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A B S T R A C T

A microgrid comprises renewable and non-renewable power generating sources, controllable loads, energy
storage devices and works as a single controllable entity. A gradual shift from conventional internal combustion
engine-based vehicles to electric/hybrid electric vehicles has also led to a new load type in the power system.
Moreover, demand-side management measures like demand response programs have become popular. This
work deals with the optimal coordinated operation of a grid-connected AC microgrid consisting of controllable
and uncontrollable power sources, battery storage units, considering plug-in hybrid electric vehicles and
demand response programs. Stochastic models of renewable power sources, electric load demand, loads of
hybrid electric vehicles (with battery charging characteristic), and grid power price are fed into ‘‘Hong’s
2 m point estimate method’’ embedded optimal operating strategy. The objective is to minimize the cost
of operation subject to the satisfaction of technical constraints. A nested stochastic optimization algorithm
is implemented to find optimal generation schedule, battery dispatch strategy, and the best incentive value
for an incentive-based demand response program. Different charging strategies of hybrid electric vehicles are
studied, and their impacts on system operation are investigated. The optimal coordination between a voltage
control scheme using a smart transformer with the energy management scheme is also investigated. Simulation
studies on a thirty-three bus test system prove the efficacy of the proposed algorithm. The proposed coordinated
optimal operating strategy reduces the operating cost by 17.53% ∼ 17.74%. The system loss also reduces by
29.49% ∼ 31.36%.
. Introduction

The aging centralized energy infrastructure is vulnerable to the
ncreasing power demand. Construction of new transmission facilities
equires a heavy deployment of capital and is difficult due to space
onstraints. As a consequence, engineers proposed innovative solutions
s alleviatory measures. On the generation side, engineers suggested
he integration of small-scale generation sources at the customer-site
‘‘distributed generation’’ (DG) in power system parlance), thereby
ountering the need for an expansion in the centralized generating
nd transmission infrastructure [1]. Uncoordinated controls of multiple
enerating units can cause various technical problems. Therefore, a
oordinated control strategy for several generating units in a given
ontrol area was proposed, which led to the evolution of the microgrid
oncept. A microgrid comprises a medium voltage or low voltage dis-
ribution network with multiple energy sources (both controllable and
ncontrollable), energy storage devices, controllable loads, operating

∗ Corresponding author.
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as a single controllable entity, either working in tandem with the
main-grid (grid-connected operation) or isolatedly (autonomous/island
operation) [2].

On the load side, customers receive incentives to cooperate with
the utilities. Customers shift or reduce their demands during peak
periods to ensure grid reliability, from which the concept of demand
response (DR) arose. According to the United States Department of
Energy (DOE), DR is the modification of consumer's demand for energy
through various methods such as financial incentives and behavioral
change through education [3]. There are broadly two kinds of demand
response programs: price-based (PBDR) and incentive-based (IBDR).
PBDR passes the variations in the wholesale market to the retail market
so that customers can pay for the actual value of electricity. It helps
in reducing price volatility. For instance, in the Time of Use (TOU)
scheme, the price is different at different times of the day. IBDR, on
the other hand, encourages customers to regulate their consumption
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Nomenclature

𝑓𝑖(𝑥𝑖) pdf of 𝑖th uncertain input variable 𝑥𝑖
𝑝𝑖(𝑥𝑖𝑠) Probability of input variable at state 𝑠
𝑥𝑖𝑠 Input variable at state 𝑠
𝑥𝑖𝑙∕𝑖𝑢 Lower/upper bound of input variable at

state 𝑠
𝑓𝑤(𝑣) Weibull distribution as a function of wind

speed 𝑣
𝑘 Shape factor of Weibull pdf
𝑐 Scale factor of Weibull pdf
𝛤 (.) Gamma function
𝜇𝑣 Mean of wind speed
𝜂𝑐ℎ𝑔∕𝑑𝑖𝑠 Charging/discharging efficiency of BESS
𝐸𝐵𝐴𝑇 𝑚𝑖𝑛∕𝑚𝑎𝑥 Minimum/maximum battery energy speci-

fication
𝑃𝐵𝑟𝑎𝑡𝑒𝑑 Rated battery power
𝑃𝑚𝑎𝑥
𝑔𝑟𝑖𝑑 Maximum active power handling capacity

of LSC of ST
𝐼𝑇 ∕𝐼𝑇𝑀𝐴𝑋 Iteration count/maximum iteration of PSO
𝑁𝑃𝑂𝑃 Population size/number of variables in PSO
𝑁𝑉 𝐴𝑅𝑆 Number of control variables in the PSO

algorithm
𝑝𝑜𝑠∕𝑝𝑜𝑠+∕𝑝𝑜𝑠− Position/Upper limit/Lower limit of control

variable in PSO
𝑣𝑒𝑙∕𝑊 𝑇 Velocity/weight in the PSO algorithm
𝑟𝑎𝑛𝑑() Random number
𝜎𝑣 Standard deviation of wind speed
𝜀/𝐴 Demand price elasticity/Constant in PBDR
𝜈𝑗 (𝑡)/𝑟

𝑃𝐵𝐷𝑅,𝑃
𝑗 Binary decision/Load demand response

rate of PBDR on price level 𝑗 during period
𝑡

𝐿𝐷𝑈𝑖(.) Uncertain portion of predicted load de-
mand

𝜌𝑐𝑗 (𝑡) Electricity price for customers on price
level 𝑗 at hour 𝑡

𝜌0𝑐 (𝑡) Original Electricity price for customers
without PBDR at hour 𝑡

𝛺𝐽 Set of PBDR price levels
𝑃𝑊𝑠 Power output of wind turbine at state 𝑠
𝑣𝑠 Wind speed at state 𝑠
𝑣𝑐𝑖 Cut-in wind speed
𝑣𝑐𝑜 Cut-out wind speed
𝑣𝑟 Rated wind speed
𝑃𝑊𝑟 Power rating of wind turbine
𝑓𝑠(𝑆) Beta distribution as a function of solar

irradiation 𝑆
𝛼, 𝛽 Shape factors of beta pdf
𝜇𝑠 Mean of solar irradiation
𝜎𝑠 Standard deviation of solar irradiation
𝑃𝑆𝑠 Power output of solar power generator for

state 𝑠
𝑇𝑐𝑒𝑙𝑙 PV cell temperature in Celsius
𝑇𝑎𝑚𝑏 Ambient temperature in Celsius
𝑇𝑛𝑜𝑚 Normal operating cell temperature in Cel-

sius
𝑆𝑠 Solar irradiation at state 𝑠

by offering them incentives. One example of IBDR is peak time rebate
(PTR), in which consumers are tendered incentives during the peak
duration to shift or curtail their non-critical loads. Consumers pay
2

𝐼𝑃𝑉 PV cell current at 𝑠
𝐼𝑆𝐶 Short circuit current
𝐾𝑖 Current temperature coefficient
𝑉𝑃𝑉 PV cell voltage at 𝑠
𝑉𝑂𝐶 Open circuit voltage
𝐾𝑣 Voltage temperature coefficient
𝑉𝑀𝑃𝑃 Voltage at maximum power point
𝐼𝑀𝑃𝑃 Current at maximum power point
𝑁 Number of cells in PV array
𝑓𝐿(𝑙) Normal distribution as a function of load 𝑙
𝜇𝑙 Mean of load
𝜎𝑙 Standard deviation of load
𝑓𝑑 (𝑑) Log-normal distribution as a function of

daily driven distance 𝑑
𝜇𝑚 Mean of daily driven distance
𝜎𝑚 Standard deviation of daily driven distance
𝐷𝑚𝑎𝑥 All electric range of PHEV
𝜇𝑚, 𝜎𝑚 Mean and standard deviation of log-normal

pdf
𝑡𝑠𝑡 Start time of PHEV charging
𝑓𝑐ℎ(.) pdf of charging pattern
𝑓𝑝𝑟𝑖𝑐𝑒(𝐾𝑔𝑟𝑖𝑑 ) Normal distribution as a function of grid

energy price 𝐾𝑔𝑟𝑖𝑑
𝜇𝑝𝑟𝑖𝑐𝑒 Mean of grid energy price
𝜎𝑝𝑟𝑖𝑐𝑒 Standard deviation of grid energy price
𝑍 Vector of stochastic output variable
𝑝𝑙,𝑘 Location of 𝑘th concentration for 𝑙th input

random variable
𝑤𝑙,𝑘 Weight of 𝑘th concentration for 𝑙th input

random variable
𝜇𝑝𝑖 Mean of 𝑖th input stochastic variable
𝑀3(𝑝𝑙) Third central moment of 𝑝𝑙
𝜇𝑝𝑙 Mean of 𝑝𝑙
𝜆𝑙,3 Coefficient of skewness
𝑚 Number of input random variables
𝜉𝑙,𝑘 Standard location
𝑉 𝐺𝐶
𝑚𝑎𝑥∕𝑚𝑖𝑛 Maximum/minimum allowed voltage in a

network as per grid code
𝑉 ∗
𝑆𝑇𝑀𝑉 Smart transformer voltage set point on

microgrid side
𝛺𝑡 Set of all times (hour) in a day
𝐸(.) Expected value
𝑃𝐶𝐻𝐸𝑉 (.) Active power fed to EV charger
𝑃𝐿𝐷𝑅

𝑖 (.) Load at bus 𝑖 participating in DR program
𝑃𝐿0

𝑖 (.) Original demand at bus 𝑖
𝜂 Percentage of load participating in DR

program
𝐸𝑙(𝑡, 𝑡) Self elasticity
𝐸𝑙(𝑡, ℎ) Cross elasticity
𝜌(𝑡) Spot electricity market price at time 𝑡
𝜌0(𝑡) Initial electricity market price at time 𝑡
𝐼(𝑡) Incentive offered per unit of load curtailed

or shifted at time 𝑡 for participating in IBDR
𝑃𝐿𝑖(.) Modified load at bus 𝑖 after implementation

of DR
𝛥𝑃𝐿𝑖(.) Change in load at bus 𝑖 after implementa-

tion of DR

electricity bills at a flat tariff without knowing the actual market
conditions in the conventional power market. IBDR gives them a choice
to understand it and actively participate in it.
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c
b

𝑔𝑙,𝑘,𝑡 Set of power system state variables (voltage
magnitude, phase angle, line current

𝑇𝑂𝐶(𝑡) Total operating cost at time 𝑡
𝑥(𝑡) Control variables
𝛺𝑥 Set of control variables
𝑃𝐺𝑖(𝑡) Active power generation of 𝑖th dispatchable

unit at time 𝑡
𝑃𝐵(𝑡) BESS charging power at time 𝑡
𝑃𝑔𝑟𝑖𝑑 (.) Power imported from main grid/sub-station
𝛺𝐵 Set of system buses
𝛺𝐺 Set of all dispatchable units
𝑎𝑗 , 𝑏𝑗 , 𝑐𝑗 Fuel cost coefficients of dispatchable unit 𝑗
𝑃𝑊𝑖(.) Active power injection from wind DG at bus

𝑖
𝑃𝑆𝑖(.) Active power injection from solar DG at bus

𝑖
𝑄𝑊𝑖(.) Reactive power injection from wind DG at

bus 𝑖
𝑄𝑆𝑖(.) Reactive power injection from solar DG
𝑄𝐺𝑖(.) Reactive power injection from dispatchable

DG at bus 𝑖
𝑄𝐿𝑖(.) Reactive power load at bus 𝑖
𝑄𝐵𝑖(.) Reactive power fed to battery converter at

bus 𝑖
𝑄𝑔𝑟𝑖𝑑 (.) Reactive power injection from grid
𝑄𝐶𝐻𝐸𝑉𝑖 (.) Reactive power fed to EV charger at bus 𝑖
𝑉𝑖(.) Voltage magnitude at bus 𝑖
𝛿𝑖(.) voltage phase angle 𝑖
𝜃𝑖𝑗 Angle of 𝑖𝑗th element of Y-bus
𝑃𝐺𝑚𝑖𝑛∕𝑚𝑎𝑥

𝑖 Minimum/maximum active power handling
capacity of unit 𝑖

𝑄𝐺𝑚𝑖𝑛∕𝑚𝑎𝑥
𝑖 Minimum/maximum reactive power han-

dling capacity of unit 𝑖
𝛺𝑙𝑛 Set of all lines in the system
𝐼𝑚𝑎𝑥𝑙𝑛 Maximum line rating
𝐼𝑙𝑛(.) Line current
𝐸𝐵𝐴𝑇 (.) Energy of the battery
𝜎𝑝𝑙 Standard deviation of 𝑝𝑙

Acronym

𝐷𝐺 Distributed Generation
𝐷𝑅 Demand Response
𝑃𝐵𝐷𝑅 Price-based demand response
𝐼𝐵𝐷𝑅 Incentive-based demand response
𝑇𝑂𝑈 Time of Use
𝑃𝑇𝑅 Peak time rebate
𝐼𝐶 Internal combustion
𝑃𝐻𝐸𝑉 Plug-in Electric Vehicle
𝑅𝑇𝑃 Real time pricing
𝐸𝑉 Electric Vehicle
𝐴𝐷𝑅 Automated demand response
𝑉 2𝐺 Vehicle to grid
𝑃𝑉 Photovoltaic
𝐻𝐸𝑀𝑆 Home energy management system
𝐷𝑆𝑀 Demand side management
𝐼∕𝐶 Interruptible/Curtailable

Further, with growing environmental concerns across the globe,
onventional internal combustion (IC) based vehicles are increasingly
eing replaced by plug-in electric/plug-in hybrid electric vehicles
3

𝐷𝑅𝑃 Demand Response Program
𝐷𝐸𝑅 Distributed energy resource
𝑉 𝑅𝐸𝑆 Variable renewable energy sources
𝐵𝐸𝑆𝑆 Battery energy storage system
𝐶𝑃𝑃 Critical peak pricing
𝑆𝑇 Smart transformer
𝑃𝐸𝑀 Point Estimate Method
𝑝𝑑𝑓 Probability distribution function
𝑅𝑇 Real Time
𝑊𝑃𝐺 Wind power generation
𝑃𝐸𝑀 Point Estimate Method
𝑀𝑉 Medium voltage
𝐻𝑉 High Voltage
𝑃𝑄 Power quality
𝐺𝑆𝐶 Grid side converter
𝐿𝑆𝐶 Load side converter
𝑉 𝑅𝑀 Voltage rise margin
𝑉 𝐷𝑀 Voltage drop margin
𝑃𝐼 Performance indicators
𝐴𝑉 𝐷 Average voltage deviation
𝑃𝑆𝑂 Particle Swarm Optimization
𝑁𝐺𝑇 Natural Gas Turbine
𝐹𝐹 Fill factor
𝑆𝑂𝐶 State of charge

(PHEV). The presence of the PHEVs introduces a new type of load
demand. The charging load of PHEVs alters the load demand curve.
During certain hours in a day, the additional charging load may lead to
feeder and transformer overloads, increased network loss, and system-
wide voltage dips. Therefore, it is essential to study the impact of PHEV
charging load in a modern power system to find innovative operating
strategies to cater to the system demand without stressing the existing
electrical infrastructure [4].

1.1. Literature review

Aliasghari et al. used a stochastic model and increased the prof-
its of the microgrid operator by synchronizing the use of DGs and
BESS [5]. Also, the authors used a TOU-based DR program for EV
owners. However, schedules of battery and dispatchable units were
not optimized [5]. Yang et al. proposed an RTP-based DR to minimize
electricity purchase and maximize renewables utilization for a home
energy management system (HEMS) with renewables, storage devices,
and PHEVs [6]. Gazijahani and Salehi proposed a two-stage scheme to
reduce the cost of operation and enhance reliability [7]. The authors
carried out simultaneous optimal scheduling of DERs and allocation of
section switches in the first stage to improve the reliability. A critical
peak pricing DR program is implemented in the next stage to flatten the
load profile and reduce the investment cost [7]. Some researchers have
discussed and prioritized different types of DR programs. Imani et al.
ranked various DR programs based on the achievement of objectives
like peak reduction, cost reduction, peak shaving by using a stochastic
model of renewables [3]. Noor et al. used block-chain technology in
the demand-side management (DSM) framework to schedule the loads
under supply-side constraints. However, they have not incorporated DG
in their network and followed a deterministic model for the load [8].
Müller and Möst explored DR potential in the present and futuristic
power system framework. However, the authors used a deterministic
approach in the study [9]. Nan et al. optimized the power schedule
for a residential community using price-based DR considering mainly

interruptible loads [10]. However, the authors did not consider the
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uncertainties associated with load or solar DG. Pfeifer et al. considered
interconnected islands with renewable power sources, vehicle to grid
(V2G) operation of EVs, and storage technology for analyzing their syn-
ergy [11]. However, the authors did not account for the uncertainties
of RES. Also, the authors did not consider a demand response program
but investigated a demand response technology (EVs).

Many researchers also studied incentive based DR program such
as interruptible/curtailable (I/C) [12,13]. Authors in [12] modeled
uncertainties of renewable power and simultaneously implemented DR
and network reconfiguration to minimize the operating cost. Imani
et al. carried out a sensitivity analysis of incentive and penalty for an
Interruptible/Curtailable (I/C) DRP [13]. The authors studied the effect
on operating cost, profits, and peak shaving in their paper [13].

Biroon et al. investigated power quality issues (including voltage
deviation) of integrating EV and Distributed energy resource (DER)
with a constant tariff [14]. The researchers proposed a modified tar-
iff structure to mitigate the mentioned issues. However, the authors
did not consider the generation, load, and price uncertainties in the
model [14]. Zhou et al. ensured the security of energy trading in
an EV-based incentive-compatible DR framework by using blockchain
technology [15]. Monfared et al. used a hybrid of TOU and RTP
scheme for DR optimization in a stochastic framework for day-ahead
scheduling of a microgrid [16]. The authors had also considered un-
certainties of control variables and generator parameters. Good studied
and incorporated consumer's preferences and biases in the demand
esponse model in a deterministic framework [17]. Khalili et al. studied
he impact of various battery technologies on the cost of operation
nder an IBDR framework [18]. Eseye et al. maximized the utility’s
rofit by coordinating EVs, variable renewable energy sources (VRES),
nd BESS in a stochastic framework [19]. However, the authors did
ot optimize the incentive offered to the consumers, uncertainties,
nd scheduling of dispatchable generating units. Li and Li considered
real-time pricing regime and carried out a two-level optimization

o minimize the net operating cost in an islanded microgrid. Also,
he researchers investigated the integration of EV charging stations
nd their deployment as a demand response tool [20]. The authors,
owever, did not incorporate renewable and load uncertainties in the
odel. Sadeghian et al. improved the reliability of a radial distribution

ystem by implementing a combination of price-based DR and smart
cheduling of EVs [21]. However, renewable sources, and uncertainties
ere not considered in this work.

Iwafune et al. used a combination of the Markov chain model and
onte Carlo simulation to model the EV driving pattern [22]. The

uthors suggested controlling the charging and discharging pattern
f EV batteries in a TOU tariff regime for economic benefits [22].
ncertainties due to load and solar PV were not considered in [22].
en et al. used RTP and offered a reward to EV owners for discharging
nd a penalty for charging during peak hours [23]. The researchers
lso considered EV owner's satisfaction in the scheduling strategy of
he EV aggregator. Gao et al. minimized the charging/discharging
ost of EVs and load fluctuation considering EV owner's willingness

using ADR [24]. Wang et al. scheduled EV charging/discharging using
multi-price scales and reduced load uncertainty by comprehensive de-
mand [25]. Yusuf et al. proposed V2G operation during foreseen critical
events in conjunction with a critical peak pricing (CPP) DR program to
minimize the cost associated with PEV activities [26].

Conventional IC engine-based vehicles are making way for
EVs/PHEVs all over the world. Therefore, it is imperative to model the
charging load of EVs/PHEVs for proper planning and operation of a
distribution network. Investigations on the modeling of PHEV load and
impact assessment have been reported in the literature over the last
few years. Qian et al. proposed a method of stochastic modeling of
EV/PHEV load in a distribution network [27]. Shaaban et al. reported
a method to assess the energy consumption of PHEVs [28]. The authors
used the model to study the impact of PHEVs on the distribution net-
4

work and allocated distributed generation (DG) optimally. Stochastic
optimal scheduling and DR implementation were not a part of the
study. Mu et al. used a ‘‘spatio-temporal model’’ to characterize the
behavior of EV charging load, and used a combination of ‘‘Monte-Carlo
simulation’’ (MCS) and sequential power flow to investigate the impact
on the grid [29]. However, renewable uncertainties, load demand,
optimal scheduling, and DR were not included in the study. Honarmand
et al. considered a smart microgrid containing dispatchable and non-
dispatchable power sources and an EV parking lot [30]. The authors
proposed a deterministic scheduling algorithm for the system [30].
However, the authors did not consider uncertainties and DR in the
scheduling strategy. Rostami et al. presented stochastic models of EV
charging strategies and carried out distribution network reconfigura-
tion to minimize the operating cost [31]. However, the authors did
not include renewable and load uncertainties or DR in the paper. Yao
et al. reported a real-time charging strategy for an EV parking lot [32].
However, the researchers did not consider stochastic scheduling of
distributed generation units and DR in this study. Kamankesh et al.
suggested a scheduling algorithm for dispatchable sources and storage
units considering stochastic models of PHEV charging load [33]. How-
ever, the authors did not consider renewable and grid price uncertainty
or DR in their model. Chaudhari et al. used a hybrid optimization
scheme to schedule charging of energy storage units in a PV integrated
EV parking lot [34]. However, the authors carried out the scheduling
in a deterministic framework. Further, the authors did not consider DR
and dispatchable unit scheduling in the study. Rahmani et al. proposed
an ‘‘adaptive model predictive control’’ approach for managing the
charging of PEVs to minimize the cost in a stochastic framework [35].
However, the authors did not consider the dispatchable unit scheduling
and DR in this paper. Quddus et al. proposed an approach for energy
exchange between PEV charging stations, commercial buildings, and
the power grid for reducing the operating cost [36]. MCS was used
for modeling EV uncertainty, although DR was not considered in the
study. Moghaddas et al. used ‘‘information gap decision theory’’ IGDT)
to model EV demand uncertainty in [37]. The authors formulated
objective functions for reducing the operating cost using ‘‘risk-neutral’’,
and ‘‘Robustness and opportunity’’ approaches. However, the authors
did not include DR in this study. Emrani et al. adopted MCS to model
uncertainties of renewable sources, price, and EV while minimizing the
cost of a residential energy hub [38]. Ahrabi et al. adopted a hybrid
IGDT-stochastic approach for modeling uncertainties while minimizing
the operating cost in a distribution network [39]. The uncertainties of
EV were modeled using a stochastic approach, while the authors used
an IGDT approach for modeling wind generation uncertainty.

Lan et al. reported an energy management strategy of a renewable
MG comprising wind and solar DGs, BESS, and PHEVs [40]. Energy
demands of PHEVs were modeled using a support vector machine-
based machine learning approach. The objective was to minimize the
operating cost. A modified dragonfly algorithm was used for solving the
optimization problem. The authors had also considered network recon-
figuration in the formulation. However, the authors had not considered
uncertainties associated with renewable generation, load demand, and
grid energy price. The authors had also not incorporated dispatchable
sources and the use of STs in the formulation. Flexible loads were
modeled in the formulation. However, the DRP was not an IBDRP.
Wang et al. proposed data-driven stochastic energy management for
an AC/DC hybrid MG consisting of PHEVs, renewable generation, and
loads [25]. Uncertainty modeling was done using a combination of sup-
port vector machine and Hong's 2𝑚 + 1 PEM. Network reconfiguration
was also carried out to reduce the operating cost. However, DRP and
the use of STs were not explored in the paper. Mohamed et al. proposed
a multi-agent-based energy management strategy for a smart island to
reduce the operating cost [41]. The authors considered an energy hub
and multi-microgrid exchanging power based on peer-to-peer trading.
The energy hub comprises multiple energy vectors like wind energy,
tidal energy, solar energy, and thermal power. However, the authors

had not explored DRP, network reconfiguration, and STs. Ma et al.
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suggested a two-stage risk-constrained energy scheduling approach for
an active distribution network [42]. The authors minimized cost and
risk by using particle swarm optimization. However, the authors had
not considered PHEVs, STs, and IBDR in this paper. Mohamed et al.
used fuzzy cloud theory in conjunction with stochastic modeling of
renewable generation and PHEV loads in [43]. The objective was to
minimize the operating cost by optimally scheduling BESS and gener-
ation sources in a fuzzy stochastic framework. However, the authors
had not considered DRP, network reconfiguration, and STs in the
problem. Li et al. proposed a bi-level energy management scheme for
a community-integrated energy system and an EV charging station for
energy cost minimization [44]. The energy cost of the energy system
was minimized at the upper level, and the EV charging cost was
minimized at the lower level. However, the authors did not consider
network reconfiguration, incentive cost optimization, and STs in the
formulation. Alfaverh et al. proposed a vehicle to grid (V2G), vehicle to
home (V2H) based demand response approach for energy management
of residential loads [45]. The authors used Q-learning and real-time
pricing schemes in the paper. However, uncertainties, STs, network
reconfiguration were not considered. Ghofrani and Majidi proposed the
formulation of a bi-lateral contract between EV aggregator and DGs
to minimize the operating cost, voltage deviation [46]. The authors
also proposed optimal capacitor sizing and siting in the paper. How-
ever, the authors did not focus on dispatchable generation, network
reconfiguration, and STs.

Researchers have also recently proposed the use of smart transform-
ers (ST) to improve the performance of a distribution network [47].
An ST can mitigate power quality issues like voltage sag, harmonic
compensation, voltage rise, etc. An ST can also provide ancillary ser-
vice to the grid. Different voltage control strategies in a distribution
network using an ST have been reported in the literature [48–53].
Some researchers have also reported investigations on using a ST for
power flow control within and between microgrids [54,55], islanding
operation [56], voltage and frequency support in a renewable rich
microgrid [57], etc. However, studies on the control and operation
of an ST have been reported in a deterministic framework. In other
words, research endeavors on ST reported so far have not consid-
ered probabilistic models of renewables, loads, and PHEV. Moreover,
the coordination between different operating strategies like economic
scheduling of dispatchable and storage units, DR, and ST working
in tandem in a stochastic framework has not been explored fully. A
summary of the literature review is given in Table 1.

1.2. Contributions of the present work

Following points are observed from the literature review:

• Many researchers have reported investigations on energy manage-
ment schemes of a grid-connected MG incorporating renewable
generations, DRPs, BESS scheduling, and PHEV loads [3,5–25,25,
26,29,30,30–46]. On the other hand, several studies on STs have
also been reported. However, most studies on STs have been done
without considering uncertainties of power system variables and
energy management schemes [47–57]. In other words, to the best
of the author's knowledge, microgrid energy management and
studies of STs have been carried out separately so far.

• Incentive values in most IBDR schemes have been assumed to be
pre-defined.

• The impact of a voltage control strategy using an ST on the cost
and loss of a network has generally not been studied. Focuses of
studies reported on voltage control by STs were mainly on voltage
profile only.

A stochastic optimal operating framework for a grid-connected
icrogrid to reduce the operating cost is proposed in this paper. Uncer-
5

ainties of renewable sources, load demand, grid energy price, Plug-in
hybrid electric vehicle (PHEV) driving, and charging patterns are mod-
eled using a stochastic approach and incorporated in the scheduling
problem. The optimal operating measures include optimal scheduling
of dispatchable sources, battery energy storage systems, and using an
optimal IBDR. An attempt is made in this work to bridge the gap
areas identified in the previous threads of the reported literature.
Contributions of the present paper are as follows:

• The incentive to be offered to the customers for participating in
the DR program is optimized considering different PHEV charging
strategies reported in the literature.

• A method to evaluate the hourly load demand of PHEVs consid-
ering the battery charging characteristics, stochastic models of
daily driven distance, and charging strategies are presented in
detail and incorporated in the scheduling problem. The method
proposed to evaluate the probabilistic charging demand of a
PHEV has a different approach than that reported in [27] but
provides similar profiles.

• The optimal coordination of smart transformer (ST) in conjunc-
tion with IBDR, ELD, and BESS is proposed to improve the system
voltage profile, reduce the system operating cost, and reduce the
loss.

• The impact of an optimal voltage control strategy employing an
ST on the expected operating cost and system loss is studied.

1.3. Arrangement of the paper

The rest of the paper is arranged as follows. Uncertainty modeling
of renewable sources, load demands, grid energy price, and PHEV are
presented in Section 2. ST and PHEV load modeling are discussed in
Section 3. The mathematical formulation of the problem and solution
strategy are presented in Section 4. We have discussed the simulation
results in Section 5, followed by conclusions in Section 6.

2. Uncertainty modeling

Stochastic models and Hong's 2 m Point Estimate Method (PEM) are
discussed in this section.

2.1. Stochastic models of uncertain variables

All uncertain variables are represented by a probability density
function (pdf). The pdf of the 𝑖th uncertain variable is given as 𝑓𝑖(𝑥𝑖),
𝑖 is the uncertain input parameter. Continuous pdfs are converted to
iscrete states (using appropriate step size) by integrating the pdf. The
robability of a state 𝑠 (𝜌𝑖(𝑥𝑖𝑠)) corresponding to a state (𝑥𝑖𝑠) is found
s follows [60]:
{

𝜌𝑖(𝑥𝑖𝑠) = ∫ 𝑥𝑖𝑢
𝑥𝑖𝑙

𝑓𝑖(𝑥𝑖)𝑑𝑥𝑖
𝑥𝑖𝑠 =

𝑥𝑖𝑙+𝑥𝑖𝑢
2

(1)

𝑥𝑖𝑙 and 𝑥𝑖𝑢 are the lower and upper bounds of the input stochastic
variable for the state 𝑠. Uncertainties of wind power, solar power, load
demand, PHEV load demand, and grid power price are considered in
this work.

2.1.1. Wind power generation (WPG) uncertainty
Wind power generation depends on wind speed. Wind speed is the

stochastic input variable and commonly follows a ‘‘Weibull pdf’’ given
below [60]:

𝑓𝑤(𝑣) =
𝑘
𝑐
(𝑣
𝑐
)𝑘−1 exp[−(𝑣∕𝑐)𝑘] 𝑓𝑜𝑟 𝑐 > 1, 𝑘 > 1 (2)

where 𝑣, 𝑘, and 𝑐 stand for wind speed (m/s), shape, and scale factor
respectively. Shape parameter (𝑘) and scale factor (𝑐) are related to the
mean (𝜇𝑣) and standard deviation (𝜎𝑣) of the wind speed as follows:

⎧

⎪

⎨

⎪

𝑘 = ( 𝜎𝑣𝜇𝑣
)−1.086

𝑐 = 𝜇𝑣
𝛤 (1+ 1 )

(3)
⎩
𝑘
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Table 1
Summary of literature review.

Ref Uncertainty DR opt BESS ELD ST Objectives

Ren EV Load Price

[5] Yes Yes Yes Yes Yes No Yes No Min cost
[6] Yes NA Yes No(RT) Yes Yes NA No Min elect purchase, max renewable utilization
[7] Yes NA Yes Yes Yes NA Yes No Min investment & operation cost
[8] NA NA No No Yes NA NA No Min cost of electricity usage & discomfort cost due to load shifting
[9] No NA No No Yes NA NA No Quantify DR potential & study flexibility potential
[10] No No No No Yes Yes Yes No Min power purchase cost
[11] No No No No Yes Yes NA No Integrate islands with VRES potential
[12] Yes NA No Yes Yes Yes Yes No Min operating cost, power loss, cost of DR; improve reliability
[13] No NA No No Yes Yes Yes No Min operating cost
[14] No No No No Yes Yes NA No Opt tariff structure to mitigate VD & PQ
[15] NA Yes No No Yes NA NA No Opt economic performance under information asymmetry
[16] Yes NA Yes Yes Yes NA Yes No Max microgrid profit
[17] No NA No No Yes NA NA No Min cost and ensure elect and thermal comfort
[18] Yes NA Yes No Yes Yes NA No Min annual operating cost
[19] No(RT) No No(RT) No(RT) Yes Yes NA No Max day-ahead & real-time microgrid profit
[20] Yes Yes Yes No(RT) Yes Yes Yes No Min operating cost of isolated microgrid & charging cost of EV
[21] Yes Yes No No(RT) Yes No No No Opt reliability indices
[22] No(RT) Yes No(RT) No Yes NA NA No Optimize charging & discharging of EV
[23] NA Yes NA No Yes NA NA No Max EV aggregator’s profits considering EV owner’s satisfaction
[24] NA No No No Yes NA NA No Min charging/discharging cost of EV and load fluctuation
[25] NA Yes Yes No Yes NA NA No Max profit of power grid operators
[26] NA No No No Yes NA NA No Min cost
[27] NA Yes No No No NA NA No Stochastic modeling of EV
[28] No Yes No No No NA No No Max penetration level of PEVs
[29] NA Yes No No No NA NA No Characterize the behavior of EV charging load
[30] No No No Yes No NA Yes No Min main grid, dispatchable DGs and EV power exchanged with microgrid
[31] No Yes No No Yes NA No No Min cost of power imported from upstream grid, loss, switching operations
[32] NA No No No Yes NA No No Max selected EV for charging, min total charging cost
[33] Yes Yes No No No Yes Yes No Min operating cost of microgrid
[34] No(RT) No(RT) No No Yes Yes Yes No Min power purchase cost, degradation cost of ESS & levelized cost of energy

for PV
[35] Yes Yes No No No NA NA No Min operating cost
[36] Yes Yes No No Yes NA Yes No Min cost
[37] Yes Yes Yes Yes Yes NA Yes No Max profit
[38] Yes Yes No Yes Yes NA Yes No Min cost of a residential energy hub
[39] Yes Yes No No Yes NA NA No Min operating cost
[47] NA NA NA NA No NA NA Yes Study impact of ST on grid
[48] No No No No No No NA Yes Control power transfer through PCC
[49] No No No No No NA No Yes Voltage and line congestion control
[50] No No No NA No NA NA Yes Voltage control
[51] NA NA No NA No No NA Yes Voltage control
[52] NA NA No NA No NA No Yes Impact on grid voltage power quality
[53] No NA No NA No NA NA Yes Voltage control using 3 setpoints
[54] NA NA No No No NA No Yes Control power exchange with main grid by controlling voltage
[55] No NA No NA No NA No Yes Control power exchange with main grid by controlling voltage
[56] No NA No NA No No NA Yes Enhance possibility of islanding operation within multi microgrids
[57] No NA No NA No No No Yes Control power to control voltage & frequency
[40]AM NoAM YesAM NoAM NoAM Yes(ToU)AM YesAM NAAM NoAM Min cost of operationAM

[58]AM YesAM YesAM YesAM YesAM Yes(ToU)AM YesAM YesAM NoAM Min cost of operationAM

[41]AM YesAM YesAM YesAM YesAM Yes(ToU)AM YesAM YesAM NoAM Min cost of operationAM

[43]AM YesAM YesAM NoAM NoAM Yes(ToU)AM YesAM YesAM NoAM Min cost of operationAM

[59]AM NoAM NAAM NoAM NoAM NoAM NAAM NAAM NoAM Techno-economic assessmentAM

[44]AM YesAM YesAM NoAM YesAM YesAM YesAM NAAM NoAM Min operating costAM

[45]AM NAAM NoAM No(RT)AM NoAM Yes(ToU)AM NAAM NAAM NoAM Energy management through V2G and V2HAM

[46]AM YesAM YesAM NoAM NoAM Yes(ToU)AM NAAM NAAM NoAM Min cost of system loss, capacitor cost, penalty cost for voltage violationsAM
i
s
𝐼
p
o
o
t

2

b

𝑓

The pdf is converted to discrete states using wind speed steps of
m∕s. The output of the wind turbine (𝑃𝑊𝑠) for the state 𝑠 is found as

follows:

𝑃𝑊𝑠(𝑣𝑠) =

⎧

⎪

⎨

⎪

⎩

0 ∶ 0 ≤ 𝑣𝑠 < 𝑣𝑐𝑖, 𝑣𝑠 ≥ 𝑣𝑐𝑜
𝑃𝑊𝑟

𝑣𝑠−𝑣𝑐𝑖
𝑣𝑟−𝑣𝑐𝑖

∶ 𝑣𝑐𝑖 ≤ 𝑣𝑠 < 𝑣𝑟
𝑃𝑊𝑟 ∶ 𝑣𝑟 ≤ 𝑣𝑠 < 𝑣𝑐𝑜

(4)

𝑣𝑐𝑖, 𝑣𝑟, and 𝑣𝑐𝑜 denote the cut-in, rated, and cut-out speed respec-
tively. 𝑃𝑊𝑟 is the rating of the WPG.

2.1.2. Solar power generation
The input stochastic variable is solar irradiation (𝑆, kW∕m2). Solar

irradiation pdf follows ‘‘Beta’’ distribution [60] as shown below:

𝑓𝑠(𝑆) =
𝛤 (𝛼 + 𝛽)
𝛤 (𝛼)𝛤 (𝛽)

(𝑆)𝛼−1(1 − 𝑆)𝛽−1 ∶ 𝛼, 𝛽 > 0 (5)

𝛼 and 𝛽 are the shape factors, related to the mean (𝜇𝑆 ) and standard
deviation (𝜎𝑆 ) as detailed below:

⎧

⎪

⎨

⎪

⎩

𝛽 = (1 − 𝜇𝑠)(
𝜇𝑠(1+𝜇𝑠)

𝜎2𝑠
− 1)

𝛼 = 𝜇𝑠𝛽
1−𝜇𝑠

(6)

The discretization of pdf is carried out by taking a step size of 0.1
2

6

kW∕m . The power output of the solar power generator for state 𝑠 (𝑃𝑆𝑠)
is found as [60]:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑇𝑐𝑒𝑙𝑙 = 𝑇𝑎𝑚𝑏 +
𝑆𝑠(𝑇𝑛𝑜𝑚−20)

0.8
𝐼𝑃𝑉 = 𝑠[𝐼𝑆𝐶 +𝐾𝑖(𝑇𝑐𝑒𝑙𝑙 − 25)]
𝑉𝑃𝑉 = 𝑉𝑂𝐶 −𝐾𝑣𝑇𝑐𝑒𝑙𝑙
𝐹𝐹 = 𝑉𝑀𝑃𝑃 𝐼𝑀𝑃𝑃

𝑉𝑂𝐶 𝐼𝑆𝐶
𝑃𝑆𝑠(𝑠) = 𝑁 × 𝐹𝐹 × 𝑉𝑃𝑉 × 𝐼𝑃𝑉

(7)

𝑇𝑐𝑒𝑙𝑙, 𝑇𝑎𝑚𝑏, and 𝑇𝑛𝑜𝑚 are the cell, ambient, and nominal temperatures
n ◦C. 𝐼𝑃𝑉 is the cell current, while 𝑉𝑃𝑉 is the cell voltage. 𝐼𝑆𝐶 is the
hort circuit current, and 𝑉𝑂𝐶 is the open-circuit voltage. 𝑉𝑀𝑃𝑃 and
𝑀𝑃𝑃 denote the voltage and current, respectively, for maximum power
oint condition. 𝐹𝐹 denotes the fill factor, while 𝑃𝑆𝑠 is the power
utput of the SPV array for the state 𝑠. The array comprises 𝑁 number
f cells. The voltage temperature coefficient (𝑉 ∕◦C) and the current
emperature coefficient (𝐴∕◦C) are denoted by 𝐾𝑣 and 𝐾𝑖 respectively.

.

.1.3. Load demand
The load demand uncertainty follows a normal distribution given

elow [60]:

𝐿(𝑙) =
1

𝜎1
√

2𝜋
𝑒𝑥𝑝[−(

𝑙 − 𝜇𝑙
√

2𝜎𝑙
)2] (8)

The mean and standard deviation are denoted by 𝜇𝑙 and 𝜎𝑙, respec-
tively. The continuous pdf is discretized to seven discrete states varying
from 𝜇 − 3𝜎 to 𝜇 − 3𝜎 in steps of 𝜎 .
𝑙 𝑙 𝑙 𝑙 𝑙
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2.1.4. Plug-in hybrid electric vehicle
The charging energy requirement of a PHEV depends on the daily

driven distance (𝑑). The daily driven distance is modeled using a
log-normal distribution [27,31]:

𝑓𝑑 (𝑑) =
1

𝜎𝑑𝑑
√

2𝜋
𝑒𝑥𝑝[−(

𝑙𝑛(𝑑) − 𝜇𝑑
√

2𝜎𝑑
)2] (9)

The mean and standard deviation of the log-normal distribution are
𝑑 and 𝜎𝑑 . 𝜇𝑑 and 𝜎𝑑 are calculated from the mean (𝜇𝑚) and standard
eviation (𝜎𝑚) using the following relationship:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜇𝑑 = 𝑙𝑛( 𝜇2𝑚
√

𝜇2𝑚+𝜎2𝑚
)

𝜎𝑑 =
√

𝑙𝑛(1 + 𝜎2𝑚
𝜇2𝑚

)
(10)

The pdf of the daily driven distance is discretized in steps of 1
ile. The state of charge (SOC) of the PHEV battery corresponding to
daily driven distance of 𝑑𝑠 at the beginning of the charging period is
𝑂𝐶𝑠(𝑑𝑠)[31]:

𝑂𝐶𝑠(𝑑𝑠) = (1 −
𝑑𝑠

𝐷𝑚𝑎𝑥
) × 100 (11)

𝐷𝑚𝑎𝑥 is the all electric range of the PHEV. Three different charging
trategies are considered in this work. They are as follows:

• Uncoordinated charging: A uniformly distributed pdf describes
the charging pattern for an uncoordinated charging strategy [31]:

𝑓𝑐ℎ(𝑡𝑠𝑡) = 1 ∶ 18 ≤ 𝑡𝑠𝑡 ≤ 19 (12)

𝑡𝑠𝑡 is the start time of the charging process.
• Coordinated charging strategy: The uncoordinated charging

strategy is modeled using a uniformly distributed pdf as given
below [31]:

𝑓𝑐ℎ(𝑡𝑠𝑡) =
1
3

∶ 21 ≤ 𝑡𝑠𝑡 ≤ 24 (13)

• Smart charging strategy: The smart charging strategy is mod-
eled using a normal pdf as shown below [31]:

𝑓𝑐ℎ(𝑡𝑠𝑡) =
1

3
√

2𝜋
𝑒𝑥𝑝[−(

𝑡𝑠𝑡 − 1
4.243

)2] (14)

The pdf of daily driven distance, battery charging characteristic, and
the pdf of charging strategy are combined to evaluate the charging load
of PHEV for every hour.

2.1.5. Grid energy price
The grid energy price uncertainty is modeled using a normal pdf

[60]:

𝑓𝑝𝑟𝑖𝑐𝑒(𝐾𝑔𝑟𝑖𝑑 ) =
1

𝜎𝑝𝑟𝑖𝑐𝑒
√

2𝜋
𝑒𝑥𝑝[−(

𝐾𝑔𝑟𝑖𝑑 − 𝜇𝑝𝑟𝑖𝑐𝑒
√

2𝜎𝑝𝑟𝑖𝑐𝑒
)2] (15)

𝐾𝑔𝑟𝑖𝑑 is the grid energy price. The mean and standard deviation are
denoted by 𝜇𝑝𝑟𝑖𝑐𝑒 and 𝜎𝑝𝑟𝑖𝑐𝑒 respectively. The continuous normal pdf is
discretized into seven states, as discussed in Section 2.1.3.

2.2. Hong's 2 m point estimate method

Several approaches to handle power system uncertainties have been
reported in the literature. Methods can be probabilistic, possibilistic,
information gap decision theory, robust optimization, copula theory,
etc. Uncertainties of renewable generation, load demand, PHEV load,
and grid energy price have most commonly been modeled using prob-
abilistic approaches. Monte Carlo Simulation, cumulant-based method,
probabilistic collection method, point estimate method, etc., are some
widely used probabilistic approaches [61,62]. PEMs have been widely
7

Algorithm 1: STEP-2 - Finding PHEV charging energy require-
ment

𝑃𝐻𝐸𝑉 = 𝑧𝑒𝑟𝑜𝑠(𝑛𝑑, 5); 𝑓𝑢𝑛1 = @𝑃𝑀𝐴𝑋
𝐸𝑉 (1 − 𝑒𝑥𝑝[−𝛼𝑡𝑡𝑚2 ]);

𝑓𝑢𝑛2 = @𝑃𝑚𝑎𝑥
𝐸𝑉 ( 𝑡𝑚𝑎𝑥−𝑡

𝑡𝑚𝑎𝑥−𝑡𝑚2 );
for 𝑗𝑗 = 1 ∶ 1 ∶ 𝑛𝑑 do

Find 𝑡 in Eq. (31)) using Newton-Raphson algorithm (Use
2); 𝑖𝑡𝑒𝑟 = 0; 𝑡𝑙 = 𝑡; 𝑡 = 𝑡𝑙; 𝑐𝑜𝑛𝑣 = 0;
if 𝑡𝑚2 − 𝑡 > 0.01 then

while 𝑐𝑜𝑛𝑣 == 0 && 𝑖𝑡𝑒𝑟 < 10 do
𝑖𝑡𝑒𝑟 = 𝑖𝑡𝑒𝑟 + 1; 𝑡𝑢 = 𝑡𝑙 + 1; 𝑡𝑖𝑚𝑒 = 1;
if 𝑡𝑢 > 𝑡𝑚2 then

𝑡ℎ𝑖𝑔ℎ = 4.5; 𝑡𝑚 = 𝑡𝑢 − 𝑡𝑙;
end
𝑃𝐸𝑉 (𝑖𝑡𝑒𝑟) = 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙(𝑓𝑢𝑛1, 𝑡𝑙, 𝑡𝑢); 𝑡𝑙 = 𝑡𝑢;
if 𝑡𝑢 == 𝑡𝑚2 then

conv=1;
end

end
𝑡𝑛 = 1 − 𝑡𝑚; 𝑡𝑙 = 𝑡𝑚2; 𝑡𝑢1 = 𝑡𝑚2 + 𝑡𝑛;
𝑡𝑢 = 𝑚𝑖𝑛([𝑡𝑢1 𝑡𝑚𝑎𝑥]);
𝑃𝐸𝑉 (𝑖𝑡𝑒𝑟) = 𝑃𝐸𝑉 (𝑖𝑡𝑒𝑟) + 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙(𝑓𝑢𝑛2, 𝑡𝑙, 𝑡𝑢); 𝑡𝑙 = 𝑡𝑢;
𝑡𝑢 = 𝑡𝑚𝑎𝑥; 𝑃𝐸𝑉 (𝑖𝑡𝑒𝑟 + 1) = 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙(𝑓𝑢𝑛2, 𝑡𝑙, 𝑡𝑢)

else
𝑡𝑙 = 𝑡; 𝑡𝑢 = 𝑡𝑚𝑎𝑥; 𝑃𝐸𝑉 (1) = 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙(𝑓𝑢𝑛2, 𝑡𝑙, 𝑡𝑢);

end
𝑡𝑒𝑚𝑝 = 𝑠𝑖𝑧𝑒(𝑃𝐸𝑉 ); 𝑛 = 𝑡𝑒𝑚𝑝(1, 2); 𝑐𝑜𝑛𝑣 = 0; 𝑖𝑖 = 0;
while 𝑐𝑜𝑛𝑣 == 0 && 𝑖𝑖 ≤ 6 do

𝑖𝑖 = 𝑖𝑖 + 1; 𝑃𝐻𝐸𝑉 (𝑗𝑗, 𝑖𝑖) = 𝑃𝐸𝑉 (𝑖𝑖);
if 𝑖𝑖 ≥ 5 || 𝑖𝑖 ≥ 𝑛 then

𝑐𝑜𝑛𝑣 = 1
end

end
end
𝑡𝑎𝑏1 = [𝑃𝐻𝐸𝑉 𝐸𝑉𝐸 (∶, 2)];

Algorithm 2: Newton-Raphson method to estimate 𝑡 in Eq. (31)
𝐸𝑃𝐸𝑉 = 𝐸𝑉𝐸 (𝑗𝑗, 1);
Initial guess of 𝑡;
if 𝐸𝑃𝐸𝑉 ≤ 𝐸𝐸𝑉 (𝑡𝑚2) then

𝑡 = 0.01
else

𝑡 = 𝑡𝑚2 + 0.01
end
Initialization: 𝑡𝑜𝑙 = 1;𝜖 = 10−3;𝑖𝑡𝑒𝑟 = 0;𝑖𝑡𝑒𝑟𝑚𝑎𝑥 = 50;
while 𝑡𝑜𝑙 > 𝜖 && 𝑖𝑡𝑒𝑟 < 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 do

𝑖𝑡𝑒𝑟 = 𝑖𝑡𝑒𝑟 + 1;
if 𝐸𝑃𝐸𝑉 ≤ 𝐸𝐸𝑉 (𝑡𝑚2) then

𝐽 = 𝑃𝑀𝐴𝑋
𝐸𝑉 (1 − 𝑒𝑥𝑝[−𝛼𝑡𝑡𝑚2 ]); %Jacobian%

𝑓 = 𝑃𝑀𝐴𝑋
𝐸𝑉 (𝑡 + ( 𝑡𝑚2𝛼 )(𝑒𝑥𝑝[−𝛼𝑡𝑡𝑚2 ] − 1)) − 𝐸𝑃𝐸𝑉 ;

%Function Value%
else

𝐽 = 𝑃𝑀𝐴𝑋
𝐸𝑉 ( 𝑡𝑚𝑎𝑥−𝑡

𝑡𝑚𝑎𝑥−𝑡𝑚2 ); %Jacobian%

𝑓 = (
𝑃𝑀𝐴𝑋
𝐸𝑉

𝑡𝑚𝑎𝑥−𝑡𝑚2 )(𝑡𝑚𝑎𝑥(𝑡 − 𝑡𝑚2) − 0.5(𝑡2 − 𝑡𝑚22)) − 𝐸𝑃𝐸𝑉 ;
%Function Value%

end
𝛥𝑡 = −−𝑓

𝐽 ; 𝑡 = 𝑡 + 𝛥𝑡; 𝑡𝑜𝑙 = |𝑓 |;
end

used since it provides a trade-off between accuracy and computation
burden.

Hong's point estimate method (PEM) is used to evaluate statistical
moments of a random quantity. The random quantity can be a function
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Algorithm 3: STEP-4-PHEV charging load demands in different
hours

𝑐𝑛𝑡 = 0;
for 𝑖𝑖 = 1 ∶ 1 ∶ 24 do

if 𝑡𝑎𝑏2(𝑖𝑖, 2) ≠ 0 then
𝑝𝑟𝑜𝑏1 = 𝑡𝑎𝑏2(𝑖𝑖, 2); 𝑡0 = 𝑖𝑖;
for 𝑘𝑘 = 1 ∶ 1 ∶ 𝑛𝑑 do

𝑝𝑟𝑜𝑏2 = 𝑡𝑎𝑏1(𝑘𝑘, 𝑡𝑚𝑎𝑥 + 1);
for 𝑗𝑗 = 1 ∶ 1 ∶ 𝑡𝑚𝑎𝑥 do

𝑐𝑛𝑡 = 𝑐𝑛𝑡 + 1; 𝑡01 = 𝑡0 + 𝑗𝑗 − 1; if 𝑡𝑜1 > 24 then
𝑡01 = 𝑡01 − 24;

end
𝑡𝑎𝑏3(𝑐𝑛𝑡, 1) = 𝑡01; % Hour Number %
𝑡𝑎𝑏3(𝑐𝑛𝑡, 2) = 𝑡𝑎𝑏1(𝑘𝑘, 𝑗𝑗); % Energy demand %
𝑡𝑎𝑏3(𝑐𝑛𝑡, 3) = 𝑝𝑟𝑜𝑏1 × 𝑝𝑟𝑜𝑏2; % Probability %

end
end

end
end

Algorithm 4: STEP 5- Filtering out PHEV states & probability
for a hour ℎ𝑟

𝑐𝑛𝑡 = 0; 𝑠𝑢𝑚𝑐ℎ𝑒𝑐𝑘 = 0;
for 𝑖𝑖 = 1 ∶ 1 ∶ 𝑛𝑑𝑎𝑡𝑎 do

if 𝑡𝑎𝑏3(𝑖𝑖, 1) == ℎ𝑟 then
𝑐𝑛𝑡 = 𝑐𝑛𝑡 + 1;
𝑡𝑎𝑏4(𝑐𝑛𝑡, 1) = 𝑡𝑎𝑏3(𝑖𝑖, 2); % Energy demand state of
PHEV%

𝑡𝑎𝑏4(𝑐𝑛𝑡, 2) = 𝑡𝑎𝑏3(𝑖𝑖, 3); % Probability%
𝑠𝑢𝑚𝑐ℎ𝑒𝑐𝑘 = 𝑠𝑢𝑚𝑐ℎ𝑒𝑐𝑘 + 𝑡𝑎𝑏4(𝑐𝑛𝑡, 2);

end
end
𝑡𝑎𝑏4(𝑐𝑛𝑡 + 1, 1) = 0;% Zero charging energy demand
state %

𝑡𝑎𝑏4(𝑐𝑛𝑡 + 1, 2) = 1 − 𝑠𝑢𝑚𝑐ℎ𝑒𝑐𝑘 % Probability of zero
charging energy demand %;

of one or multiple random stochastic input variables. The ‘‘Hong's 2 m
PEM’’ applies to both symmetric and asymmetric variables [63]. Let Z
denote a vector of the stochastic output variable. Further, the output
is a function (𝐅) of 𝑚 uncertain input random variables. Let 𝑝𝑖 denotes
the 𝑖th random input variable.

𝐙 = 𝐅(𝑝1, 𝑝2,… , 𝑝𝑖,… , 𝑝𝑚) (16)

‘‘Hong's PEM’’ evaluates the probability concentrations at 𝐾 loca-
tions for every input uncertain variable. The moments of the stochastic
input variables are utilized to evaluate the concentrations. ‘‘2 m PEM’’
is used in this paper. In other words, two evaluations (at two locations)
are carried out for each of the random input variables.

The 𝑘th concentration for the 𝑙th input random variable comprises a
pair of location (𝑝𝑙,𝑘) and weight (𝑤𝑙,𝑘). The evaluation is carried out at
the location, while the weight is a measure of the relative importance
of the evaluation. The weights should add up to unity, i.e.,
𝐾
∑

𝑘=1

𝑚
∑

𝑙=1
𝑤𝑙,𝑘 = 1 (17)

𝐾 = 2 for ‘‘2 m PEM’’. The vector of outputs for the 𝑘th evaluation
corresponding to the 𝑙th input random variable is evaluated by the
following relation:
8

𝐙(𝑙, 𝑘) = 𝐅(𝜇𝑝1, 𝜇𝑝2,… , 𝑝𝑙,𝑘,… , 𝜇𝑝𝑚) (18)
Algorithm 5: Overall algorithm
Start with Initial Incentive Value 𝐼𝑁𝐶 = 0;
while 𝐼𝑁𝐶 < 400 do

Read Hong’s 2 m PEM data for the hour;
for t=1:1:24 do

if Peak period then
𝐼(𝑡) = 𝐼𝑁𝐶;

else
𝐼(𝑡) = 0;

end
Compute modified load profile using Eq. (32), Eq. (33),
Eq. (34);

end
Start Dynamic Programming (DP) for BESS;
while DP does not converge do

for t=1:1:24 do
Carry out ELD using PSO and Hong’s 2 m PEM (see
algorithms 6);

Compute Expected 𝑇𝑂𝐶 and store;
end

end
Increase 𝐼𝑁𝐶 ;

end
Find the daily minimum expected 𝑇𝑂𝐶;

Algorithm 6: Particle Swarm Optimization
Set iteration count 𝐼𝑇 = 0;
while 𝐼𝑇 ≤ 𝐼𝑇𝑀𝐴𝑋 do

𝑊 𝑇 = 0.9 + (0.4 − 0.9)( 𝐼𝑇
𝐼𝑇𝑀𝐴𝑋 );

for 𝑗𝑗 = 1…𝑁𝑃𝑂𝑃 do
for 𝑘𝑘 = 1 ∶ 1 ∶ 𝑁𝑉 𝐴𝑅𝑆 do

if 𝐼𝑇 == 0 then
%Generate population randomly%
𝑝𝑜𝑠(𝑗𝑗, 𝑘𝑘) =
𝑝𝑜𝑠−(𝑘𝑘) + 𝑟𝑎𝑛𝑑(1) × (𝑝𝑜𝑠+(𝑘𝑘) − 𝑝𝑜𝑠−(𝑘𝑘));

𝑣𝑒𝑙(𝑗𝑗, 𝑘𝑘) = 0
else

%Update particle positions and
velocities%

𝑣𝑒𝑙(𝑗𝑗, 𝑘𝑘) =
𝑊 𝑇 × 𝑣𝑒𝑙(𝑗𝑗, 𝑘𝑘) + 2.0 × 𝑟𝑎𝑛𝑑(1) × (𝑝𝑏𝑒𝑠𝑡(𝑗𝑗, 𝑘𝑘) −
𝑝𝑜𝑠(𝑗𝑗, 𝑘𝑘))+2.0×𝑟𝑎𝑛𝑑(1)×(𝑔𝑏𝑒𝑠𝑡(𝑘𝑘)−𝑝𝑜𝑠(𝑗𝑗, 𝑘𝑘));

𝑝𝑜𝑠(𝑗𝑗, 𝑘𝑘) = 𝑝𝑜𝑠(𝑗𝑗, 𝑘𝑘) + 𝑣𝑒𝑙(𝑗𝑗, 𝑘𝑘);
if Limits are hit then

Set positions to maximum/minimum limits
end

end
end
Use algorithm 7 to perform Hong's PEM using control
variables (𝑝𝑜𝑠(𝑗𝑗, 𝑘𝑘) ∀ 𝑘𝑘 = {1, 2,… , 𝑁𝑉 𝐴𝑅𝑆});

Evaluate the fitness function;
Find local best (𝑝𝑏𝑒𝑠𝑡);

end
Find global best (𝑔𝑏𝑒𝑠𝑡);
𝐼𝑇 = 𝐼𝑇 + 1

end

where 𝜇𝑝𝑖 denotes the mean of the 𝑖th input stochastic variable. The

location and weight of the 𝑘th concentration for the 𝑙th input uncertain

variable are evaluated using the following calculation steps:
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Algorithm 7: Hong’s 2𝑚 PEM method
Collect values of control variables from the PSO algorithm;
Obtain discrete probability distribution for each input
uncertain variable from pdfs (see Section 2.1);

Find expectation (𝜇𝑝𝑖) and standard deviation (𝜎𝑝𝑖) from the
discrete distribution for each input uncertain variable;
for 𝑙 = 1…𝑚 do

Calculate third central moment using Eq. (19);
Calculate coefficient of skewness using Eq. (20);
Calculate 𝜁𝑙 using Eq. (21);
for 𝑘 = 1…2 do

Calculate the standard location using Eq. (22);
Calculate locations and weights using Eq. (23) ;
Set input variables to (𝜇𝑝1, 𝜇𝑝2,… 𝑝𝑙,𝑘,… , 𝜇𝑝𝑚) and use
control variables from the PSO algorithm ;

Carry out a deterministic power flow ;
Compute output state variables from the power flow
(i.e., solve Eq. (18));

end
end
Compute the hourly expected value of the objective (use Eq.
(24) with 𝑗 = 1);

• Find the third central moment (𝑀3(𝑝𝑙))

𝑀3(𝑝𝑙) = 𝐸[(𝑝𝑙 − 𝜇𝑝𝑙)3] 𝑙 ∈ {1, 2,… , 𝑚} (19)

𝐸[.] denotes expectation.
• Find the coefficient of skewness (𝜆𝑙,3)

𝜆𝑙,3 =
𝑀3(𝑝𝑙)
𝜎3𝑝𝑙

𝑙 ∈ {1, 2,… , 𝑚} (20)

𝜎𝑝𝑙 is the standard deviation
• Calculate 𝜍𝑙

𝜍𝑙 = 2

√

𝑚 + (
𝜆𝑙,3
2

)2 ∶ 𝑙 ∈ {1, 2,… , 𝑚} (21)

• Calculate the standard location (𝜉𝑙,𝑘)

𝜉𝑙,𝑘 =
𝜆𝑙,3
2

+ (−1)3−𝑘
𝜍𝑙
2

∶ 𝑙 ∈ {1, 2,… , 𝑚}, 𝑘 ∈ {1, 2} (22)

• Evaluate the location and weight.
{

𝑝𝑙,𝑘 = 𝜇𝑝𝑙 + 𝜉𝑙,𝑘𝜎𝑝𝑙 ∶ 𝑙 ∈ {1, 2,… , 𝑚}, 𝑘 ∈ {1, 2}
𝑤𝑙,𝑘 = (−1)𝑘

𝑚
𝜉𝑙,3−𝑘
𝜍𝑙

∶ 𝑙 ∈ {1, 2,… , 𝑚}, 𝑘 ∈ {1, 2}
(23)

The 𝑗th moment of the output is evaluated using the following
elation:

(𝐙𝑗 ) =
2
∑

𝑘=1

𝑚
∑

𝑙=1
𝑤𝑙,𝑘(𝐙(𝑙, 𝑘))𝑗 (24)

A few sample points and associated weights are computed from
dfs of uncertain input variables for a PEM method. Sample points and
he corresponding weights are called concentrations. A deterministic
tudy is carried out for each concentration individually. Raw/central
standard moments are computed for each of the output variables using
he output of the deterministic study and the associated weight. The
rocedure for stochastic optimization incorporating the PEM is shown
n algorithm 7. More on ‘‘Hong’s PEM’’ can be found in [63–65].

Although Hong's PEM has been widely used for modeling power
ystem uncertainties,most applications of Hong's PEM pertain to mod-
ling renewable generation and load demand. On the other hand, the
tochastic nature of the EV/PHEV charging load has most frequently
9

een modeled using Monte Carlo Simulation (MCS) [28,29,31,33,38],
able 2
odeling techniques for EV/PHEV charging load.

Sl.no Ref. EV load modeling techniques

1 [66] Queuing model followed by a neural network
2 [5] ARIMA model
3 [19] Wavelet transform, particle swarm

optimization and support vector machine
4 [20] Sequence operation theory
5 [22] Markov chain Monte Carlo
6 [25] Annealing PSO
7 [27] Not clearly mentioned
8 [28] Monte carlo
9 [29] Monte carlo
10 [31] Monte carlo
11 [33] Monte carlo
12 [36] SAA (Sample Average Approximation) method
13 [37] IGDT (information gap decision theory)

method
14 [38] Monte carlo
15 [39] IGDT method

and rarely using the Hong's PEM. Some other approaches like informa-
tion gap decision theory (IGDT) [37,39], queuing model followed by a
neural net [66], ARIMA model [5], wavelet transform [19], sequence
operation theory [20], Markov Chain [22], Annealing PSO [25], sample
average approximation method [36], etc., have also been reported. In
contrast, the probabilistic nature of the PHEV charging demand has
been modeled using Hong's PEM in this paper. A summary of the PHEV
modeling method is provided in Table 2. Further, detailed algorithms
for modeling hourly PHEV load states from the Hong's PEM data are
provided in this paper. To the best of the author’s knowledge, no similar
algorithm for computing hourly PHEV charging requirements from
Hong's PEM data has been discussed in detail so far in the literature.

In this paper, a single wind farm at one location has been consid-
ered. Therefore, spatial correlations between wind speeds at different
locations are not needed. Research has revealed a weak anti-correlation
between solar irradiance and wind speed [67]. The correlation is con-
sidered while deriving the wind speed and solar irradiance pdf models
for a given hour. Powers generated by SPGs and WPGs are fed to the
stochastic power flow program. SPG and WPG are controlled indepen-
dently. Therefore, power outputs of WPG and SPG (and also the load
demand) are most commonly assumed to be uncorrelated for a power
system analysis [38,43,58,68–70]. Similarly, researchers commonly
assume pdfs of daily driven distance and charging pattern to be un-
correlated [27,31,33,38]. Recently, some researchers have focused on
investigating correlated probability distributions [62]. Methods using
different copula theories have been proposed. Alternatively, multivari-
ate distribution models using the Morgenstern model, Nataf model,
etc., have been proposed [71]. Nataf transformation followed by Hong's
PEM have recently been used in power system applications [72,73].
Independent probability distributions have been considered in this
paper in line with the approach given in [27,31,33,38,38,43,58,68–
70]. However, the proposed method can be amended to incorporate
correlations between different stochastic variables. Nataf transforma-
tion followed by Hong's PEM can be used in the proposed energy
management approach [72,73]. The same shall be taken up in the
future by the authors.

3. Smart transformer and PHEV load model

3.1. Smart transformer

An ST comprises a low-frequency transformer in conjunction with
a power electronic converter system. An ST is equipped with advanced
‘‘control and communication’’ features. An ST can be deployed for

providing ancillary services to the grid, addressing power quality (PQ)



Renewable and Sustainable Energy Reviews 155 (2022) 111861S. Gupta et al.
Fig. 1. Schematic of a smart transformer.
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issues in the low/medium voltage distribution system, providing con-
nectivity to DC loads through the DC link, etc. [47]. The schematic of
an ST is shown in Fig. 1.

A two-stage back-to-back converter is considered in this paper. The
AC/DC converter is present on the high voltage (HV) grid side and is
named the grid side converter (GSC). The DC/AC converter is on the
medium voltage (MV) load side and is called a load side converter
(LSC). There is a DC link between the two converters. The DC link
can also be used to feed DC loads present in the system. The two-stage
back-to-back converter allows a decoupled control of the LSC and the
GSC. The LSC is controlled as a grid forming inverter and produces a
sinusoidal voltage of specified magnitude and frequency. On the other
hand, the GSC is controlled to maintain the DC link voltage. One degree
of freedom is available in the control scheme of the GSC, which may be
used to provide ancillary services like voltage/reactive power support
to the grid.

A voltage control algorithm can be integrated into the control of the
LSC. The voltage control algorithm will provide the voltage set-point
(𝑉 ∗

𝑆𝑇𝑀𝑉 (𝑡)) at every time step for the grid forming/LSC unit. Following
performance indicators (PI) have been defined in the literature to assess
the voltage dip or swell in a distribution network [74]:

(i) Voltage Rise Margin (VRM) [74]: The voltage rise margin (VRM)
for concentration 𝑘 at any hour 𝑡 (𝑉 𝑅𝑀𝑠(𝑡))is calculated as
follows:

𝑉 𝑅𝑀(𝑙, 𝑘, 𝑡) = 𝑉 𝐺𝐶
𝑚𝑎𝑥 − max{𝑉𝑖(𝑙, 𝑘, 𝑡)} ∀𝑖 ∈ 𝛺𝐵 ,

∀𝑙 ∈ 𝛺𝑚,∀𝑘 ∈ 𝛺𝑘,∀𝑡 ∈ 𝛺𝑡

(25)

𝑉 𝐺𝐶
𝑚𝑎𝑥 is the maximum allowed voltage in a network as per grid

code requirement, 𝑉𝑖(𝑙, 𝑘, 𝑡) is the voltage magnitude at time 𝑡 at
the 𝑖th bus for the 𝑘th concentration. 𝛺𝑏, and 𝛺𝑡 represent sets
of buses and time respectively. 𝛺𝑘 = {1, 2}, 𝛺𝑚 = {1, 2,… , 𝑚}.
The expected VRM at any hour 𝑡 (𝐸(𝑉 𝑅𝑀(𝑡))) is calculated as
follows:

𝐸(𝑉 𝑅𝑀(𝑡)) =
2
∑

𝑘=1

𝑚
∑

𝑙=1
𝑉 𝑅𝑀(𝑙, 𝑘, 𝑡)𝑤𝑙,𝑘 ∀𝑡 ∈ 𝛺𝑡 (26)

A positive expected value of VRM indicates that there is no
voltage swell in the network. 𝑉 𝐺𝐶

𝑚𝑎𝑥 is set to 1.05 pu in line with
ANSI C84.1 requirement.

(ii) Voltage Drop Margin (VDM) [74]: VDM is a measure of the
voltage dip in a distribution network. This PI has become more
relevant with the introduction of the PHEV charging load, which
is likely to cause a poor voltage profile in the network. The VDM
for the concentration 𝑘 at any hour 𝑡 (𝑉 𝐷𝑀(𝑙, 𝑘, 𝑡)) is calculated
as follows:

𝑉 𝐷𝑀(𝑙, 𝑘, 𝑡) = 𝑚𝑖𝑛(𝑉𝑖(𝑙, 𝑘, 𝑡) − 𝑉 𝐺𝐶
𝑚𝑖𝑛 ) ∀𝑖 ∈ 𝛺𝐵

𝑙 ∈ 𝛺𝑚,∀𝑘 ∈ 𝛺𝑘,∀𝑡 ∈ 𝛺𝑡
10

(27) F
Fig. 2. PHEV battery charging characteristic.

The lowest allowed voltage as per grid code is denoted by 𝑉 𝐺𝐶
𝑚𝑖𝑛 .

The expected VDM (𝐸(𝑉 𝐷𝑀(𝑡))) is computed as follows:

𝐸(𝑉 𝐷𝑀(𝑡)) =
2
∑

𝑘=1

𝑚
∑

𝑙=1
𝑉 𝐷𝑀(𝑙, 𝑘, 𝑡)𝑤𝑙,𝑘 ∀𝑡 ∈ 𝛺𝑡 (28)

A positive 𝐸(𝑉 𝐷𝑀(𝑡)) indicates that there is no issue of voltage
dip in the network. 𝑉 𝐺𝐶

𝑚𝑖𝑛 is set to 0.95 pu in sync with ANSI C84.1
requirement.

(iii) Average Voltage deviation (AVD): AVD for the concentration 𝑘
at a time 𝑡 is defined as follows:

𝐴𝑉 𝐷(𝑙, 𝑘, 𝑡) =
∑𝑁𝐵

𝑖=1 (|𝑉𝑖(𝑙, 𝑘, 𝑡) − 1.0|)
𝑁𝐵

(29)

𝑁𝐵 is the number of system buses. The voltages are expressed in
per unit in Eq. (29). The expected AVD (𝐸(𝐴𝑉 𝐷(𝑡))) is computed
as follows:

𝐸(𝐴𝑉 𝐷(𝑡)) =
2
∑

𝑘=1

𝑚
∑

𝑙=1
𝐴𝑉 𝐷(𝑙, 𝑘, 𝑡)𝑤𝑙,𝑘 ∀𝑡 ∈ 𝛺𝑡 (30)

he objective of the voltage control scheme is to minimize 𝐸(𝑉 𝐷𝑀(𝑡)).
n other words, 𝑉 ∗

𝑆𝑇𝑀𝑉 (𝑡) is selected so as to minimize 𝐸(𝑉 𝐷𝑀(𝑡)).
ptimal 𝑉 ∗

𝑆𝑇𝑀𝑉 (𝑡) should also give positive 𝐸(𝑉 𝐷𝑀(𝑡)) and 𝐸(𝑉 𝑅𝑀(𝑡))
o comply with the grid power quality (PQ) requirements.

.2. PHEV load model

The charging characteristic of a typical PHEV battery is shown in

ig. 2. The PHEV charging load at any time 𝑡 (𝑃𝐶𝐻𝐸𝑉 (𝑡)) is modeled
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using the following equations [75]:

𝑃𝐶𝐻𝐸𝑉 (𝑡) =

⎧

⎪

⎨

⎪

⎩

𝑃𝑚𝑎𝑥
𝐸𝑉 (1 − 𝑒𝑥𝑝[−𝛼𝐸𝑉 𝑡

𝑡𝑚2 ]) ∶ 0 < 𝑡 ≤ 𝑡𝑚2
𝑃𝑚𝑎𝑥
𝐸𝑉 ( 𝑡𝑚𝑎𝑥−𝑡

𝑡𝑚𝑎𝑥−𝑡𝑚2 ) ∶ 𝑡𝑚2 < 𝑡 ≤ 𝑡𝑚𝑎𝑥
0 ∶ 𝑡 > 𝑡𝑚𝑎𝑥

(31)

Following values are considered in this paper: 𝑃𝑚𝑎𝑥
𝐸𝑉 = 6.5 kW,

𝛼𝐸𝑉 = 53.92, 𝑡𝑚2 = 4.5 h, 𝑡𝑚𝑎𝑥 = 5 h [27,75]. The parameters pertain
to a ‘‘Nissan Altra lithium-ion battery’’. The energy of the battery at
𝑡 = 𝑡𝑚2 is 𝐸𝐸𝑉 (𝑡𝑚2) = 28.707 kWh.

The algorithm for calculating the PHEV load demand is as follows:

• STEP-1: Calculate the daily distance traveled with the corre-
sponding probability using the log-normal pdf of the daily trav-
eled distance given in Eq. (9). The existing SOC and the energy
(kWh) corresponding to each traveled distance are calculated
using Eq. (11). The data is stored in a table named 𝐸𝑉𝐸 . The
first column stores the remaining energy in kWh. The second
column stores the corresponding probability. Let there be 𝑛𝑑
rows, corresponding to each driven distance.

• STEP-2: The maximum charging time is 𝑡𝑚𝑎𝑥 = 5 hours. In this
step, the charging energy requirement of the battery is computed
for five hours from the commencement of the charging process.
Algorithms 1, and 2 are used. The charging energy requirement
is stored in a table 𝑡𝑎𝑏1. The table 𝑡𝑎𝑏1 has 𝑛𝑑 numbers of rows.
Each row corresponds to a driven distance calculated in STEP-1.
The table 𝑡𝑎𝑏1 has six (6) columns. The first five columns store
the energy requirement of the PHEV battery for five hours from
the charging commencement time. If the PHEV battery is fully
charged before 𝑡𝑚𝑎𝑥 = 5 h, then the entry corresponding to the
column is 0. The sixth column stores the probability calculated in
STEP-1.

• STEP-3 A table 𝑡𝑎𝑏2 is prepared to store the probability of the
charging commencement process. The data is prepared using
the pdf of the charging strategy (Eqs. (12)–(14)). The table has
twenty-four (24) rows. Each row corresponds to an hour. There
are two columns. The first column stores the time (hour), and the
second column stores the probability that the charging starts at
the particular hour. For instance, 𝑡𝑎𝑏2(19, 1) will have an entry 19,
while 𝑡𝑎𝑏2(19, 2) will store the probability of the charging process
starting at hour 19.

• STEP-4 Use algorithm −3 to find the PHEV charging load demand
at different hours with the corresponding probability. The data
is stored in a table 𝑡𝑎𝑏3 having three columns. The first column
will store the hour number. The second column stores the en-
ergy demand for the hour in kWh. The third column stores the
corresponding probability. Let there be 𝑛𝑑𝑎𝑡𝑎 number of rows.

• STEP-5 The PHEV energy demand states for a particular hour
along with corresponding probabilities can be filtered out using
algorithm 4. The data will be stored in a table 𝑡𝑎𝑏4. This table can
be fed to the ‘‘Hong's 2 m PEM’’ module for calculation at every
hour. 𝑡𝑎𝑏4 has two columns. The first column stores the PHEV
energy demand, while the second column stores the probability.

4. Mathematical formulation and solution strategy

The mathematical model and the solution strategy are presented in
this section.

4.1. Mathematical formulation

4.1.1. Economic model of responsive load due to DR
Loads can be broadly classified into three categories. Critical devices

are needed at a given time. Shiftable loads can be used at any other pre-
ferred time. Washing machines, dishwashers, etc., are some examples
11

of shiftable loads. Reducible loads can be turned off at a given time. 𝐸
• IBDR: The economic model of load due to the implementation of
the IBDR program is obtained using the concept of demand price
elasticity. The model also considers the consumer benefits. Elas-
ticity is the ratio of per unit change in demand at any hour to per
unit change in tariff at an hour. The modified load participating
in the IBDR program is given by [76–78]:

𝑃𝐿𝐷𝑅
𝑖 (𝑙, 𝑘, 𝑡) = 𝜂𝑃𝐿0

𝑖 (𝑙, 𝑘, 𝑡){1 + 𝐸𝑙(𝑡, 𝑡)
𝜌(𝑙, 𝑘, 𝑡) − 𝜌0(𝑙, 𝑘, 𝑡) + 𝐼(𝑡)

𝜌0(𝑙, 𝑘, 𝑡)

+
24
∑

ℎ=1,ℎ≠𝑡
𝐸𝑙(𝑡, ℎ)

𝜌(𝑙, 𝑘, ℎ) − 𝜌0(𝑙, 𝑘, ℎ) + 𝐼(ℎ)
𝜌0(𝑙, 𝑘, ℎ)

}

∀𝑙 ∈ 𝛺𝑚,∀𝑘 ∈ 𝛺𝑘,∀𝑡 ∈ 𝛺𝑡

(32)

𝑃𝐿𝐷𝑅
𝑖 (𝑙, 𝑘, 𝑡) is the load at bus 𝑖 participating in the DR program,

𝜂 is the percentage of load participating in the DR program.
𝑃𝐿0

𝑖 (𝑙, 𝑘, 𝑡) is the original demand at bus 𝑖, 𝜌(𝑡) is spot electricity
price, 𝜌0(𝑡) is the initial electricity price for hour 𝑡. 𝐼(𝑡) is the
incentive offered per unit of load curtailed or shifted during time
𝑡 for participating in an incentive-based DR program. 𝐸𝑙(𝑡, 𝑡) and
𝐸(𝑡, ℎ) denote the self-elasticity and cross elasticity respectively.
Self-elasticity is always negative, while cross elasticity is always
positive. In this work, a real-time pricing scheme is not used.
Therefore, the spot price and the initial price of electricity are
the same in Eq. (32). The modified load with implementation of
an IBDR program (𝑃𝐿𝑖(𝑙, 𝑘, 𝑡)) is given below:

𝑃𝐿𝑖(𝑙, 𝑘, 𝑡) = (1−𝜂)𝑃𝐿0
𝑖 (𝑙, 𝑘, 𝑡)+𝑃𝐿

𝐷𝑅
𝑖 (𝑙, 𝑘, 𝑡) ∀𝑙 ∈ 𝛺𝑚,∀𝑘 ∈ 𝛺𝑘,∀𝑡 ∈ 𝛺𝑡

(33)

The load change with implementation of IBDR (𝛥𝑃𝐿𝑖(𝑙, 𝑘, 𝑡)) is
given by:

𝛥𝑃𝐿𝑖(𝑙, 𝑘, 𝑡) = 𝜂𝑃𝐿0
𝑖 (𝑙, 𝑘, 𝑡)−𝑃𝐿𝐷𝑅

𝑖 (𝑙, 𝑘, 𝑡)𝛥 ∀𝑙 ∈ 𝛺𝑚,∀𝑘 ∈ 𝛺𝑘,∀𝑡 ∈ 𝛺𝑡

(34)

• PBDR: Researchers have also proposed PBDR programs for mi-
crogrids. The electricity price and the usage demand in a PBDR
program are related as follows [79,80]:

𝑃𝐿(𝑡) = 𝐴(𝜌𝑐 (𝑡))𝜀 (35)

The price rate is the ratio of the actual electricity price to the
original electricity price for the customers in the MG. A twenty-
one step price-elastic demand curve (price rate varying from 50%
to 150% in steps of 5%) is used in this paper [80]. The value of
𝜀 is taken as (−0.2122) [79]. The PBDR model (∀𝑖 ∈ 𝛺𝑏, ∀𝑙 ∈ 𝛺𝑚,
∀𝑘 ∈ {1, 2}, ∀𝑡 ∈ 𝛺𝑡) is as follows [79,80]:
{

𝑃𝐿𝑖(𝑙, 𝑘, 𝑡) = 𝐸(𝑃𝐿0
𝑖 (𝑡))

∑

𝑗 𝜈𝑗 (𝑡)𝑟
𝑃𝐵𝐷𝑅,𝑃
𝑗 (1 + 𝐿𝐷𝑈𝑖(𝑙, 𝑘, 𝑡))

∑

𝑗 𝜈𝑗 (𝑡) = 1; 𝜈𝑗 (𝑡) ∈ {0, 1}

(36)

𝐿𝐷𝑈𝑖(𝑙, 𝑘, 𝑡) denotes the uncertainty in the predicted load de-
mand. The value of 𝐿𝐷𝑈𝑖(𝑙, 𝑘, 𝑡) is taken from the Hong's 2 m
PEM. When 𝐿𝐷𝑈𝑖(𝑙, 𝑘, 𝑡) is involved, uncertainty of the PBDR
scheme is fully considered [79,80].

.1.2. Master-problem
The problem is solved using a bi-level approach. The expected av-

rage voltage deviation is minimized at each hour. It is mathematically
tated as follows:

minimize
𝑉 ∗
𝑆𝑇𝑀𝑉 (𝑡)∈[0.95,1.05]

𝐸(𝐴𝑉 𝐷(𝑉 ∗
𝑆𝑇𝑀𝑉 (𝑡))) ∀𝑡 ∈ 𝛺𝑡 (37)

ubject to:

(38)
(𝑉 𝑅𝑀(𝑡)) > 0 ∀𝑡 ∈ 𝛺𝑡
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𝐅

𝐸(𝑉 𝐷𝑀(𝑡)) > 0 ∀𝑡 ∈ 𝛺𝑡 (39)

(𝐕∗
𝐒𝐓𝐌𝐕(𝐭), 𝐠𝐥,𝐤,𝐭 ) = 𝟎 ∀𝑙 ∈ 𝛺𝑙 ,∀𝑘 ∈ 𝛺𝑘,∀𝑡 ∈ 𝛺𝑡 (40)

𝐠𝐥,𝐤,𝐭 ∈ [𝐠𝐥, 𝐠𝐮] ∀𝑙 ∈ 𝛺𝑙 ,∀𝑘 ∈ 𝛺𝑘,∀𝑡 ∈ 𝛺𝑡 (41)

Eq. (37) represents that the objective is to minimize the expected
AVD at every time step (1 h in this paper). 𝑉 ∗

𝑆𝑇𝑀𝑉 (𝑡) is the control
variable, which lies between the limits 0.95 pu and 1.05 pu. A step size
of 1%, i.e., 0.01 pu is selected for the control variable [74]. Eqs. (38)
and (38) ensure that there is no voltage swell or dip in the network. In
other words, all the node voltages lie within the range [0.95, 1.05] pu in
compliance with the ANSI C84.1 requirement. Eq. (40) stands for the
power flow equations. 𝐠𝐥,𝐤,𝐭 stands for the set of power system state
variables (voltage magnitudes, phase angles, line currents). Eq. (41)
ensures that all power system state variables are within acceptable
limits [𝐠𝐥, 𝐠𝐮].

4.1.3. Slave problem
The objective is to minimize the expected operating cost.

minimize
𝐱(𝐭)∈𝛺𝑥

∑

𝑡∈𝛺𝑡

𝐸(𝑇𝑂𝐶(𝑡)) (42)

where 𝐱(𝐭) stands for the control variables, 𝛺𝑥 is the set of control
variables, and 𝑇𝑂𝐶(.) is the total operating cost.

𝛺𝑥 = {𝑃𝐺𝑖(𝑡), 𝑃𝐵(𝑡), 𝐼(𝑡)} ∀𝑖 ∈ 𝛺𝐺 ,∀𝑡 ∈ 𝛺𝑡 (43)

where, 𝑃𝐺𝑖(𝑡) denotes the active power injection of the 𝑖th dispatchable
unit at time 𝑡, 𝑃𝐵(𝑡) is the battery charging power, and 𝐼(𝑡) is the
incentive value. 𝛺𝐺 is the set of all dispatchable units, and 𝛺𝑡 is the
set of all times in a day. The total operating cost 𝑇𝑂𝐶 is calculated as
follows for the IBDR program:

𝑇𝑂𝐶(𝑙, 𝑘, 𝑡) =𝑃𝑔𝑟𝑖𝑑 (𝑙, 𝑘, 𝑡)𝜌(𝑙, 𝑘, 𝑡) +
∑

𝑗∈𝛺𝐺

𝑎𝑗 + 𝑏𝑗𝑃𝐺𝑗 (𝑙, 𝑘, 𝑡)

+ 𝑐𝑗 (𝑃𝐺𝑗 (𝑙, 𝑘, 𝑡))2

+ 𝐼(𝑡)
∑

𝑖∈𝛺𝐵

𝛥𝑃𝐿𝑖(𝑙, 𝑘, 𝑡) ∀𝑙 ∈ 𝛺𝑙 ,∀𝑘 ∈ 𝛺𝑘,∀𝑡 ∈ 𝛺𝑡

(44)

𝑃𝑔𝑟𝑖𝑑 (.) denotes the power imported from the sub-station/main-grid,
𝛺𝐵 is the set of system buses. 𝑎𝑖, 𝑏𝑖, and 𝑐𝑖 are fuel cost coefficients
of dispatchable unit 𝑖. The first term in Eq. (44) denotes the cost of
energy purchase from the grid. The second term represents the fuel
cost of dispatchable generators. The third term stands for the expense
of paying incentives to the customers participating in the DR program.
In Eq. (44), 𝑃𝑔𝑟𝑖𝑑 (.) > 0, when power is imported from the main-grid.
When power is sold to the main grid, 𝑃𝑔𝑟𝑖𝑑 (.) < 0.

The TOC for the PBDR program will comprise the energy cost of
the grid power and fuel costs of dispatchable units minus earnings by
selling power to customers:

𝑇𝑂𝐶(𝑙, 𝑘, 𝑡) =𝑃𝑔𝑟𝑖𝑑 (𝑙, 𝑘, 𝑡)𝜌(𝑙, 𝑘, 𝑡) +
∑

𝑗∈𝛺𝐺

𝑎𝑗 + 𝑏𝑗𝑃𝐺𝑗 (𝑙, 𝑘, 𝑡)

+ 𝑐𝑗 (𝑃𝐺𝑗 (𝑙, 𝑘, 𝑡))2

−
∑

𝑖∈𝛺𝐵

𝐸(𝑃𝐿0
𝑖 (𝑡))

∑

𝑗∈𝛺𝐽

𝜈𝑗 (𝑡)𝑟
𝑃𝐵𝐷𝑅,𝑃
𝑗 (1 + 𝐿𝐷𝑈𝑖(𝑙, 𝑘, 𝑡))𝜌𝑐𝑗 (𝑡)

∀𝑙 ∈ 𝛺𝑙 ,∀𝑘 ∈ 𝛺𝑘,∀𝑡 ∈ 𝛺𝑡

(45)

The third term in Eq. (45) denotes earnings by selling power to
customers.

The operation is subject to several constraints as given below:
12
• Power balance constraint: The active and reactive power con-
straints at bus 𝑖 are as follows:

𝑃𝐺𝑖(𝑙, 𝑘, 𝑡) + 𝑃𝑊𝑖(𝑙, 𝑘, 𝑡) + 𝑃𝑆𝑖(𝑙, 𝑘, 𝑡) + 𝛬𝑖𝑃𝑔𝑟𝑖𝑑 (𝑙, 𝑘, 𝑡) − 𝑃𝐿𝑖(𝑙, 𝑘, 𝑡)

− 𝑃𝐶𝐻𝐸𝑉 𝑖(𝑙, 𝑘, 𝑡) − 𝑃𝐵𝑖(𝑙, 𝑘, 𝑡) = 𝑓1𝑖(𝑙, 𝑘, 𝑡) ∀𝑙 ∈ 𝛺𝑚,∀𝑘 ∈ 𝛺𝐾 ,∀𝑡 ∈ 𝛺𝑡

(46)

𝑓1𝑖(𝑙, 𝑘, 𝑡) = |𝑉𝑖(𝑙, 𝑘, 𝑡)|
∑

𝑗∈𝛺𝐵

|𝑉𝑗 (𝑙, 𝑘, 𝑡)||𝑌𝑖𝑗 |𝑐𝑜𝑠(𝛿𝑖(𝑙, 𝑘, 𝑡)−𝛿𝑗 (𝑙, 𝑘, 𝑡)−𝜃𝑖𝑗 )

(47)

𝑄𝐺𝑖(𝑙, 𝑘, 𝑡) +𝑄𝑊𝑖(𝑙, 𝑘, 𝑡) +𝑄𝑆𝑖(𝑙, 𝑘, 𝑡) + 𝛬𝑖𝑄𝑔𝑟𝑖𝑑 (𝑙, 𝑘, 𝑡) −𝑄𝐿𝑖(𝑙, 𝑘, 𝑡)

− 𝑄𝐶𝐻𝐸𝑉 𝑖(𝑙, 𝑘, 𝑡) −𝑄𝐵𝑖(𝑙, 𝑘, 𝑡) = 𝑓2𝑖(𝑙, 𝑘, 𝑡) ∀𝑙 ∈ 𝛺𝑚,∀𝑘 ∈ 𝛺𝐾 ,∀𝑡 ∈ 𝛺𝑡

(48)

𝑓2𝑖(𝑙, 𝑘, 𝑡) = |𝑉𝑖(𝑙, 𝑘, 𝑡)|
∑

𝑗∈𝛺𝐵

|𝑉𝑗 (𝑙, 𝑘, 𝑡)||𝑌𝑖𝑗 |𝑠𝑖𝑛(𝛿𝑖(𝑙, 𝑘, 𝑡)−𝛿𝑗 (𝑙, 𝑘, 𝑡)−𝜃𝑖𝑗 )

(49)

𝛬𝑖 = 1 if bus 𝑖 is the slack-bus. Otherwise 𝛬𝑖 = 0. 𝑉𝑖(.) and
𝛿𝑖(.) denote the voltage magnitude and angle at bus 𝑖. |𝑌𝑖𝑗 | and
𝜃𝑖𝑗 stand for the magnitude and angle of the 𝑖𝑗th element of the
Y-bus. 𝑄𝐺𝑖(.), 𝑄𝑊𝑖(.), 𝑄𝑆𝑖(.), 𝑄𝑔𝑟𝑖𝑑 (.) are the reactive power injec-
tions from the dispatchable unit, WPG, SPG, and grid respectively.
𝑄𝐿𝑖(.), 𝑄𝐵𝑖(.), 𝑄𝐶𝐻𝐸𝑉 𝑖(.) are the reactive power load, reactive
power fed to the battery converter, and EV charger respectively.
The suffix 𝑖 denotes that the particular unit is connected to bus
𝑖. Eqs. (46) and (48) represent the active and reactive power
balance at bus 𝑖.

• Unit capacity constraint: The ratings of the units cannot be ex-
ceeded:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑃𝐺𝑚𝑖𝑛
𝑖 ≤ 𝑃𝐺𝑖(𝑙, 𝑘, 𝑡) ≤ 𝑃𝐺𝑚𝑎𝑥

𝑖 ∶ ∀𝑖 ∈ 𝛺𝐺 ,∀𝑙 ∈ 𝛺𝑚,
∀𝑘 ∈ 𝛺𝑘,∀𝑡 ∈ 𝛺𝑡

𝑄𝐺𝑚𝑖𝑛
𝑖 ≤ 𝑄𝐺𝑖(𝑙, 𝑘, 𝑡) ≤ 𝑄𝐺𝑚𝑎𝑥

𝑖 ∶ ∀𝑖 ∈ 𝛺𝐺 ,∀𝑙 ∈ 𝛺𝑚,
∀𝑘 ∈ 𝛺𝑘,∀𝑡 ∈ 𝛺𝑡

(50)

𝑃𝐺𝑚𝑖𝑛∕𝑚𝑎𝑥
𝑖 and 𝑄𝐺𝑚𝑖𝑛∕𝑚𝑎𝑥

𝑖 denote the minimum/maximum active
and reactive power handling capacity of unit 𝑖.

• Line current constraint: The line currents should be within accept-
able limits:

|𝐼𝑙𝑛(𝑙, 𝑘, 𝑡)| ≤ 𝐼𝑚𝑎𝑥𝑙𝑛 ∶ ∀𝑙𝑛 ∈ 𝛺𝑙𝑛,∀𝑙 ∈ 𝛺𝑚,∀𝑘 ∈ 𝛺𝑘,∀𝑡 ∈ 𝛺𝑡 (51)

𝛺𝑙𝑛 is the set of all lines in the system. 𝐼𝑚𝑎𝑥𝑙𝑛 is the maximum line
rating, while 𝐼𝑙𝑛(.) is the line current.

• Battery storage constraint: The battery energy storage system
(BESS) should satisfy the following constraint (∀𝑙 ∈ 𝛺𝑚, ∀𝑘 ∈ 𝛺𝑘,
∀𝑡 ∈ 𝛺𝑡):

𝐸𝐵𝐴𝑇 (𝑙, 𝑘, 𝑡) = 𝐸𝐵𝐴𝑇 (𝑙, 𝑘, 𝑡 − 1) + 𝑃𝐵(𝑙, 𝑘, 𝑡) 𝛥𝑇
𝜂𝑑𝑖𝑠

∶ 𝑃𝐵(𝑙, 𝑘, 𝑡) ≤ 0

(52)

𝐸𝐵𝐴𝑇 (𝑙, 𝑘, 𝑡) = 𝐸𝐵𝐴𝑇 (𝑙, 𝑘, 𝑡−1)+𝑃𝐵(𝑙, 𝑘, 𝑡)𝛥𝑇 𝜂𝑐ℎ𝑔 ∶ 𝑃𝐵(𝑙, 𝑘, 𝑡) > 0

(53)

𝐸𝐵𝐴𝑇 𝑚𝑖𝑛 ≤ 𝐸𝐵𝐴𝑇 (𝑙, 𝑘, 𝑡) ≤ 𝐸𝐵𝐴𝑇 𝑚𝑎𝑥 (54)

𝐸𝐵𝐴𝑇 (𝑙, 𝑘, 0) = 𝐸𝐵𝐴𝑇 (𝑙, 𝑘, 𝑇 ) (55)

|𝑃𝐵𝐴𝑇 (𝑙, 𝑘, 𝑡)| ≤ 𝑃𝐵𝐴𝑇 𝑟𝑎𝑡𝑒𝑑 (56)
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a

Eqs. (52) and (53) are the battery discharging and charging
equations. The battery energy must not exceed the maximum
limit and should not fall below a specified threshold (Eq. (54)).
The energy stored in the battery should be the same at the
beginning and the end of the optimization horizon (Eq. (55)). The
battery charging/discharging power should not exceed the rated
values (Eq. (56)). 𝐸𝐵𝐴𝑇 (.) denotes the energy of the battery.
𝜂𝑐ℎ𝑔∕𝑑𝑖𝑠 denotes the charging/discharging efficiency. 𝐸𝐵𝐴𝑇 𝑚𝑖𝑛∕𝑚𝑎𝑥

is the minimum/maximum battery energy specification. The rated
battery power is 𝑃𝐵𝐴𝑇 𝑟𝑎𝑡𝑒𝑑 .

• Power exchange constraint: The converters and the ST have rated
power handling capacities, which cannot be exceeded (∀𝑙 ∈ 𝛺𝑚,
∀𝑘 ∈ 𝛺𝑘, ∀𝑡 ∈ 𝛺𝑡).

{

|𝑃𝑔𝑟𝑖𝑑 (𝑙, 𝑘, 𝑡)| ≤ 𝑃𝑚𝑎𝑥
𝑔𝑟𝑖𝑑

|𝑄𝑔𝑟𝑖𝑑 (𝑙, 𝑘, 𝑡)| ≤ 𝑄𝑚𝑎𝑥
𝑔𝑟𝑖𝑑

(57)

𝑃𝑚𝑎𝑥
𝑔𝑟𝑖𝑑 ∕𝑄

𝑚𝑎𝑥
𝑔𝑟𝑖𝑑 is the maximum active/reactive power handling ca-

pacity of the LSC converter of the ST.
• Constraints for PBDR: Following two additional constraints should

be satisfied for PBDR [79,80]:
∑

𝑡∈𝛺𝑡

∑

𝑖∈𝛺𝐵

𝐸(𝑃𝐿0
𝑖 (𝑡))

∑

𝑗∈𝛺𝐽

𝜈𝑗 (𝑡)𝑟
𝑃𝐵𝐷𝑅,𝑃
𝑗 𝜌𝑐𝑗 (𝑡) ≤

∑

𝑡−∈𝛺𝑡

∑

𝑖∈𝛺𝐵

𝐸(𝑃𝐿0
𝑖 (𝑡))𝜌0𝑐 (𝑡)

(58)

∑

𝑡∈𝛺𝑡

∑

𝑖∈𝛺𝐵

𝐸(𝑃𝐿0
𝑖 (𝑡))

∑

𝑗∈𝛺𝐽

𝜈𝑗 (𝑡)𝑟
𝑃𝐵𝐷𝑅,𝑃
𝑗 ≥

∑

𝑡−∈𝛺𝑡

∑

𝑖∈𝛺𝐵

𝐸(𝑃𝐿0
𝑖 (𝑡)) (59)

Eq. (58) ensures that the customer bill does not increase after
implementation of the PBDR. Eq. (59) guarantees that a customer
does not need to reduce the daily consumption.

4.2. Solution strategy

The optimization problem is solved using a nested approach. Tech-
niques used to solve different optimization problems are as follows:

4.2.1. Master problem
The master problem is to find the optimal setpoints for the LSC of

the ST for minimizing the average voltage deviation. Further, all the bus
voltages must comply with ANSI C84.1 requirements. The optimization
problem is solved as a day ahead optimization problem with hourly
stochastic forecasts. Therefore, an exhaustive search method is used.
The limits for setpoint are 1.05 pu and 0.95 pu. A step size of 1%,
i.e., 0.01 pu is used [74].

4.2.2. Slave problem
The objective is to find optimal incentive values, schedule for

dispatchable generators, and BESS to minimize the TOC. Following
techniques have been adopted:

• The incentive value is optimized using an exhaustive search
method. Alternatively, heuristic approaches like particle swarm
optimization (PSO) may be used. PSO has been explained in detail
in the literature [81] and is not repeated here for brevity.

• The hourly BESS scheduling is carried out using discrete dynamic
programming. More on discrete dynamic programming can be
found in [82].

• The dispatchable units are scheduled optimally using PSO. More
on scheduling dispatchable units using PSO is available in [83].
The active power outputs from dispatchable units are taken as
control variables. Active and reactive power equality constraints
are satisfied by running a forward–backward distribution power
flow. The active and reactive power supplied/consumed by the
LSC of ST act as slack variables.
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(

The power flow problem is solved using the backward–forward dis-
tribution load flow for radial distribution level networks. All DG units
are modeled as negative loads. Buses to which DG units are connected
are modeled as PQ buses. The power injected by a renewable source is
obtained from the solar irradiation (SPG) and wind speed (WPG) data.
Power injections of dispatchable units come from the ELD program.
The BESS is also modeled as a constant power source for a particular
hour. The BESS acts as a load during the charging process. The BESS is
modeled as a negative load during the discharging process. The LSC of
the ST is considered as the slack bus. The active and reactive power
supplied by the LSC act as slack variables. The voltage of the slack
bus is determined using the proposed voltage control strategy. More
on distribution power flow can be found in [84]. PSO is implemented
as follows:

• Control variables: Active power generations of dispatchable units
are taken as control variables.

• Satisfaction of Equality constraints: Active and reactive power bal-
ances in the system are satisfied by running a power flow pro-
gram. Dispatchable and non-dispatchable units are modeled as
negative loads in the power flow program. The power generation
of a dispatchable source is fed from the PSO to the power flow
program. Solution of the power flow gives the active and reactive
power drawn from the LSC of the ST.

• Limit handling: If a control variable tries to violate the upper or
the lower limit at any iteration step, the control variable is set to
the boundary value being violated.

• Satisfaction of inequality constraints: Inequality constraints are han-
dled using a penalty function approach.

Following parameters were used in the PSO program: trust pa-
rameters 𝑐1 = 𝑐2 = 2.0, maximum iterations = 60, population size
= 40, initial weight = 0.90, final weight = 0.40. The flowchart for
implementing the PSO algorithm is shown in algorithm 6. The nested
optimization problem is solved using the flowchart shown in Fig. 3. The
dynamic programming (DP) and ELD problems are solved within the
IBDRP loop with modified load profiles. The optimal incentive value
gives the minimum daily expected cost. Algorithm steps are shown in
algorithm 5 and stated below:

• Step-1: The incentive value of the IBDRP is set in the outer loop.
• Step-2: The load profile is modified using the incentive value.
• Step-3: A dynamic programming (DP) is initiated considering the

modified load profile for optimal BESS scheduling.
• Step-4: The ELD problem is solved within the DP loop with the

modified load profile. The expected TOC is computed for every
hour. Continue till the DP converges.

• Step-5: Increase the TOC value and go to Step-1. Continue till the
maximum incentive value is reached.

The optimal incentive value gives the minimum daily expected cost.

5. Simulation study

5.1. Test system and input data

The proposed methodology is implemented on a thirty-three (33)
bus radial distribution network. Peak active and reactive power de-
mands are 3715 kW and 2300 kVAR, respectively. The substation
voltage is 12.66 kV [85]. The distribution network is converted to
a microgrid by integrating DG. The microgrid has two dispatchable
units. A 2 MW Natural Gas Turbine (NGT) is located at bus #2. A 1
MW Biomass unit is located at bus #12. A BESS is present at bus 26.
The battery parameters are adopted from [78]. A WPG of 0.5 MW is
present at bus 18. Further, an SPG of 1 MW is present at bus 26. Sizes
nd locations of DG units are adopted from [78]. Further, all DG units

dispatchable and non-dispatchable) operate at the unity power factor.
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Fig. 3. Flowchart for solving the slave problem.
In other words, the dispatchable units inject only active power to the
microgrid. The test system is shown in Fig. 4.

Historical data for solar irradiance and wind speed data are taken
from [86]. The yearly data is divided into four seasons. May to July
constitute the summer season. Autumn is from August to October.
Winter ranges from November to January, while February to April is
the spring season [87]. The annual data is divided into four seasons
by averaging it over three months for each season for twenty-four
hours. Temperature data for the region is obtained from [87]. Load
profile data is taken from [88]. The load profile is divided into three
categories. If the load demand is greater than 90% of the peak load,
then it is the peak period. Similarly, if the load demand is lesser
than equal to 70% of the peak demand , then it is the valley period.
All periods with load demands ranging between 90% and 70% are
considered off-peak periods. The grid energy price (mean) is 40 $/kWh
during valley periods, 160 $/kWh during the off-peak periods , and 400
$/kWh during peak periods [78]. Further, it is assumed that all system
buses (except the sub-station bus) cater to the charging requirement of
three (03) PHEVs. Li-Ion batteries are considered for PHEVs. The peak
charging power is 6.5 kW. The battery charging characteristic is shown
in Fig. 2. The PHEV charging requirement imposes an additional load
of 16.8% of the peak demand.
14
Table 3
Scenarios for IBDR.

Scenario name Charging strategy ELD BESS IBDR ST

S1 Uncoordinated Y N N N
S2 Coordinated Y N N N
S3 Smart Y N N N
S4 Uncoordinated Y N Y N
S5 Coordinated Y N Y N
S6 Smart Y N Y N
S7 Uncoordinated Y Y Y N
S8 Coordinated Y Y Y N
S9 Smart Y Y Y N
S10 Uncoordinated Y Y Y Y
S11 Coordinated Y Y Y Y
S12 Smart Y Y Y Y

5.2. Simulation results

Simulation studies have been carried out by writing codes in MAT-
LAB 2020𝑏 on an Intel core 𝑖5, 2.7 GHz laptop with 8 GB RAM. It is
assumed that 40% of the total load participates in the DR program. The
load demand follows a ‘‘normal distribution’’ with a standard deviation
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Fig. 4. Test system.
of 5% [89]. The grid energy price is also normally distributed with
a standard deviation of 1%. Three different PHEV charging strategies
have been considered in this work. Several scenarios, detailed below,
have been considered. Details of scenarios are given in Table 3.

5.2.1. Effect of charging strategies — scenarios S1, S2, S3
The uncoordinated charging strategy of EV is considered in scenario

S1. The coordinated and uncoordinated strategies are considered in
scenarios S2 and S3, respectively. Generations from dispatchable units
are optimized in scenarios S1, S2, and S3. BESS and IBDR are not con-
sidered. The optimized results (expected cost and expected loss) for the
three scenarios are shown in Table 3. The expected TOC for scenarios
S1, S2, and S3 are $15 851.73, $15 757.48, and $15 627.23 respectively.
The expected TOC is the maximum for the uncoordinated charging
strategy (S1) and the minimum for the smart charging strategy (S3).
The TOC value lies in-between for the coordinated charging strategy
(S2). The expected TOC is reduced by ∼0.59% using a coordinated
charging strategy. The smart charging strategy reduces the expected
TOC by ∼1.41%. The expected loss for uncoordinated (S1), coordinated
(s2), and smart (S3) charging strategies are 2076.73 kWh, 2082.69
kWh, and 2076.89 kWh respectively. Therefore, the loss is the min-
imum for the uncoordinated charging strategy (S1) and only slightly
higher for the smart charging strategy (S3). The loss is ∼0.29% higher
with the coordinated charging strategy (S2) (see Table 4).

Expected generations in different scenarios are shown in Fig. 5
The grid power price is low during the daytime. Hence, the bulk of
the power requirement is met from the grid during the daytime. The
dispatchable units (NGT and biomass) generate minimum power. On
the other hand, the grid power price is high in the evening (peak
period). Hence, the dispatchable units (NGT and biomass) increase
their outputs while the grid power reduces. The trend is common for
scenarios S1 (Fig. 5a), S2 (Fig. 5b), and S3 (Fig. 5c).
15
5.3. Implementation of IBDR

IBDR is implemented for three different charging strategies. The
incentive offered to the participating customers is optimized. The dis-
patchable units are also scheduled to minimize the operating cost.
The expected TOC is minimum for an incentive value of 203 $∕MWh
for the uncoordinated charging strategy (see Fig. 6a). Therefore, the
optimal incentive value for uncoordinated charging is 203 $∕MWh. The
optimal incentive values for coordinated charging and smart charging
are 207 $∕MWh and 203 $∕MWh respectively (see Figs. 6b and 6c
respectively). The expected effective load profiles with different PHEV
charging strategies and IBDR are shown in Fig. 7.

Expected losses and TOC are tabulated in Table 5 for the three
charging strategies (Scenarios S4, S5, and S6). The expected daily TOCs
are $13 285.93, $13 178.81, and $13 067.38, respectively, for scenarios
S4, S5, and S6. The expected losses are 1500.58 kWh, 1481.43 kWh,
and 1516.27 kWh for scenarios S4, S5, and S6, respectively. The
expected TOC in scenario S4 (uncoordinated charging) is lower by
∼16.19% than scenario S1. The expected loss reduces by ∼27.74%. For
the coordinated charging strategy, the IBDR with optimized incentive
value reduces the expected TOC by ∼16.36% and the expected loss by
∼28.87% (comparison of scenarios S4 and S1). In the case of a smart
charging strategy, the reduction in expected losses and expected TOC
are ∼16.38% and ∼26.99% respectively (comparison of scenarios S3
and S6). Therefore, an optimal IBDR program reduces the expected TOC
and loss significantly.

The expected generation from dispatchable units and the power
exchanged with the grid are shown in Figs. 5d, 5e, and 5f for scenarios
S4, S5, and S6 respectively. The grid meets the bulk of the power
requirement during off-peak and valley periods, Power generations
from dispatchable sources are low during off-peak and valley peri-
ods. The grid energy price is high during the peak period. Therefore,
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Table 4
Impact of charging strategies — expected loss and TOC.

Hour S1 S2 S3

Loss (kWh) TOC ($/h) Loss (kWh) TOC ($/h) Loss (kWh) TOC ($/h)

1 57.27 135.62 58.03 136.48 61.28 139.91
2 50.59 131.15 50.73 131.31 54.42 135.39
3 47.26 128.64 47.28 128.65 50.57 132.4
4 43.95 126.04 43.94 126.01 46.51 129.05
5 43.14 125.09 43.14 125.09 44.98 127.26
6 44.79 125.36 44.79 125.36 45.99 126.77
7 51.98 129.12 51.98 129.12 52.71 129.95
8 66.19 384.49 66.19 384.49 66.56 386.25
9 87.93 436.21 87.93 436.21 88.14 437.06
10 93.15 806.76 93.15 806.76 93.19 807.66
11 101.03 836.97 101.03 836.97 101.05 837.33
12 103.44 854.29 103.44 854.29 103.39 853.92
13 101.4 919.56 101.4 919.56 101.38 919.44
14 105.84 965.87 105.84 965.87 105.82 965.7
15 108.65 1003.88 108.65 1003.88 108.6 1003.38
16 105.02 1007.46 105.02 1007.46 105.05 1007.84
17 107.13 1050.68 107.13 1050.68 107.22 1051.67
18 134.42 1328.79 111.85 1103.61 112.08 1105.93
19 112.8 1150.81 104.99 1068.79 105.47 1073.66
20 104.62 1077.29 102.69 1056.28 103.58 1065.44
21 103.12 1060.96 110.09 1131.98 104.23 1072.21
22 105.46 1073.94 115.6 1176.17 107.74 1096.98
23 119.64 543.99 135.83 589.27 124.45 557.53
24 77.91 448.75 81.98 463.18 82.48 464.52

Total 2076.73 15851.73 2082.69 15757.48 2076.89 15627.23
Table 5
Impact of IBDR for different charging strategies.

Hour S4 S5 S6

Loss (kWh) TOC ($/h) Loss (kWh) TOC ($/h) Loss (kWh) TOC ($/h)

1 61.5 138.8 63.1 140.24 65.69 143.1
2 54.34 134.13 55.18 134.83 58.32 138.37
3 50.76 131.51 51.43 132.05 54.2 135.27
4 47.2 128.81 47.8 129.28 49.87 131.82
5 46.38 127.86 46.98 128.37 48.3 130.03
6 48.2 128.23 48.84 128.75 49.45 129.64
7 56.02 132.29 56.78 132.87 56.78 133.12
8 73.21 404.71 64.8 380.34 73.61 406.47
9 97.4 459.58 86.05 431.41 97.79 460.43
10 56.16 608.49 56.45 614.42 56.18 609.37
11 60.79 629.67 61.1 635.86 60.79 630.02
12 61.88 644.53 62.2 650.79 61.85 644.26
13 55.3 709.92 55.67 716.14 55.29 709.82
14 56.78 753.11 57.18 759.4 56.77 752.98
15 57.66 790.35 58.09 796.65 57.63 789.95
16 55.71 800.39 56.15 806.51 55.72 800.76
17 55.96 844.8 56.4 850.86 56 845.77
18 68.66 1117.1 58.06 902.56 57.73 898.76
19 57.99 949.27 54.67 874.75 54.46 873.64
20 54.03 879.37 53.56 864.58 53.57 867.75
21 53.31 863.35 57.3 938.81 53.88 874.38
22 54.3 873.85 59.89 979.96 55.45 896.44
23 131.46 567.74 133.35 590.18 136.53 581.34
24 85.58 468.07 80.4 459.2 90.41 483.89

Total 1500.58 13285.93 1481.43 13178.81 1516.27 13067.38
16
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Table 6
Impact of BESS scheduling for different charging strategies.

Hour S7 S8 S9

Loss (kWh) TOC ($/h) Loss (kWh) TOC ($/h) Loss (kWh) TOC ($/h)

1 63.7 141.14 65.34 142.58 68.03 145.44
2 54.34 134.13 55.18 134.83 58.32 138.37
3 50.76 131.51 51.43 132.05 54.2 135.27
4 51.19 133.46 51.81 133.81 54.05 136.48
5 50.27 132.51 50.91 133.01 52.33 134.68
6 52.03 132.87 52.7 133.4 53.37 134.29
7 59.92 136.94 60.72 137.52 60.74 137.77
8 73.21 404.71 64.8 380.34 73.61 406.47
9 97.4 459.58 86.06 431.41 97.62 460.43
10 56.16 608.49 56.45 614.42 56.16 609.37
11 60.79 629.67 61.1 635.86 60.79 630.02
12 61.88 644.53 62.2 650.79 61.85 642.83
13 55.3 709.92 55.67 716.14 55.29 709.26
14 56.78 753.11 57.18 759.4 56.77 752.19
15 57.66 790.35 58.09 796.65 57.63 787.3
16 55.71 800.39 56.13 806.51 55.72 800.76
17 55.96 844.8 56.4 850.86 56 845.77
18 60.11 992.1 56.07 861.24 54.07 857.44
19 53.68 866.48 52.76 833.45 52.55 832.34
20 52.08 838.05 53.56 864.58 51.67 826.46
21 53.31 863.35 53.07 856.05 51.95 833.07
22 54.3 873.85 55.23 897.04 53.4 813.87
23 131.46 567.74 133.3 590.18 136.53 581.34
24 94.07 496.37 88.68 487.47 99.79 512.25

Total 1512.07 13 086.05 1494.84 12 979.59 1532.44 12 863.47
Table 7
Impact of ST on expected loss and TOC.

Hour S10 S11 S12

Setpt Loss (kWh) TOC ($/h) Setpt Loss (kWh) TOC ($/h) Setpt Loss (kWh) TOC ($/h)

1 1.03 59.77 140.98 1.03 61.31 142.42 1.03 63.82 145.27
2 1.02 52.08 134.04 1.02 52.88 134.74 1.02 55.89 138.27
3 1.02 48.65 131.42 1.02 49.29 131.96 1.02 51.95 135.18
4 1.02 49.07 133.37 1.02 49.66 133.88 1.02 51.8 136.39
5 1.02 48.19 132.42 1.02 48.8 132.93 1.02 50.16 134.6
6 1.02 49.87 132.79 1.02 50.51 133.31 1.02 51.15 134.2
7 1.03 56.23 136.79 1.03 56.98 137.37 1.03 56.99 137.62
8 1.03 68.67 403.98 1.02 62.09 379.91 1.03 69.04 405.74
9 1.03 91.28 458.6 1.03 80.68 430.55 1.03 91.49 459.45
10 1.01 55.02 608.03 1.01 55.3 613.96 1.01 55.02 608.91
11 1.01 59.55 629.17 1.01 59.85 635.36 1.01 59.55 629.52
12 1.01 60.61 644.03 1.01 60.93 650.28 1.01 60.59 643.75
13 1.01 54.16 709.46 1.01 54.52 715.68 1.01 54.15 709.36
14 1.01 55.6 752.63 1.01 56 758.92 1.01 55.59 752.5
15 1.01 56.46 789.87 1.01 56.88 796.17 1.01 56.43 789.47
16 1.01 54.55 799.93 1.01 54.96 806.04 1.01 54.56 800.3
17 1.02 53.66 843.88 1.02 54.08 849.93 1.02 53.7 844.85
18 1.02 57.62 991.1 1.02 53.76 860.31 1.01 52.94 815.79
19 1.02 51.47 865.59 1.02 50.59 832.58 1.02 50.39 831.48
20 1.02 49.93 837.19 1.02 51.35 863.7 1.02 49.55 825.61
21 1.02 51.12 862.47 1.02 50.88 855.18 1.02 49.81 832.22
22 1.02 52.06 872.96 1.02 52.95 896.12 1.02 51.21 854.21
23 1.04 120.44 565.98 1.04 122.11 588.39 1.04 125.06 579.5
24 1.03 88.16 495.43 1.03 83.12 486.59 1.03 93.51 511.26

Total 1444.22 13072.11 1429.48 12966.28 1464.35 12855.45
17
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Fig. 5. Expected generation in different scenarios.
dispatchable units produce more power during the peak period. The
microgrid also sells power to the main grid during the peak period (see
Table 6).

5.4. Impact of optimal scheduling of BESS

Optimal scheduling of BESS further reduces the expected TOC of the
system. A coordinated control of BESS scheduling, ELD, and IBDR is im-
plemented in scenarios S7,S8, and S9. The optimal battery schedule for
uncoordinated, coordinated, and smart charging strategies are shown in
Figs. 8a, 8b, and 8c respectively. The BESS charges during the valley
period, while it discharges during the peak period. The grid energy
price is low during the valley and off-peak periods. The grid energy
price increases during the peak period. The BESS stores energy using
inexpensive grid power during the valley period. The stored energy
is discharged to supply the load during the peak period. Therefore,
optimal scheduling of the BESS provides an arbitrage benefit.

5.5. Impact of ST on voltage, cost and loss

Expected VDM values for scenarios S7, S8, and S9 are shown in
Fig. 10. Expected VDMs are negative for hours 8, 9, 23, and 24 with
uncoordinated charging (Fig. 10a). In other words, for these hours,
the expected minimum voltages of the system become lower than
18
the minimum allowable value of 0.95 pu. Similarly, for coordinated
charging strategy, the expected VDM values are negative for hours 9,
23, and 24 (Fig. 10b). The expected VDM values are negative for hours
1, 10, 11, 23, and 24. There is no voltage rise issue above the upper
allowable threshold of 1.05 pu in any of the scenarios. Expected power
generations for scenarios S7, S8, and S9 are shown in Fig. 9.

A voltage control algorithm is implemented to find the optimal
setpoints of the smart transformer to improve the voltage profile of
the network. The objective is to minimize the expected average voltage
deviation (AVD). The hourly optimal setpoints for the ST for different
charging strategies are shown in Table 7. The optimal setpoints of the
ST (𝑉 ∗

𝑆𝑇𝑀𝑉 ) are more than 1.0 pu for all charging strategies. This is
because the system does not suffer from a voltage rise problem, but a
voltage drop issue is observed at certain times. Expected VDMs improve
and become positive for all hours (see Fig. 10). In other words, the volt-
age drop problem has been mitigated for all three charging strategies.
Expected AVDs for different charging schemes without and with the
optimal voltage control strategies are shown in Fig. 11. Expected AVDs
reduce for all three charging strategies when optimal voltage control
of the ST is implemented. In other words, the system voltage profile
will improve considerably when the proposed voltage control scheme
is implemented with the ST.

Expected costs and losses are provided in Table 7. The expected
TOC is $13 072.11 in scenario S10. Therefore, there is a reduction in
expected TOC by ∼0.11% compared to scenario S7 (uncoordinated
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Fig. 6. Variation of TOC with incentive value.
Fig. 7. Expected load profiles for different scenarios.
harging strategy). For scenario S11, the expected operating cost is
12 966.28. Therefore, compared to scenario S8, there is a reduction in
xpected TOC by ∼0.10%. The expected TOC is $12 855.45 in scenario
12. Therefore, the expected TOC is 0.06% lower than in scenario S9.

Therefore, there is an incidental reduction in the expected TOC
hen the voltage control scheme of the ST is implemented. The im-
rovement in the voltage profile also leads to a reduction in net-
ork loss. For instance, the expected power loss in scenario S10 is
19
1444.42 kWh, which is 4.49% lower compared to scenario S7 (uncoor-
dinated charging). Similarly, for scenarios S11 (coordinated charging)
and S12 (smart charging), expected losses reduce by 4.37% and 4.44%
respectively.

5.6. Convergence characteristics and effect of computational parameters

The convergence characteristic of the PSO algorithm for scenario S1
(hour #24) is shown in Fig. 12a. Convergence characteristics of the PSO
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Fig. 8. Optimal battery schedule.
Fig. 9. Expected power generation under different scenarios.
or scenarios S2 and S3 (hour #24 in both cases) are shown in Figs. 12b
and Fig. 12c respectively. The objective is to minimize the expected
cost. Since the PSO program is formulated as a fitness maximization
problem, the fitness value is set to the negative of the expected cost.
It is observed from Fig. 12 that the PSO algorithm converges within
20
10 iterations. The maximum iteration count in the PSO algorithm has
been set to 60. Therefore, the PSO algorithm converges much before
the maximum iteration count is reached.

The sensitivity of the model with the variation of computational
parameters has also been checked. PSO parameters have been varied
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Fig. 10. Expected VDM under different scenarios.
Fig. 11. Expected AVD under different scenarios.
to find impacts on optimum solutions. The sensitivity of the model
with variation in PSO parameters is shown in Table 10. The analysis
is carried out for scenario S1, hour #24. Following studies are carried
out:

• Impact of varying the population size: Trust parameters are set
to 𝑐1 = 𝑐2 = 2.0, and the maximum iteration count is set to
60. Optimum results for population sizes of 20, 40, and 60 are
21
shown in Table 10. It is observed (see Table 10) that the optimal
solution remains unaffected by population sizes ranging between
20 and 60. In most PSO algorithms, the population size is selected
between 10 and 20 times the number of control variables.

• Impact of varying trust parameters: The population size is set to 40.
The maximum iteration is set to 60. Three sets of trust parameters
have been used. Set-1: 𝑐 = 2.0, 𝐶 = 2.0; Set-2: 𝑐 = 1.5,
1 2 1
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Fig. 13. Load profile with PBDR.
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𝑐2 = 2.5; Set-3: 𝑐1 = 2.5, 𝑐2 = 1.5. It is observed from Table 10
that the optimal solution does not change significantly when trust
parameters are varied in close vicinity of standard values.

• Impact of varying the maximum iteration: The population size is
taken as 40. Trust parameters are set to : 𝑐1 = 𝑐2 = 2.0.
Optimal values for three different population sizes (20, 40, 60)
are tabulated in Table 10. It is seen that the optimal solution is
relatively unaffected by maximum iteration counts between 20
and 60. The PSO algorithm converges within 10 iterations (see
Fig. 12). Therefore, the optimal solution remains unaffected when
the maximum iteration is more than 10.

The above study reveals that the proposed energy management
trategy is robust and relatively insensitive to variation of computa-
ional parameters.
22
.7. Implementation of PBDR

The smart PHEV charging strategy is considered. Following scenar-
os are implemented:

• S13a (Base Case): The system performance is assessed without the
PBDR program. Dispatchable units are scheduled optimally using
an ELD program.

• S13b: The system performance is assessed after the implemen-
tation of the PBDR program. Dispatchable units are scheduled
optimally using an ELD program.

• S13c: The system performance is assessed with an optimal PBDR
program, economic scheduling of dispatchable units, and optimal
battery dispatch.
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Table 8
Expected cost and profits with PBDR.

Hour S 13a S 13b S 13c S 13d

Expected values

Cost of energy ($) Profit ($) Cost of energy ($) Profit ($) Cost of energy ($) Profit ($) Cost of energy ($) Profit ($)

1 136 856.32 434.3 708.67 408.9199 734.06 408.1074 734.87
2 131.5 800.93 146.4 766.21 146.4342 766.21 146.2296 766.42
3 128.5 769.7 142.9 736.61 147.603 731.92 147.397 732.12
4 125.1 736.1 139 705.05 143.715 700.36 143.5325 700.54
5 123.3 729.77 137.2 699.95 146.6043 690.57 146.4068 690.77
6 122.8 752.66 137.3 723 146.6197 713.63 146.4168 713.84
7 126 833.01 394.3 715.42 394.2929 715.42 393.5076 716.2
8 386.2 747.39 386.2 747.46 386.1577 747.46 385.41 748.2
9 437.2 857.65 437.2 857.65 437.2027 857.65 436.0777 858.77
10 792.5 620.13 441.7 896.58 441.7147 896.58 440.4806 897.81
11 822.1 649.38 740.6 723.19 740.5873 723.19 739.5252 724.25
12 839.2 646.92 756.8 721.55 756.8241 721.55 755.7053 722.66
13 904.4 566.81 902.7 560.72 819.0023 644.46 816.741 646.72
14 976 510.09 867.7 610.62 867.6588 610.62 865.8685 612.41
15 988.8 497.36 905.6 572.77 905.5856 572.77 903.6516 574.71
16 992.6 449.2 911.8 522.32 911.8318 522.32 909.9553 524.2
17 1036.4 391.1 983 437.12 899.0123 521.07 896.8993 523.18
18 1124.8 303.98 1010.4 411.04 926.5577 494.87 924.5863 496.84
19 1059.3 327.39 553 760.8 553.0394 760.8 550.8548 762.99
20 1050.2 325.73 550.1 753.85 550.1412 753.85 547.8157 756.18
21 1057 325.04 552.6 757.47 552.5932 757.47 550.5278 759.54
22 1081.7 322.81 562.4 769.35 562.3735 769.35 560.2141 771.51
23 559.1 764.42 558.8 764.79 558.7511 764.79 556.4929 767.05
24 465.2 642.26 465.2 642.26 493.6469 613.81 492.286 615.17

Total 15465.9 14426.13 13117.2 16564.44 12896.87 16784.78 12864.69 16816.96

* S 13a is base case (without PBDR)
* S 13b is for PBDR without battery.
* S 13c is for PBDR with battery.
* S 13d is for PBDR with battery and smart transformer.
• S13d: In addition to the measures mentioned in S13c, an optimal
voltage control strategy is implemented on the ST to minimize the
expected AVD.

The optimal price response is 105% for the peak period and 85%
or the valley period. The modified load profile after implementation
f the PBDR is shown in Fig. 13. It is observed that a portion of the
oad demand is shifted from the peak period to the valley period. The
oad profile remains unchanged in the valley period.

Simulation results are presented in Table 8. The daily expected en-
rgy cost (grid energy cost plus fuel cost) in scenario S13a is $15 465.9,
hile the profit is $14 426.13. The energy cost becomes $13 117.2 (re-

duces by ∼15.19%) when the PBDR is implemented (scenario S13b),
while the profit increases to $16 564.44 (an increase by ∼14.82%).
Optimal scheduling of the BESS (scenario S13c) reduces the expected
daily energy cost to $12 896.87, i.e., a reduction of ∼16.61%. On the
other hand, the expected daily profit becomes $16 784.78 (an increase
by ∼16.35%). The increase in profit is due to the arbitrage benefit
of the battery. In scenario S13d, an optimal voltage control strategy
is implemented to minimize the expected hourly AVD. With the im-
provement of the voltage profile, the loss in the network reduces. As
a consequence, the energy drawn from the grid is reduced, leading
to a lower expense for purchasing grid energy. Therefore, the profit
becomes $16 816.96 (increases by ∼16.57%). The energy cost in this
scenario is $12 864.69 (a reduction by ∼16.82%). Expected AVD, VDM,
VRM, and loss for different scenarios are shown in Fig. 14. The voltage
profile improves considerably with the implementation of the proposed
voltage control strategy in the ST.

The expected energy loss in a day increases by ∼8.97% on im-
plementation of the PBDR (see Table 9). The increased loss is due
to redistribution of the load over time horizons. The expected energy
loss increases further (∼9.50% compared to S13a) when the optimal
23
Table 9
Results for PBDR.

Comparison w.r.t S13a

Scenarios Expected cost of
energy (%)

Expected profit (%) Expected loss (%)

S13b −15.19 14.82 8.97
S13c −16.61 16.35 9.5
S13d −16.82 16.57 1.67

Negative : Reduction; Positive: Increase.

BESS scheduling is considered. A considerable reduction in energy loss
compared to scenarios S13b and S13c is achieved on implementation
of the optimal voltage control strategy (scenario S13d). The loss is
only ∼1.67% more compared to scenario S13a. In other words, the
expected energy loss reduces by ∼7.15% compared to scenario S13c
with the optimal voltage control strategy. Although daily expected
energy losses increase in scenarios S13b and S13c, expected profits in
the two scenarios are higher than that in scenario S13a.

5.8. Comparison with other methods

The proposed method has been compared with the energy man-
agement scheme suggested in [90]. Comparison results are given in
Table 11. The reduction in fuel and energy purchase cost is ∼10.62%
on implementing the DRP proposed in [90]. Simultaneous implemen-
tation of the DRP and network reconfiguration reduces the cost by
∼11.97% [90]. On the other hand, with the proposed method, the
reduction in the expected TOC is ∼16.19% in scenario S4 (unco-

ordinated PHEV charging). The expected savings are ∼17.45% and
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Fig. 14. Performance indices with PBDR-smart PHEV charging.
able 10
ensitivity of the model with variation of computational parameters.

Variation with population size
(𝑐1 = 𝑐2 = 2.0; Maxm Iter = 40)

Variation with trust
parameters (Population size =
40; Maxm Iter = 60)

Variation with maximum iteration
(𝑐1 = 𝑐2 = 2.0; Population Size = 40)

Population size Expected cost 𝑐1, 𝑐2 Expected cost Maxm iteration Expected cost

20 448.75 𝑐1 = 2; 𝑐2 = 2.0 448.75 20 448.75
40 448.75 𝑐1 = 1.5; 𝑐2 = 2.5 448.75 40 448.75
60 448.75 𝑐1 = 2.5; 𝑐2 = 1.5 448.75 60 448.75
Table 11
Comparison with [90].

Proposed method

PHEV charging
strategy

Reduction in expected TOC (%)

Uncoordinated S4 w.r.t S1 S7 w.r.t S1 S10 w.r.t S1
16.19 17.45 17.54

Coordinated S5 w.r.t S2 S8 w.r.t S2 S11 w.r.t S2
16.36 17.63 17.71

Smart S6 w.r.t S3 S9 w.r.t S3 S12 w.r.t S3
16.38 17.69 17.74

Energy management strategy given in [90]

Demand response in
original network

Demand response in
reconfigured network

Reduction in
expected energy
cost w.r.t the base
case (%)

10.62 11.97

∼17.54% respectively in scenarios S7 and S10 (uncoordinated PHEV
charging). With a coordinated PHEV charging, savings are around
∼16.36%, ∼17.63%, and ∼17.71% in scenarios S5, S8, and S11, respec-
ively. With a smart charging strategy, reductions in expected TOCs
re ∼16.38%, ∼17.69%, and ∼17.74% in scenarios S6, S9, and S12,
espectively. Therefore, expected savings using the proposed energy
anagement scheme is 16.19%∼17.74% as opposed to 10.62%∼11.97%
24

btained in [90].
6. Conclusions

A stochastic coordinated energy management system has been pro-
posed for a grid-connected microgrid. Uncertainties of load, renewable
generation, PHEVs, grid energy power price have been modeled using
the ‘‘Hong's 2 m PEM’’ approach. A detailed algorithm for stochas-
tic modeling PHEV load for three different charging strategies has
been proposed. The battery charging characteristic has been taken
into account while carrying out the stochastic modeling of the PHEV
load. Proper coordination between a group of energy management
measures like ELD, BESS scheduling, and IBDR has been proposed
to obtain optimal economic performance. The incentive value of the
IBDR scheme is also optimized for different PHEV charging strategies.
Moreover, the use of ST is proposed and integrated with the stochastic
energy management scheme to improve the voltage profile of the
network and reduce network loss. The optimal voltage control strategy
implemented with the ST also leads to an incidental reduction in
the expected TOC. The proposed method is validated by simulation
studies on a thirty-three bus system. The expected TOC is the least
for the smart charging strategy. The expected TOC can be reduced
to the tune of 16.19%∼16.38% with an optimally designed IBDR pro-
gram. The reduction in expected cost is about 17.45%∼17.69% with
optimal coordination between ELD, IBDR, and BESS scheduling. The
ST improves the system profile and reduces network loss. The ST also
slightly reduces the system loss. The network loss can be reduced by
about 29.49%∼31.36% by optimal coordination between the voltage
control strategy, ELD, IBDR, and BESS scheduling. An optimal PBDR
strategy is also coordinated with the energy management scheme. The
implementation of the PBDR increases the expected daily profit by
∼16.57% and reduces the expected daily energy cost by ∼16.82%



Renewable and Sustainable Energy Reviews 155 (2022) 111861S. Gupta et al.

S

D

c
i

R

A balanced three-phase network has been considered in this work.
The proposed EMS framework may be adopted with suitable changes
for an unbalanced network in a future job. Also, probabilistic correla-
tions between wind and solar generation, conventional loads, and EV
demands may be incorporated in the EMS framework in the future.
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