

where r; # ry # ry # best| # best, # i are randomly generated integers
in such a manner that i) x,; and %,, are selected from P, ii) X,; is se-
lected from the union of P and external archive, i) X, is selected
from the 25% of best solutions, and iv) X, is selected from the 50%
of best solutions. Here, we employ an archive to improve the diversity
of solutions by utilizing successful trial solutions of past iterations for
generating new trial solutions [74].

For generating a trial solution for the i-th individual, we select one
mutation strategy from the ensemble pool based on the success of each
mutation strategy in the last iteration. According to each mutation strat-
egy’s relative success, we calculate the probability of selection of a mu-
tation strategy, Prob;, for the next iteration.

Succ,.k

Probff'"1 =
> - Succk
j= J

, i=1{1,2,3,4} (22)
where,

JE& = fEEHD
Sucef = ) max0, — 23)
jesk ||
and S[" is the set of individuals which use i-th mutation strategy at k-th
iteration.

3.3. Crossover

After mutation, a crossover operation is done to generate trial solu-
tions. In the proposed algorithm, two popular crossover strategies: uni-
form and exponential crossover, are employed randomly on each mutant
solution. The uniform crossover, Xor,;,, is applied with a probability of
0.4 while the exponential crossover, X or.,,, is applied with a probability
of 0.6.

o Xorbi,,(D,-,)'c,-), if rand < 0.4
i {Xorexp(ﬁi,)‘ci), otherwise

exp’

(24)

where, in Xory, (5, %;), i; is generated using the following equation:

- {u,.j, if rand; < CR; or j ==1
ij —

otherwise 25

Xijs
where / is an integer randomly generated between 1 to D. Similarly, in
Xorey, (5 %;), @ is generated using the following equation:

B {u,.j, if j e {)p. I+ Dp,... (I +L-1)p}

- ) 26
X;js otherwise 26)

MU

where (/) represents a remainder function where this function returns
a remainder left over when / is divided by D.

3.4. Selection

A new conservative selection procedure is proposed to select a trial
solution instead of the one-to-one selection procedure. In the approach,
for each trial solution, a neighborhood, N ;, of size ns is formed by ran-
domly selecting solutions from the union of the current population and
trial population. For the initial 60% of the optimization process, a trial
solution is selected to create the population member of subsequent itera-
tion if it is better than the current solution and 25% of its neighborhood’s
solutions, i.e.,

- . - - 1

et _ [ (@) < 7 A (£ Zew,, Sy > 025) o
! x¥, otherwise

where,

1, if f(ﬁ‘.‘) < f()‘c’?)
S, = ! 77, jEN; 28
b {0, otherwise J o 28)

For the rest of the optimization process, trial solutions are selected using
the conventional selection scheme defined in Eqn. (12).
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3.5. Parameter adaptation technique

The parameter adaptation technique used here is a modified ver-
sion of the proposed one in [73], called success-history-based param-
eter adaptation technique (SHPAT), for the adaptation of parameters
CR; and sF;. In SHPAT, a solution X; is associated with CR; and sF; set
probabilistically at the initial step of each iteration. Here, a historical
memory with H elements for both parameters named ¢y and g, re-
spectively, is maintained for adapting the value of CR; and sF; during
the search. The values of CR; and sF; are dependent upon yu¢g and u,p,
respectively, and are calculated using the following equations:

CR; = randn,-(MCR,r’,O.l)

(29)

sF;, =randc; (ysFY,’ s O.l)
where, r; is randomly selected index from [1, H]; randn;(ucg,ocgr)
and randc;(ugp, o,p) are random number generators from Gaussian and
Cauchy distributions, respectively. For Gaussian distribution, mean and
standard deviation are uc-y and ooy, respectively; while for Cauchy dis-
tribution location and scale parameters are u,; and o, respectively. If
CR; is generated outside of the range [0,1], then it is replaced by the
violated limit (0 or 1). Similarly, sF; greater than 1 is set to 1, and for
sF; <0, sF; is repeatedly generated until we get a positive number.

In the algorithm, suitable initial values of both y.p and u,y are set.
To update one element in y-, and p,p sequentially, CR; and sF; of each
i-th individual that finds a better trial solution than itself are recorded in
Scr and S at the end of each iteration. Moreover, elements of S, and
S, are sorted according to the degree of improvement of the solutions.
If Scg and S are not empty, ucgy and u,r, are updated using the
following equations:

{MCR,k = meanw(SCR) (30)
HsFk = meanw(SsF)

where index k (€ {1,2,3,..., H}) is the memory position updated in the
current iteration, and it is calculated as follows:

k=rem(t—1,H)+1 (€1))

where ¢ is the current iteration count and rem(a, b) is the remainder
after dividing a by b. Here, mean,, represents a weighted Lehmer mean
calculated using the following equation:

ICl 2
et WG

mean,,(C) = <ic L where, C € {Scg, S} (32)
k=1 wkck

and

wy, = log(|C| +0.5) — log(k) (33)

Note that in [73], the w is calculated differently. In [73], value to w)
is dependent on the magnitude of the objective function improvement
of the successful offsprings, i.e.,

w, = ICA‘—f’ (34
WAV

i=1

where
Ay =abs(f (@) - £(xF))

However, this update procedure is prone to overestimation or underes-
timation due to the magnitude of the improvement. If parameter values
cause large improvement in the objective function while the other set-
tings result in small improvement, the latter would be ignored in the
next mean,,(C). To avoid such issues, we employ Eqn. (33) to calculate
wy,, where the equation is rooted to the rank rather than to the magni-
tude of the improvement.
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3.6. Archive and population management

To preserve information on the direction of progress during itera-
tions, an archive N ,., is maintained where some inferior solutions are
stored [74]. Initially, this archive is empty. At the end of each itera-
tion, the solution of the population, which is updated in the selection
operation, is added to this archive. However, the size of the archive can
exceed a pre-defined size limit after some iterations. Therefore, to keep
the size within the limit, extra solutions are removed randomly from the
archive. In the proposed algorithm, population size keeps changing from
iteration to iteration [74]. Thus, the archive size also keeps changing to
maintain an archive size proportional to the population size.

Here, we utilize a linear population reduction scheme [75] to resize
the population in each iteration,i.e.,

Nk _ lN/';nln — N}mt
p Max

*nfes| + N";"” (35)
nfes

where N™M" is set to 4; N" represents the initial population size;

Max,;,; is the maximum allowed function evaluations and nfes rep-

resents the current count of function evaluations at k-th iteration. Sim-

ilarly, archive size N, is resized using the following equation:
N, = BNy, (36)

Arch
where, f is the multiplying factor which is the ratio of archive size and
population size. Here, the archive provides information related to the
progressive direction. Moreover, it also improves the population diver-
sity.

3.7. Overall framework

Algorithm 1 shows the basic framework of OLSHADE-CS. Search op-
erator utilizes orthogonal array-based initialization to generate initial
solutions. In each iteration, parameters are calculated using the pro-
posed parameter adaptation technique, trial solutions are generated us-
ing an ensemble of four mutation strategies, and selection of solutions is
done using the proposed conservative selection procedure. These steps
are repeated until one of the termination criteria is satisfied.

Algorithm 1: OLSHADE-CS.
Result: x,
=0 =0 =0 YR T . — - .
1 Poi(xl,xz, ...‘,pr>5 — <OAlnitialization (X, % );

PY< « <Sorted(P°);
Her1:n=S < 202, 2pp 1 g2 < 20.6,<Prob.4< < <0.25;
A< « 20, <t « <0,=nfes< < 0.2Max, fo;, <t < 1+ 1;
while (Termination criteria are not met) do
te—t+1;
for i = 1<to<N, do

j <RandomlySelectIndex(1, H);

CR; « maX{O,min{l,randn(yCR,j,O.l)}};

sF; « min{1,randc(pucg;,0.1)};

while sF; <0 do

‘ sF; « min{l,randc(uCR,j,O.l)};
end

© © N o U1 A~ W N

- e e
w N = o

end

[U, Prob, Scg, S;r] «TrialSolution(P, A, CR, sF, Prob);
nfes < nfes+ N,;

P —ConservativeSelection(P, U, nfes);

[ucr, #yr] ~MemoryUpdate(Scr, Sr.1);

end

e e e e
® N o u

-
-

4. Experimental results and discussion

In this section, we conduct different experiments to evaluate the per-
formance of OLSHADE-CS algorithm and its operators at different stages.
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To study the influence of various proposed operations in OLSHADE-CS,
we evaluate the performance of each operation individually on bench-
mark problems of CEC2017 [2] and CEC2020 [6]. Thereafter, we inves-
tigate the performance of OLSHADE-CS on the problems of CEC2020 and
compare it with many recent state-of-the-art algorithms. In this work,
we consider single-objective bound-constrained optimization problems
in the benchmark suites of CEC competitions. There are 30 and 10
test problems in CEC2017 and CEC2020 benchmark suites, respectively,
with four different scales. Unless specified otherwise, we usually fol-
lowed the guidelines depicted in the respective CEC competitions while
performing the experiments. Results of all algorithms are stored, in-
cluding the best-of-the-run error values over 51 independent runs for
each problem with the guidelines suggested in [2]. The error value is
calculated as | f},,; — f*|, where f,,,; is the objective function value of
best-of-the-run solution (a solution with lower objective function value
picked from all searched solutions). Bayesian statistical tests [76], such
as Bayesian signed rank test (BST), Bayesian rank sum test (BRT), and
Bayesian Friedman test (BFT), are conducted to verify whether the per-
formance of two or more algorithms differ from each other in a statisti-
cally significant way. Most large result tables are reported in the supple-
mentary file. These tables are denoted as S.# in this manuscript, where
# is the table number reported in the supplementary file. All our experi-
ments are implemented in MATLAB R2018b environment and executed
on a PC with Windows 10, i7 3.3 GHz CPU, and 16 GB RAM.

4.1. Effectiveness of the proposed ensemble of mutation strategies

In this experiment, we demonstrate the effectiveness of the proposed
ensemble of mutation strategies on the performance of OLSHADE-CS.
We also analyze the performance of individual mutation strategy on a
given problem. Therefore, we design four variants of the proposed al-
gorithm with one of the four different mutation strategies mentioned in
Section 3.2: 1) OLSHADE-CS-mut1, 2) OLSHADE-CS-mut2, 3) OLSHADE-
CS-mut3, and 4) OLSHADE-CS-mut4. These algorithms are benchmarked
on CEC2020 test-suite.

Statistical outcomes of these algorithms in terms of the mean and
standard deviation of ’best-of-the-run’ are reported in Table S.1. In the
table, outcomes of the BRT are also provided to verify the superior-
ity of OLSHADE-CS to other algorithms. As seen from the same table,
OLSHADE-CS performs significantly better than other variants on ma-
jority of the problems. Summary of observations obtained from this ex-
periment is as follows:

1) 5D problems: All algorithms obtain the optimum solutions in all in-
dependent runs for problems F1, F5, F6, F7, and F8. OLSHADE-CS-
mut4 exhibits better performance on problem F9, where F9 is the
composite function of four multimodal functions. For the remaining
problems, in general, OLSHADE-CS is found to be the best.
10D problems: In all independent runs, all algorithms converge to
the global optima for problems F1 and F4. OLSHADE-CS-mut2 shows
better performance on problem F7, a hybrid function of five highly
multimodal functions. Further, OLSHADE-CE-mut4 performs well on
problem F8 where problem F8 is a composite function. For other
composite functions (F9 and F10), the performance of all algo-
rithms is statistically similar. Again, OLSHADE-CS shows better per-
formance for the rest of the problems.
15D problems: Like the above cases, all algorithms find the near op-
timum solution in each run for problems F1 and F4. OLSHADE-
CE-mut4 outperforms others on the composite problem F8. All
algorithms perform similarly on the composite function F9. The
performance of only OLSHADE-CS-mut2 is statistically similar to
OLSHADE-CS in problem F10. For other problems, the overall per-
formance of OLSHADE-CS is found to be the best.
4) 20D problems: In this case, for problems F1 and F4, all algorithms find
the near optimum solution in each run. OLSHADE-CS-mut2 is the best
among all algorithms on the hybrid problem F7. In the composite

2

—

3

—
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Table 1

Mean rank of algorithms using Bayesian Friedman test (BFT).
Algorithm 5D 10D 15D 20D
OLSHADE-CS 2.2727 2.0000 1.7727 1.9545
OLSHADE-CS-mut1 3.3636 3.1364 3.1818 3.1364
OLSHADE-CS-mut2 2.7273 3.3182 3.3636 3.5000
OLSHADE-CS-mut3 3.4545 3.0455 3.1818 3.1364
OLSHADE-CS-mut4 3.1818 3.5000 3.5000 3.2727

problem F9, the performance of all algorithms is statistically similar.
For the rest of the problems, OLSHADE-CS beats all other algorithms.

We also calculate the ranking of the algorithms based on the mean
error value using BFT. The results of this test are reported in Table 1. As
evident from the table, the ranking of the algorithms changes in different
dimensions with the exception that OLSHADE-CS is the best among all in
all dimensions. OLSHADE-CS utilizes an ensemble of all these mutation
strategies while solving the problems. OLSHADE-CS performs better in
all dimensions than these variants as the effectiveness and robustness of
each mutation strategy are united in one the ensemble method. More-
over, the demerits of one mutation strategy is overcome by the other as
a mutation strategy is chosen according to its success probability.

Furthermore, we perform BST to analyze the performance of each
pair of algorithms, and the results of this test are presented in Fig 1. In
this figure, reddish blocks represent that algorithm 1 (algorithms written
in the vertical axis) performs better than Algorithm 2 (algorithms writ-
ten in the horizontal axis), blueish blocks signify that Algorithm 2 per-
forms better than algorithm 1, and greenish blocks represent that Al-
gorithm 1 and Algorithm 2 perform similarly. The color density of the
blocks is dependent upon the probability (mentioned in the blocks) of
one algorithm doing better than the other. Similar conclusions, like in
the above cases, are also drawn from this test. Each mutation strategy
shows a significantly different performance from other in different di-
mensions. The performance of OLSHADE-CS is better than all variants
based on these mutation strategies.

In conclusion, OLSHADE-CS performs better than other algorithms
with individual mutation strategies when dealing with the CEC2020
benchmark suite. The BRT shows (Table S.1) that OLSHADE-CS is better
than OLSHADE-CS-mutl, OLSHADE-CS-mut2, OLSHADE-CS-mut3, and
OLSHADE-CS-mut4 on - 1) five, four, five, and five problems, respec-
tively, in 5-dimension problems; 2) five, four, five, and five problems, re-
spectively, in 10-dimension problems; 3) five, seven, five, and six prob-
lems, respectively, in 15-dimension problems; and 4) six problems in
each case in 20-dimension problems. OLSHADE-CS performs worse than
OLSHADE-CS-mut2 and OLSHADE-CS-mut4 on one and two problems,
respectively, in 5-dimension problems; while in 10-dimension, its statis-
tically inferior performance to both is only on one problem. OLSHADE-
CS-mut4 betters OLSHADE-CS only in one problem in 15-dimension,
while OLSHADE-CS-mut2 betters it in one problem in 20-dimension.

4.2. Effectiveness of the proposed conservative selection scheme

In this paper, the selection operator of DE algorithm is made more
conservative than the classical one to improve the performance on com-
plex multimodal problems. Subsequently, this proposed conservative se-
lection (CS) scheme is incorporated in OLSHADE-CS. Here, CS plays a
critical role in the proposed algorithm. To validate its effectiveness, we
design two algorithms after incorporating the cs scheme in LSHADE-
Sin [77] and jSO [78] framework (top-ranked DE-based algorithms in
IEEE CEC 2017 competition), called as LSHADE-Sin-CS and jSO-CS, re-
spectively. The performance of LSHADE-Sin-CS and jSO-CS is compared
with their counterparts on 30 test problems with dimensions = 10, 30,
50, and 100 in IEEE CEC 2017 test-suite [2]. For statistical comparison,
we implement BRT test at a 0.05 significance level.
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Fig. 1. Bayesian signed rank test (BST) of the algorithms.

We summarize the outcomes of this experiment in Tables S.2-S.5.
In these tables, according to BRT, statistical significance test results are
shown as “+/=/-", where ‘+’, ‘’, and ‘=" represent that the proposed
scheme or algorithm is better than, worse than, and significantly equiva-
lent to the corresponding comparable algorithm, respectively. As shown
in Tables S.2 and S.3, jSO-CS performs better than jSO in eight, ten,
eleven, and thirteen out of 30 test problems with dimensions 10, 30,
50, and 100, respectively. However, jSO surpasses jSO-CS in one, four,
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Algorithm 2: TrialSolution(P, A, CR, sF, Prob).

Algorithm 3: ConservativeSelection(P, U, nfes, A).

Result: U, Prob, Scg, S,r

1 Scp < @, 28, <« @, <Mut|., <« ®, <Succy., < 0,xU « O;
2 for i = 1<to<N, do
3 | best; —«RandomlySelected(1,[0.25N,|);
4 | best, —~RandomlySelected(1, [0.5N,]);
5 | r; <RandomlySelected(1,N,) # {i, best,, best, };
6 r3 eRandomlySelected(l,NP) # {i,r|, best|, besty };
7 ry <RandomlySelected (1, |P' U A'|) # {i, r, best|, best, };
8 if rn < Prob, then
9 D; (_)_Ci+SFi(J_Cbext] _)_Ci+)_crl_)_cr3>;
10 Mut| < Mut, Ui,
1 else if Prob; < rn < (Prob, + Prob,) then
12 bi ‘—)_‘i+SFi()_‘besr, - X+ X —J_Cr2>§
13 Muty < Mut, Ui
14 else if (Prob, + Prob,) < rn < (Prob; + Prob, + Prob;) then
15 l_}i - )_Cbesrl + SFI' ()_CrZ - )_Cr3);
16 Mut; < Mut; Ui,
17 else
18 U; < sF; (Xbestz + X0 — xr3>;
19 Mut, < Mut, Ui,
20 end
21 if rand(0, 1) < 0.4 then
22 ‘ il; < Xorb,-,,(ﬁi,xi,CR,-);
23 else
24 | & « Xorey, (0,5, CR,);
25 end
26 if f(x;) < f(4;) then
27 Scr < ScrUCR; ;
28 S,p < S;p UsE;;
29 Succj <—Succj+1,5i€Mutj;
30 end
31 U <Ue€i;
32 end
33 if ¥ | Suce; # ® then
34 ‘ Prob; « fui;
iy Suce;
35 else
36 ‘ Prob; < 0.25;
37 end

five, and seven out of 30 test problems with dimensions 10, 30, 50, and
100, respectively.

From Tables S.4 and S.5, we observe that LSHADE-Sin-CS outper-
forms LSHADE-Sin in nine, ten, nine, and nine out of 30 test problems
with dimensions 10, 30, 50, and 100, respectively. On the other hand,
LSHADE-Sin surpasses LSHADE-Sin-CS in two, six, five, and five out of
30 test problems with dimensions 10, 30, 50, and 100, respectively.
Therefore, the above comparisons substantiate that CS improves the per-
formance of DE algorithms on global optimization problems.

4.3. Effectiveness of the proposed orthogonal initialization scheme

In this experiment, we investigate the effectiveness of the proposed
orthogonal-array-based initialization in DE’s state-of-the-art algorithms.
Again, two state-of-the-art algorithms, LSHADE-Sin and jSO, are consid-
ered in this investigation. Usually, initial solutions are generated ran-
domly in these algorithms. We replace this procedure with the pro-
posed initialization scheme and design LSHADE-Sin-OI and jSO-OI, re-
spectively.

The results of this experiment are reported in Tables S.6-S.9. With
respect to the overall comparative analysis, from Tables S.6 and S.7, we

Result: [P, A]

1 for i = 1<toxN, do

2 if nfes <0.6Max,;,, then

3 N, « @;

4 for j<to<ns do

5 N, < N, U {RandomlySelected(1,N,) # N))};
6 if /@) < f(%y,,) then
7 ‘ SJ- «1;

8 else

9 ‘ S/. « 0;

10 end

1 end

12 if (f@) < fGH) A (L0, S, > 0.25) then
13 A< AUX;

14 P « (P\X)) Ui

15 end

16 else

17 if (@) < f(x¥)) then

18 A~ AUX;

19 P « (P\x;)) Uy
20 end
21 end
22 end
23 P <Sorted(P);

min_ pyinit o

24 N, < L—;laxn/:x nfes| + N

25 P « Plsz;

26 Nyren < BNp;

27 while |A| > Ny, do

28 a < RandomlySelected(l, |A|);
29 A=A\A,;

30 end

Algorithm 4: MemoryUpdate(S¢g., Sp. ).

Result: [pcg, pyr]
1 k<—rem(t—1,H)+1;
2 n < |Scrl
3 for i = 1<to<n do
4 ‘ w; < <log(n + 0.5) — log(i);
5 end

Zii ijéRj

6 ST s

HCRi = X wiScr
Z;‘:l szfF,/ .

7 -
HsF k 2';:1 05,5,

can see that jSO-OI performs better than jSO in majority of the test prob-
lems in all dimensions. More specifically, in six, eleven, ten, and twelve
problems with dimensions 10, 30, 50, and 100, respectively. This can be
attributed to the fact that jSO-OI generates the initial population more
uniformly in the search-space contours. This facilitates the algorithm to
initiate search in better clusters of the promising areas. Similar infer-
ences can be drawn in the case of LSHADE-Sin-OI after analyzing Ta-
bles S.8 and S.9. Here, LSHADE-Sin-OI shows superior performance in
ten or more problems in all dimensions. The comparative analysis sug-
gests that the proposed initialization scheme enhances the performance
of DE-based algorithms by generating better initial solutions.
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Table 2
BRT results of mLSHADE vs. other state-of-the-art algo-
rithms on CEC 2020 test-suite.

mLSHADE +/=/-

vs. 5D 10D 15D 20D
EBOwithCMAR 6/4/0 8/2/0  6/4/0 8/2/0
HSES 9/1/0 8/2/0 9/1/0 9/1/0

LSHADE-cnEpSin 4/5/1 9/1/0  8/1/1 7/2/1
LSHADE-SPACMA  4/5/1 9/1/0  7/3/0 9/1/0

Table 3
Ranking of mLSHADE and other state-of-the-art algorithms
on CEC 2020 test-suite.

Algorithm Scorel Score2  Total Rank
mLSHADE 50.00 50.00 100.00 1
EBOwithCMAR 32.88 29.15 62.03 2
HSES 22.38 17.69 40.08 5
LSHADE-cnEpSin 31.91 26.69 58.60 3
LSHADE-SPACMA  31.42 24.05 55.47 4

4.4. Effectiveness of the proposed parameter adaptation technique

To examine the usefulness of the proposed parameter adaptation
technique, we implement this technique in LSHADE to come up with
a new algorithm called mLSHADE. We select 10 test problems with di-
mensions 5,10,15, and 20 from CEC2020 test-suite for this experiment
as this parameter adaptation technique is specially designed for cheaper
problems. For a comparative analysis, four state-of-the-art algorithms:
EBOwithCMAR [79], HSES [80], LSHADE-cnEpSin [77], and LSHADE-
SPACMA [81], are considered as contenders for mLSHADE. Note that
these algorithms are among the top-performers in IEEE CEC 2018 com-
petition.

We calculate the best, mean, and standard deviation of errors result-
ing from all algorithms in this experiment. We report all experimental
results for test problems with dimensions 5, 10, 15, and 20 in Table S.10.
Moreover, BRT and the ranking of all algorithms are done as suggested
in IEEE CEC 2020 competition [6].

As observed in Table 2, mLSHADE performs better than EBOwith-
CMAR, HSES, LSHADE-cnEpSin, and LSHADE-SPACMA on six, nine,
four, and four problems, respectively, in case of 5-dimension problems.
LSHADE-cnEpSin and LSHADE-SPACMA generate better solutions than
mLSHADE only in one problem each. In all the remaining dimensions,
only LSHADE-cnEpSin could perform better than mLSHADE, that also in
a couple of cases. The performance of mLSHADE is consistently better
or at least equivalent to all other algorithms.

With reference to Table 3, we notice that mLSHADE is ranked
first with a 100 score followed by EBOwithCMAR, LSHADE-cnEpSin,
LSHADE-SPACMA, and HSES. Therefore, the above comparison rein-
states that the proposed parameter adaptation technique is highly ef-
fective for the LSHADE algorithm.

4.5. Performance of the proposed OLSHADE-CS algorithm

In this experiment, we assess the performance of OLSHADE-CS on
test problems of IEEE CEC 2020 competition. In this benchmark suite, 10
test problems with dimensions = 5, 10, 15, and 20 are proposed where
these problems can be categorized into four groups: unimodal function
(1), basic functions (2 — 4), hybrid functions (5 — 7), and composition
functions (8 — 10). Other settings of this suite are set as suggested in
[6].

4.5.1. Time-complexity

For calculating the time complexity of LSHADE-CS, we follow the
steps suggested in CEC2020’s technical report [6]. As per the report, we
perform the following steps:
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Fig. 2. The time-complexity of SHADE, LSHADE, jSO, and OLSHADE-CS on
CEC2020 benchmark-suite.

a) Compute time required to run the following code, T0
x = 0.55;
fori=1:1000000
X=x+x; x=x/2; x=x*%Xx; x=sqre(x);
x =log(x); x = exp(x); x = x/(x +2);
end.
b) Compute time required to call problem function F1 over 200,000
evaluations for a given dimension, T'1.
c) Compute time required to solve problem function F1 over 200,000

maximum evaluations for the same dimension, 72.

d) The time complexity of the algorithm can be reflected using T2=LL,

TO

Using the steps mentioned above, the time complexities of SHADE,
LSHADE, jSO, and OLSHADE-CS are calculated on the CEC2020 bench-
mark suite. The time complexities of these algorithms over different di-
mensions (i.e., 5, 10, 15 and 20) are plotted in Fig. 2. As observed in
the figure, the time complexity of the proposed algorithm OLSHADE-CS
is little higher than the other algorithms due to the orthogonal-array-
based initialization process. This process of initialization is computa-
tionally more expensive than the conventional initialization process in
other DE-based algorithms.

4.5.2. Parameter setting
We use the following values for parameters of OLSHADE-CS in this
experiment.

1. Population Size: N[’;"i’ =6D?, N[')nin =4, a=26.

2. Control Parameters: H = 20D, 2, = 0.2 and S, = 0.6.

3. Function Evaluation Budget: Max, ., = 5e4, le6, 3e6, and le7 for
problem dimensions = 5, 10, 15, and 20, respectively.

4. Distribution of Budget: In initialization: first 20%, optimization: last
80%, conservative selection: first half of optimization budget (40%),
and conventional selection: last half of the optimization budget
(40%)

4.5.3. Parameter analysis of OLSHADE-CS

This section demonstrates the sensitivity of the parameters of the
proposed algorithm. Moreover, we also analyze their influence on the
performance of the algorithm.

1) Settings of the Proposed Parameter Adaptation Technique: In the
parameter adaptation technique, we have to set the following pa-
rameters before initializing the main optimization process: 1) Size
of the memory (H), 2) initial value of Sz (Sg R), and 3) initial
value of S (S?F). These settings highly influence the performance
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of the algorithm, and we need to set them beforehand. However,
these settings depend upon the characteristics of the problem-space.
Therefore, we need to choose settings that provide satisfactory per-
formance for all problems of the benchmark suite. To confirm the
choice of the settings, detailed experiments are carried out on the
CEC2020 benchmark suite. We choose the following discrete values
for the parameters for trials.

a) H ={5,10,15,20,25,30} x D,

b) S2, =1{0.1,0.2,03,0.4,0.5,0.6}, and

b) U, ={0.1,0.2,0.3,0.4,0.5,0.6}.

For comparison purposes, Critical Difference (CD) plots are used. The
CD is a tool to compare outcomes of many algorithms on multiple prob-
lems. In CD plots, the position of an algorithm indicates its Friedman
rank across all problems, where low rank symbolizes that the algorithm
performs better than the other algorithms having higher ranks. A thick
line can connect two or more algorithms if their performance is simi-
lar in statistical significance. In our case, the CD plots for the above-
mentioned parameters are shown in Figs. 3-5. By analyzing the plots,
we can pick the following optimal values for the parameters: H = 20D,
82, =02,and S%, =0.6.

2) Settings of best; and best,: Two parameters, best; and best,, are used
in mutation operators while creating two sets of the best solutions. A
solution is randomly selected from these sets as a participant in the
mutation operations. Here, best; and best, are the sizes of the sets,
respectively, in terms of % of population size. Following settings are
used for the sensitivity analysis:

a) best; ={0.1,0.15,0.2,0.25,0.3}, and
b) best; = {0.2,0.3,0.4,0.5,0.6}.

CD plots for these parameters are shown in Figs. 6 and 7. We can see
that best, at 0.25 performs better than the other best; values. Similarly,
best, at 0.5 value helps to achieve the best performance of the algorithm.

10

Thus, we select these values as the default values for the proposed algo-
rithm.

3) Distribution of Function Evaluation Budget: In OLSHADE-CS, the op-
timization process has three phases: orthogonal initialization, opti-
mization with conservative selection, and optimization with greedy
selection. These phases are executed sequentially and we require to
assign a function evaluation budget for each phase. For analysis of
the sensitivity of the budget, we select the following values for or-
thogonal initialization (B,;) and optimization with greedy selection
(Bgs).

a) By, ={0.0,0.05,0.10,0.15,0.20,0.25,0.30}, and
b) Bgs =1{0.0,0.2,0.4,0.6,0.8,1.0}.

We present the CD plots of these parameters in Figs. 8 and 9. As shown
in these figures, B,; with 0.2 value exhibits the most superior perfor-
mance, while the same is applicable for B¢ with 0.6 value. Therefore,
we choose these values for OLSHADE-CS.

4.5.4. An analysis of LSHADE-CS algorithm with different initialization
schemes

In this section, the performance of LSHADE-CS is analyzed with dif-
ferent initialization techniques. We design the following algorithms by
incorporating various initialization techniques in LSHADE-CS:

i) LSHADE-CS with opposition based initialization (OBLSHADE-
CS) [82],
ii) LSHADE-CS with uniform initialization (ULSHADE-CS) [83], and
iii) LSHADE-CS with chaos initialization (CLSHADE-CS) [84].

The obtained results, including the BRT and BFT outcomes, of these
algorithms are provided in Table S.11. From this table, we can observe
that OLSHADE-CS performs better than other algorithms for majority
of the problems in all dimensions. This shows that the proposed ini-
tialization scheme is highly effective and even better than many other
initialization schemes.
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Table 4 Table 5

BRT results of LSHADE-CS algorithms of various ini-
tialization techniques on CEC 2020 test-suite.

OLSHADE-CS +/=/-

vs. 5D 10D 15D 20D
OBLSHADE-CS  6/4/0 8/1/1 7/1/2 8/1/1
ULSHADE-CS 4/5/1 8/1/1 6/2/2 7/2/1
CLSHADE-CS 6/4/0 8/1/1 7/2/1 8/2/0

BRT results are reproduced in Table 4. As shown in this table,
OLSHADE-CS performs significantly better than others on most of the
problems in all dimensions. Moreover, we rank all algorithms follow-
ing the guidelines of IEEE CEC 2020. The result summary is provided
in Table 5, which shows that OLSHADE-CS scores 100 and ranks first
position in the point table. Therefore, we can infer that the orthogonal-
based initialization scheme enhances the performance of DE in a more
effective manner than many other initialization schemes.

4.5.5. Comparison of OLSHADE-CS with state-of-the-art DE algorithms
The comparative analysis of OLSHADE-CS and DE-based state-of-the-
art algorithms is presented in this section. We consider the following al-

11

Ranking of LSHADE-CS algorithms of various initializa-
tion techniques on CEC 2020 test-suite.

Algorithm Scorel Score2  Total Rank
OLSHADE-CS 50.00 50.00 100.00 1
OBLSHADE-CS  23.64 28.19 51.83 2
ULSHADE-CS 20.75 30.00 50.75 3
CLSHADE-CS 20.92 24.60 45.52 4

gorithms: distance based parameter adaptation for SHADE (DISH) [85],
tuning-based mutation in SHADE (Tb-jSO) [86], and DE with linear bias
reduction in parameter adaptation (LSHADE-LBR) [87]. We tune all the
parameters of the algorithms for IEEE CEC 2020 benchmark problems
where the algorithm has not originally been applied to the problems in
the source paper.

We report the statistical outcome of these algorithms in Table S.12.
As shown in the table, the performance of OLSHADE-CS is superior to
other algorithms over a majority of the problems. Apart from the re-
markably better results in different dimensions, OLSHADE-CS ranks the
best in BFT among all algorithms in all dimensions. The summary of BRT
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Table 6
BRT results of OLSHADE-CS vs state-of-the-art DE al-
gorithms on CEC 2020 test-suite.

OLSHADE-CS +/=/-

VS. 5D 10D 15D 20D

DISH 8/2/0 7/2/1 7/1/2 8/1/1

Tb-jSO 6/4/0 7/1/2 5/1/4 7/2/1

LSHADE-LBR 8/2/0 6/2/2 6/1/3 7/2/1
Table 7

Ranking of OLSHADE-CS and state-of-the-art DE algo-
rithms on CEC 2020 test-suite.

Algorithm Scorel Score2  Total Rank
OLSHADE-CS  50.00 50.00 100.00 1
DISH 23.85 28.27 52.12 4
Tb-jSO 26.99 32.22 59.21 3
LSHADE-LBR ~ 28.50 34.26 62.76 2

results is reported in Table 6. The following findings can be summarized
from this table.

1. Test problems with dimension = 5: From Table 6, we can observe that
the performance of OLSHADE-CS is either statistically similar or bet-
ter than DISH, Tb-jSO, and LSHADE-LBR algorithms. Indeed, the al-
gorithm is better than these state-of-the-art DE-based algorithms in
eight, six, and eight test problems, respectively.

2. Test problems with dimension = 10: The performance of OLSHADE-CS
is better than DISH, Tb-jSO, and LSHADE-LBR in seven, seven, and
six test problems, respectively. On the other hand, its performance
is inferior to these algorithms in one, two, and two test problems,
respectively.

3. Test problems with dimension = 15: OLSHADE-CS outperforms in
seven, five, and six test problems when compared with DISH, Tb-jSO,
and LSHADE-LBR, respectively. However, OLSHADE-CS is inferior to
others in two, four, and three test problems, respectively.

4. Test problems with dimension = 20: In this case, OLSHADE-CS per-
forms better than DISH, Tb-jSO, and LSHADE-LBR in eight, seven,
and seven test problems, respectively. In contrast, the performance
of OLSHADE-CS is worse than each of these algorithms only in one
problem.

Furthermore, we calculate the ranking scores as suggested in IEEE
CEC 2020 competition and report in Table 7. As shown in this ta-
ble, OLSHADE-CS scores a perfect 100, followed by LSHADE-LBR with
a score of 62.76. Hence, we can conclude that the performance of
OLSHADE-CS is highly competitive and it is one of the best among the
DE-based algorithms.

4.5.6. Comparison with top-ranked algorithms of IEEE CEC 2020 competi-
tion. This section compares the performance of OLSHADE-CS with top-
ranked algorithms in IEEE CEC 2020 competition: IMODE [88], AGSK
[89], and j2020 [90]. The parameters of these algorithms are fixed at
the same values as defined in their original articles. The results obtained
from these algorithms are provided in Table 8. In this table, the best,
mean and standard deviations of errors found by these algorithms over
30 different runs are recorded for all test problems. The BRT results and
BFT ranking of these algorithms are also included in this table.

As shown in these tables, OLSHADE-CS exhibits considerably better
performance than other state-of-the-art algorithms for most of the test
problems. We can summarize the following findings from the tabulated
results:

1. Test problems with dimension = 5: With reference to Table 8,
OLSHADE-CS is better than IMODE, AGSK, and j2020 in two, five,
and six test problems, respectively. On the other hand, OLSHADE-CS
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is inferior only in two problems to IMODE. Furthermore, OLSHADE-
CS achieves the best value in Friedman’s ranking test (i.e., BFT) of
all algorithms.

2. Test problems with dimension = 10: In this case, OLSHADE-CS per-
forms better than IMODE, AGSK, and j2020 in three, five, and four
test problems, respectively. In contrast, these algorithms perform
better than IMODE in two, three, and five test problems, respectively.
However, OLSHADE-CS ranks the lowest among all in BFT.

3. Test problems with dimension = 15: As shown in Table 8, OLSHADE-CS
is superior in five, four, and five test problems to IMODE, AGSK, and
j2020, respectively. However, OLSHADE-CS is worse in one, two,
and four test problems than the comparable algorithms, respectively.
Consequently, OLSHADE-CS secures the highest rank among all al-
gorithms according to BFT.

4. Test problems with dimension = 20: For this dimension, the perfor-
mance of OLSHADE-CS is better than the performance of IMODE,
AGSK, and j2020 in four, five, and four test problems, respectively.
On the other hand, OLSHADE-CS performs worse than these algo-
rithms in one, three, and two test problems, respectively. Besides,
according to BFT, OLSHADE-CS is the best performer among all al-
gorithms.

Furthermore, we illustrate the CD plots of all algorithms on the
IEEE CEC 2020 benchmark-suite in Fig. 10. As shown in this figure,
OLSHADE-CS performs better than other algorithms on 5D problems.
For 10D problems, all algorithms perform better than OLSHADE-CS.
However, in the case of 15D problems, OLSHADE-CS outperforms oth-
ers. IMODE is the best algorithm among all in the case of 20D prob-
lems. To analyze the dynamics of all algorithms during the optimiza-
tion process, several problems (F4, F5, F6, and F10) of IEEE CEC 2020
are selected, and convergence curves are depicted in Fig 11. From the
convergence plots, we can conclude that in OLSHADE-CS, solutions are
slowly improved due to the conservative selection process. Population
diversity is initially preserved to explore the search space more thor-
oughly. This factor primarily attributes to the remarkable performance
of OLSHADE-CS on majority of the IEEE CEC 2020 benchmark problems.

For the overall comparison of performance, we also calculate the
performance score as suggested in the competition and report the same
in Table 9. As noted from the table, OLSHADE-CS obtains a perfect 100
score, which is the best among all. The overall comparison and results
substantiate that the proposed algorithm is highly efficient and superior
to most of the other state-of-the-art optimization algorithms.

4.5.7. Contributions of different operators of OLSHADE-CS. In the previ-
ous experiments, we verified the effectiveness of the proposed algorithm
as a whole. In this section, we evaluate the contributions of each of the
proposed operators in enhancement of the performance of OLSHADE-
CS. The following three variants of OLSHADE-CS are designed.

i) mLSHADE: LSHADE with the proposed parameter adaptation tech-
nique and ensemble of four mutation strategies.
ii) OLSHADE: LSHADE with the proposed orthogonal array based ini-
tialization.
iii) LSHADE-CS: LSHADE with the proposed conservative selection
scheme.

The results of all algorithms together with OLSHADE-CS on IEEE
CEC-2020 benchmark suite are reported in Table S.13. The ranking of
all variants based on different operators of the proposed algorithm is
reported in Table 10. From the table, we observe that the proposed
initialization scheme influences the performance most, followed by the
conservative selection scheme. The parameter adaptation technique in
mutation and crossover strategies has the least influence.

4.6. Discussion

In this paper, we propose an optimization algorithm named as
OLSHADE-CS. In the algorithm, we modify the initialization and selec-
tion steps of the DE to improve the search capabilities. Furthermore,
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Table 8
Comparison of proposed algorithm (OLSHADE-CS) and other state-of-the art algorithms on test problems of CEC 2020 with 5, 10, 15, and 20 dimensions.

Dimension = 5

OLSHADE-CS IMODE AGSK j2020
Prob Best Mean Std. Best Mean Std. BRT Best Mean Std. BRT Best Mean Std. BRT
1 0.00E+00  0.00E+00  0.00E+00  0.00E+00  0.00E+00  0.00E+00 = 0.00E4+00  0.00E+00  0.00E+00 = 0.00E+00  0.00E+00  0.00E+00 =
2 0.00E+00 1.54E-01 8.48E-02 0.00E+00  8.33E-02 8.89E-02 - 6.14E-01 1.64E+01 2.58E+01 + 1.91E-04 3.23E+00 3.74E+00 +
3 0.00E+00 1.97E+00 1.99E+00 5.15E+00 5.15E+00 0.00E+00 + 4.38E-07 2.87E+00 2.05E+00 + 0.00E+00 3.42E+00 2.33E+00 =+
4 0.00E+00 6.15E-03 1.21E-02 0.00E+00  0.00E+00  0.00E+00 - 1.67E-03 1.11E-01 6.05E-02 + 0.00E+00 7.68E-02 6.40E-02 +
5 0.00E+00  0.00E+00  0.00E+00  0.00E+00  0.00E+00  0.00E+00 = 0.00E4+00  0.00E+00  0.00E+00 = 0.00E+00 1.37E-01 2.86E-01 +
6 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 0.00E+00 =
7 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 0.00E+00 =
8 0.00E+00  0.00E+00  0.00E+00  0.00E+00  0.00E+00  0.00E+00 = 0.00E4+00  0.00E+00  0.00E+00 = 0.00E+00 6.28E-01 2.39E+00 +
9 0.00E+00 1.32E+00 5.02E+00 0.00E+00  0.00E+00  0.00E+00 = 0.00E+00 3.33E+01 4.79E+01 + 0.00E+00 2.05E+01 3.75E+01 +
10 0.00E+00 1.70E+02 1.38E+02 0.00E+00 2.44E+02 1.36E+02 + 0.00E+00 2.25E+02 1.32E+02 + 0.00E+00 1.26E+02 9.03E+01 =
+/=/- 2/8/2 5/5/0 6/4/0
BFT 2.05 2.25 2.85 2.85
Dimension = 10
Prob OLSHADE-CS IMODE AGSK j2020
Best Mean Std. Best Mean Std. BRT Best Mean Std. BRT Best Mean Std. BRT
1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 0.00E+00 =
2 5.00E-01 4.83E+00 2.69E+00 1.25E-01 4.20E+00 3.70E+00 = 4.09E+00 2.84E+01 3.21E+01 + 0.00E+00 6.79E-01 1.16E+00 -
3 4.93E+00 1.02E+01 2.26E+00 1.07E+01 1.21E+01 7.83E-01 + 6.12E-01 9.93E+00 4.26E+00 + 0.00E4+00  8.06E+00  3.88E+00 -
4 0.00E+00  0.00E+00  0.00E+00  0.00E+00  0.00E+00  0.00E+00 = 1.94E-03 5.83E-02 3.11E-02 + 0.00E+00 1.09E-01 9.04E-02 +
5 0.00E+00 5.72E-01 5.20E-01 4.03E-06 3.88E-01 3.83E-01 = 0.00E+00 3.18E-01 3.06E-01 - 0.00E+00 3.02E-01 3.13E-01 -
6 3.51E-02 8.75E-02 8.02E-02 2.67E-02 9.15E-02 5.08E-02 + 2.20E-02 1.55E-01 1.17E-01 + 2.91E-02 4.78E-01 2.49E-01 +
7 1.43E-07 1.64E-03 1.58E-03 1.41E-05 8.54E-04 1.10E-03 = 0.00E+00 1.54E-03 1.71E-03 = 3.10E-07 6.73E-02 1.25E-01 +
8 0.00E+00 4.94E+01 3.73E+01 0.00E+00 2.72E+00 7.46E+00 - 0.00E+00 1.80E+01 2.38E+01 - 0.00E+00 1.54E+00 4.00E+00 -
9 1.00E+02 1.00E+02 0.00E+00 0.00E+00 4.10E+01 4.46E+01 - 0.00E+00 7.63E+01 4.29E+01 - 0.00E+00  8.00E+01 4.07E+01 -
10 1.00E+02  1.00E+02  4.60E-04 3.98E+02 3.98E+02 0.00E+00 + 1.00E+02 2.98E+02 1.43E+02 + 1.00E+02 1.40E+02 8.12E+01 +
+/=/- 3/5/2 5/2/3 4/1/5
BFT 2.6 2.5 2.55 2.35

(continued on next page)
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Table 8 (continued)

Dimension = 5

Prob  OLSHADE-CS IMODE AGSK j2020

Best Mean Std. Best Mean Std. BRT Best Mean Std. BRT Best Mean Std. BRT

unyIupSng "N'd pup Spmslg ‘d'd “Upuny 'y

Dimension = 15

Prob OLSHADE-CS IMODE AGSK j2020
Best Mean Std. Best Mean Std. BRT Best Mean Std. BRT Best Mean Std. BRT

1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 0.00E+00 =
2 1.67E-01 2.80E+00 1.44E+00 1.25E-01 3.14E+00 3.22E+00 = 3.12E+00 1.85E+01 1.46E+01 + 0.00E4+00  5.72E-02 4.32E-02 -
3 1.56E+01 1.57E+01 1.79E-01 1.56E+01 1.61E+01 3.12E-01 + 0.00E+00 1.42E+01 4.27E+00 = 0.00E+00  6.78E+00  7.82E+00 -
4 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 = 4.74E-02 1.42E-01 5.71E-02 + 0.00E+00 1.99E-01 7.47E-02 +
5 9.95E-01 4.75E+00  2.53E+00  1.15E+00 7.79E+00 3.66E+00 + 3.12E-01 6.25E+00 4.32E+00 + 0.00E+00 7.58E+00 7.69E+00 +
6 5.11E-02 4.45E-01 2.12E-01 2.81E-01 6.92E-01 2.52E-01 + 1.72E-01 4.02E-01 2.23E-01 = 1.65E-03 8.45E-01 2.09E+00 -
7 8.27E-03 4.99E-01 2.41E-01 1.28E-01 5.30E-01 2.23E-01 + 1.09E-02 2.47E-01 2.00E-01 - 6.81E-02 9.83E-01 2.03E+00 +
8 2.49E+01 8.74E+01 2.59E+01 0.00E+00  4.18E+00  9.61E+00 - 0.00E+00 6.85E+01 3.85E+01 - 0.00E+00 9.49E+00 2.74E+01 -
9 1.00E+02 1.00E+02 0.00E+00 0.00E+00  9.33E+01 2.54E+01 = 0.00E+00 9.67E+01 1.83E+01 = 1.00E+02 1.23E+02 5.68E+01 +
10 1.00E+02  1.00E+02  1.16E-04 4.00E+02 4.00E+02 0.00E+00 + 4.00E+02 4.00E+02 0.00E+00 + 1.00E+02 3.90E+02 5.48E+01 +

+/=/- 5/4/1 4/4/2 5/1/4

BFT 2.2 2.65 2.4 2.75

Dimension = 20
Prob OLSHADE-CS IMODE AGSK j2020
Best Mean Std. Best Mean Std. BRT  Best Mean Std. BRT  Best Mean Std. BRT

1 0.00E+00  0.00E+00  0.00E+00  0.00E+00  0.00E+00  0.00E+00 = 0.00E+00  0.00E+00  0.00E+00 = 0.00E+00  0.00E+00  0.00E+00 =
2 3.12E-02 1.86E-01 2.97E-01 3.12E-02 5.13E-01 7.12E-01 + 9.88E-02 9.68E-01 1.23E+00 + 0.00E+00 2.60E-02 2.47E-02 -
3 2.04E+01 2.05E+01 1.79E-01 2.04E+01 2.05E+01 1.25E-01 = 2.04E+01 2.04E+01 7.23E-15 - 0.00E+00 1.44E+01 9.29E4+00 -
4 0.00E+00  0.00E+00  0.00E+00  0.00E+00  0.00E+00  0.00E+00 = 6.83E-02 1.45E-01 5.47E-02 + 2.98E-02 1.80E-01 7.84E-02 +
5 1.04E-01 1.50E+00 1.12E+00  2.61E+00 1.09E+01 4.33E+00 + 2.20E+00 4.50E+01 3.67E+01 + 3.12E-01 7.78E+01 5.75E+01 +
6 2.27E-02 6.77E-02 2.42E-02 1.76E-01 3.02E-01 8.17E-02 + 8.54E-02 1.68E-01 4.45E-02 + 6.84E-02 1.91E-01 1.01E-01 +
7 4.51E-01 7.71E-01 1.71E-01 2.38E-01 5.24E-01 1.64E-01 - 1.83E-01 6.81E-01 9.09E-01 - 1.95E-02 1.98E+00 4.02E+00 =
8 4.25E+01 9.43E+01 1.75E+01 3.05E+01 8.40E+01 1.89E+01 = 7.46E+01 9.92E+01 4.63E+00 + 0.00E+00 9.27E+01 2.21E+01 =
9 1.00E+02 1.00E+02 0.00E+00 1.34E-04 9.67E+01 1.83E+01 = 1.00E+02 1.00E+02 0.00E+00 = 1.00E+02 3.39E+02 1.28E+02 +
10 3.99E+02 3.99E+02 2.00E+00 3.99E+02 4.00E+02 6.18E-01 + 3.99E4+02  3.99E+02 1.59E-02 - 3.99E+02 3.99E+02 4.02E-02 =

+/=/- 4/5/1 5/2/3 4/4/2

BFT 2.2 2.6 2.45 2.75
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Fig. 10. CD plots for algorithms on IEEE CEC2020rs suite.
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Table 9 1) The performance of state-of-the-art DE algorithms improves if the

Ranking of OLSHADE-CS and other state-of-the-art al-
gorithms on CEC 2020 test-suite.

Algorithm Scorel Score2  Total Rank

OLSHADE-CS 50.00 50.00 100.00 1

IMODE 38.96 44.24 83.20 2

AGSK 36.54 45.39 81.93 3

j2020 34.57 42.26 76.82 4
Table 10

Ranking of components of the proposed algorithm on
CEC 2020 test-suite.

Algorithm Scorel Score2  Total Rank
OLSHADE-CS  50.00 49.37 99.37 1
mLSHADE 36.99 44.17 81.16 4
OLSHADE 46.07 45.02 91.09 2
LSHADE-CS 38.43 50.00 88.43 3

we incorporate a modified parameter adaptation technique and an en-
semble of four mutation strategies to generate trial solutions in each
iteration. In this way, the performance of the proposed algorithm is
enhanced. We conduct extensive experiments on several widely used
benchmark suites. From the experimental results and comparative anal-
yses with state-of-the-art algorithms, we can summarize the following
findings:

15

conventional initialization method is replaced with the orthogonal
array-based initialization.

2) State-of-the-art DE algorithms exhibit better performance with the
incorporation of the proposed conservative selection scheme.

3) The proposed parameter adaptation technique and ensemble of four
different mutation strategies improve the DE algorithm’s search ca-
pability.

4) The proposed algorithm OLSHADE-CS shows significantly better per-
formance than most of the state-of-the-art algorithms.

5) The orthogonal initialization and the conservative selection schemes
influence the performance of OLSHADE-CS algorithm the most.

Further, we observe the following limitations for the proposed algo-
rithm:

1) The proposed algorithm, OLLSHADE-CS, performs very well only
for inexpensive optimization problems which have high budgets for
function evaluations. Performance of OLSHADE-CS is paralyzed in
cases of expensive problems, and inexpensive problems with low
budget for function evaluations.

2) The convergence speed of the proposed algorithm is slow due to the
conservative selection scheme.

3) In the case of 10D problems, OLSHADE-CS performs worse than the
other top-ranked algorithms in IEEE CEC 2020 competition.

5. Conclusions

In this paper, we propose a variant of DE algorithm for global nu-
merical optimization problems. The proposed algorithm incorporates
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Convergence Curve for F4 at 15D
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Fig. 11. The convergence curves for the median of errors derived from all algorithms.

orthogonal-array-based initialization, an ensemble of four mutation
strategies, a parameter adaptation technique, and a conservative selec-
tion scheme to enhance the performance of DE. Orthogonal-array-based
initialization distributes the initial population in the promising areas of
the search space. As a result, the performance of DE is improved when
compared with its counterpart adopting random uniform distribution of
initial population. The ensemble of four mutation strategies improves
the balance between explorative and exploitative search. The proposed
parameter adaptation technique dynamically sets the scale parameters

16

and crossover rates utilizing the successful historical values. The con-
servative selection scheme aims to select better trial vectors that evolve
from the population and the associated individuals.

We conduct extensive experiments to analyze the efficacy of each
of the proposed schemes and operations. The outcomes of these experi-
ments prove that the proposed operators significantly improve the per-
formance of the DE-based algorithms in global optimization problems.
OLSHADE-CS, which combines all the proposed operations and schemes,
performs remarkably better than many state-of-the-art DE and other
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evolutionary algorithms on most benchmark problems. After detailed
evaluations of the algorithm, we conclude that the proposed schemes
and operators improve the searchability, accelerate the convergence,
provide a balance between explorative and exploitative search, and
evolve the population towards the global optimum efficiently. Applica-
tion of the proposed schemes to the framework of other algorithms such
as particle swarm optimization, genetic algorithm, etc., can be potential
future works.
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