Abbreviations	iv
List of Tables	vi
List of Figures	viii

Section	
Section	

Page	No.
Page	No.

Chapter 1: INTRODUCTION	
1.1. Antibiotics and their development	1
1.2. Curcumin as antimicrobial agent	3
1.3. Anti-malarial drugs and their development	4
1.4. New Targets for anti-malarial drug	6
1.5. Curcumin as anti-malarial	8
1.6. Malaria burden in India	9
1.7. Curcumin ring and its biological activities	10
1.8. Molecular docking	12
1.9. Quantitative Structure Activity Relationship (QSAR)	12
1.9.1. Role of QSAR in Drug Design	13
1.9.2. QSAR Descriptors	13
1.10. Matrix metalloproteinase (MMPs)	14
1.10.1. Biological function	14
1.10.2. Role in pathological processes	14
1.10.3. Curcumin and MMPs	15

Chapter 2: LITERATURE REVIEW

2.1. Microbial Infections	16
2.2. Curcumin as antimicrobial agent	16

37

2.3. Curcumin as anti-malarial agent	21
2.4. Pyrazole and hexahydraindazole as antimicrobial agent	27
2.5. Glucosamine-6-phosphate synthase: a novel target for antimicrobial agents	34
2.6. Curcumin and MMP	35

Chapter 4. PLAN OF STUDY

Chapter 3: RATIONALE OF APPROACH

4.1. Design and synthesis of curcumin analogues	41
4.2. Characterization of synthesized compounds by using modern analytical tools	41
4.3. Evaluation of <i>In vitro</i> antimicrobial activity of synthesized compounds	41
4.4. Molecular docking study of synthesized compounds against	
antimicrobial target Glucosamine-6-phosphate synthase	41
4.5. Evaluation of In vitro anti-malarial activity of synthesized compounds	41
4.6. Quantitative structure activity relationship (QSAR) study of synthesized	
compounds	41

Chapter 5. EXPERIMENTAL

5.1. General procedure for the synthesis of hexahydroindazole analogues	
of curcumin(A1-B5)	42
5.2. General procedure for synthesis of pyrazole analogues of	
curcumin (CP1-CP14)	43
5.3. General procedure for synthesis of cycloheptanones analogues of	
curcumin (C1-C14)	45
5.4. In-vitro anti microbial study of curcumin analogues	46
5.5. In-vitro anti-malarial study of curcumin analogues	46
5.6. Molecular docking study of curcumin analogues against	
Department of Pharmaceutics, IIT (BHU), Varanasi.	ii

antimicrobial target Glucosamine-6-phosphate synthase	48
5.7. Quantitative Structure Activity Relationship (QSAR) study for curcumin	
analogue as antimicrobial agent	48
Chapter 6. RESULTS AND DISCUSSION	
6.1. Characterization of synthesized Compounds	52
6.1.1 Synthesis and characterization of hexahydroindazole analogues of	
curcumin	53
6.1.2. Synthesis and characterization of pyrazole analogues of curcumin	60
6.1.3. Synthesis and characterization of cycloheptanones analogues of curcumin	66
6.2. In vitro antimicrobial screening of curcumin analogues	72
6.2.1. In vitro antimicrobial screening of hexahydroindazole analogues of curcumin	72
6.2.2. In vitro antimicrobial study of pyrazole analogues of curcumin	75
6.2.3. In vitro antimicrobial study of cycloheptanone analogues of curcumin	78
6.3. Antimalarial screening of curcumin analogues	80
6.3.1. Cytotoxicity study of curcumin analogues active against HepG2 line cells	83
6.3.2 Comparison of anti-malarial activity and cytotoxicity on basis of	
selectivity index	84
6.4. In silico study of analogues of curcumin	85
6.4.1.Molecular Docking study of hexahydroindazole analogues of curcumin	86
6.4.2.Molecular Docking study of pyrazole analogues of curcumin	89
6.5. Quantitative structure activity relatioship (QSAR) study of synthesized	
compounds	93
6.5.1.Quantitative structure activity relationship (QSAR) study	93
Chapter 7. CONCLUSIONS	112
SUMMARY	116
REFERENCES	119

Department of Pharmaceutics, IIT (BHU), Varanasi.