LIST OF FIGURES

	FIGURE	Page No
Chapter 1	Introduction and Literature Review	1
1.1	(a) Market shares of capacitors, resistors, and inductors (b) a schematic image of embedded passive substrate, the arrow showing position of passive components.	2
1.2	Outlook for applications of the high-k polymer composites.	3
1.3	(a) Charge separation in a parallel plate capacitor (b) dielectric capacitor (c) Effect of electric field on the dielectric	6
1.4	Schematic of (a) electronic polarization, (b) ionic polarization, (c) orientational polarization, (d) space charge polarization.	9
1.5	Venn diagram showing the relationship between ferroelectrics, pyroelectrics and piezoelectrics	10
1.6	The chemical units of VDF, TrFE and CTFE.	13
1.7	CaCu ₃ Ti ₄ O ₁₂ : A strongly distorted, A-site ordered double-perovskite structure	15
1.8	Schemes showing the formation of a percolation-like clusters structure with an increase in the concentration of conducting fillers in the composite. (a) randomly dispersed grain structure; (b) uniformly dispersed grain structure; (c) aggregated grain structure; (d) percolation-like clusters structure.	25
1.9	Ten connectivity patterns for two-phase composites	28
1.10	Composite with 0-3 configuration pattern	29

Chapter 3	Experimental work	41
3.1	Twin-screw extruder (Hakke Mini Lab)	42
3.2	Rigaku Desktop Miniflex II X-Ray diffractometer	43
3.3	INSPECT S 50 FP 2017/12 Scanning Electron Microscope	44
3.4	TGA/DTA Analyser, Perkin-Elmer, USA	45
3.5	(a) Tensile test specimen (b) Instron 3369 tensile machine	46
3.6	Novocontrol (Alpha-A High Performance Analyzer ZG4)	46
Chapter 4	Dielectric and Mechanical Properties of	47
	CaCu ₃ Ti ₄ O ₁₂ / PVDF Composites	
4.1	X-ray diffraction patterns for CCTO, pure	48
	PVDF, PVDF-10CCTO, PVDF-20CCTO and	
	PVDF-50CCTO composites.	
4.2	Scanning electron micrographs of PVDF,	49
	PVDF-10CCTO, PVDF-20CCTO and PVDF-	
	50CCTO composites	
4.3	TGA of pure PVDF, PVDF-10CCTO, PVDF-	50
	20CCTO and PVDF-50CCTO composites.	
4.4	(a) Stress-strain curves for the pure PVDF,	51-52
	PVDF-10ZrC, PVDF-20ZrC and PVDF-50ZrC	
	composites, (b) Young's modulus of PVDF and	
	the composites and (c) Elongation at the	
	breaking point of PVDF and composites.	
4.5	Frequency dependence of dielectric permittivity	54-59
	and tan δ of CCTO (a), PVDF (b and c), PVDF	
	and all the composites at 40° C (d and e), PVDF-	
	10CCTO (f and g), PVDF-20CCTO (h and i)	
	and PVDF-50CCTO (j and k).	
4.6	M' vs log f plots of PVDF and composites at 40 ⁰	61-63
	C (a), M" vs log f plots of PVDF (b), PVDF and	

	PVDF-CCTO composites at 40°C (c), PVDF-	
	10CCTO (d), PVDF-20CCTO (e) and PVDF-	
	50CCTO (f).	
4.7	Log τ vs 1000/T curves for CCTO, PVDF,	65
	PVDF-10CCTO, PVDF-20CCTO and PVDF-	
	50CCTO.	
4.8	Variation of effective dielectric constant (ϵ_{eff})	68
	measured at 100 Hz and 40°C for PVDF-CCTO	
	composites based on various models.	
4.9	Dielectric loss in the frequency domain and	70
	spectrum was deconvoluted from H-N fits for	
	PVDF-50CCTO composites at different	
	temperatures.	
Chapter 5	Dielectric and Mechanical properties of La doped	72
	CaCu ₃ Ti ₄ O ₁₂ / PVDF Composites	
5.1	X-ray diffraction patterns for LaCCTO, pure PVDF, PVDF-	73
	10LaC, PVDF-20LaC and PVDF-50LaC composites.	
5.2	Scanning electron micrographs of PVDF, PVDF-10LaC,	74
	PVDF-20LaC and PVDF-50LaC composites.	
5.3	TGA of pure PVDF, PVDF-10LaC, PVDF-20LaC and PVDF-	75
	50LaC composites.	
5.4	(a) Stress-strain curves for pure PVDF, PVDF-10LaC, PVDF-	76-77
	20LaC and PVDF-50LaC composites, (b) Young's modulus of	
	PVDF and the composites and (c) Elongation at breaking point	
5.5	Frequency dependence of dielectric permittivity	79-84
	and tan δ of CCTO and LaCCTO (a and b),	
	PVDF (c and d), PVDF and all the composites at	
	40° C (e and f), PVDF-10LaC (g and h), PVDF-	
	20LaC (i and j) and PVDF-50LaC (k and l).	
5.6	M' vs log f plots of PVDF and composites at 40 ⁰	87-89
	C (a), M" vs log f plots of PVDF (b), PVDF and	

	PVDF-LaC composites at 40°C (c), PVDF-	
	10LaC (d), PVDF-20LaC (e) and PVDF-50LaC	
	(f).	
5.7	Log τ vs 1000/T curves for LaCCTO, PVDF,	90
	PVDF-10LaC, PVDF-20LaC and PVDF-50LaC.	
5.8	Variation of effective dielectric constant (ϵ_{eff})	93
	measured at 100 Hz and 40°C for PVDF-LaC	
	composites based on various models.	
5.9	Dielectric loss in the frequency domain and	95
	spectrum was deconvoluted from H-N fits for	
	PVDF-50LaC composites at different	
	temperatures.	
Chapter 6	Dielectric and Mechanical properties of Nb doped	97
	CaCu ₃ Ti ₄ O ₁₂ / Poly(vinylidene fluoride) composites	
6.1	X-ray diffraction patterns for NbCCTO, pure	98
	PVDF, PVDF-10NbC, PVDF-20NbC and	
	PVDF-50NbC composites.	
6.2	Scanning electron micrographs of PVDF,	99
	PVDF-10NbC, PVDF- 20NbC and PVDF-	
	50NbC composites.	
6.3	TGA of pure PVDF, PVDF-10NbC, PVDF-	100
	20NbC and PVDF-50NbC composites.	
6.4	(a) Stress-strain curves for pure PVDF, PVDF-	101-102
	10NbC, PVDF- 20NbC and PVDF-50NbC	
	composites, (b) Young's modulus of PVDF and	
	composites and (c) Elongation at breaking point	
	of PVDF and composites.	
6.5	Frequency dependence of dielectric permittivity	104-109
	and tan δ of NbCCTO (a and b), PVDF (c and	
	d), PVDF and all the composites at 40° C (e and	
	f), PVDF-10NbC (g and h), PVDF-20NbC (i	

6.6	M' vs log f plots of PVDF and composites at 40°	111-114
	C (a), M" vs log f plots of PVDF (b), PVDF and	
	PVDF-NbC composites at 40°C (c), PVDF-	
	10NbC (d), PVDF-20NbC (e) and PVDF-	
	50NbC (f).	
6.7	Log τ vs 1000/T curves for NbCCTO, PVDF,	116
	PVDF-10NbC, PVDF-20NbC and PVDF-	
	50NbC.	
6.8	Variation of effective dielectric constant (ε_{eff})	118
	measured at 100 Hz and 40°C for PVDF-NbC	
	composites based on various models.	
6.9	Dielectric loss in the frequency domain and	120
	spectrum was deconvoluted from H-N fits for	
	PVDF-50NbC.	
Chapter 7	Dielectric and Mechanical properties of Sn doped	122
	CaCu ₃ Ti ₄ O ₁₂ / PVDF Composites	
7.1	X-ray diffraction patterns for SnCCTO, pure	123
	PVDF, PVDF-10SnC, PVDF-20SnC and	
	PVDF-50SnC composites	
7.2	Scanning electron micrographs of PVDF,	124
	PVDF-10SnC, PVDF-20SnC and PVDF-50SnC	
	composites.	
7.3	TGA of pure PVDF, PVDF-10SnC, PVDF-	125
	20SnC and PVDF-50SnC composites.	
7.4	(a) Stress-strain curves for pure PVDF, PVDF-	126-127
	10SnC, PVDF-20SnC and PVDF-50SnC	
	composites, (b) Young's modulus of PVDF and	
	composites, (b) Totally 5 modulus of 1 VDT talk	
	composites and (c) Elongation at breaking point	

and j) and PVDF-50NbC (k and l).

7.5	Frequency dependence of dielectric permittivity	129-135
	and tan δ of SnCCTO (a and b), PVDF (c and d),	
	PVDF and all the composites at 40° C (e and f),	
	PVDF-10SnC (g and h), PVDF-20SnC (i and j)	
	and PVDF-50SnC (k and l).	
7.6	M' vs log f plots of PVDF and composites at 40°	137-140
	C (a), M" vs log f plots of PVDF (b), PVDF and	
	PVDF-SnC composites at 40°C (c), PVDF-	
	10SnC (d), PVDF-20SnC (e) and PVDF-50SnC	
	(f).	
7.7	Log τ vs 1000/T curves for SnCCTO, PVDF,	141
	PVDF-10SnC, PVDF-20SnC and PVDF-50SnC.	
7.8	Variation of effective dielectric constant (ϵ_{eff})	144
	measured at 100 Hz and 40°C for PVDF-SnC	
	composites based on various models.	
7.9	Dielectric loss in the frequency domain and	146
	spectrum was deconvoluted from H-N fits for	
	PVDF-50SnC.	
Chapter 8	Dielectric and Mechanical properties of Zr doped	148
	CaCu ₃ Ti ₄ O ₁₂ / PVDF Composites	
8.1	X-ray diffraction patterns for CCTZO, pure PVDF, PVDF-	149
	10ZrC, PVDF-20ZrC and PVDF-50ZrC composites	
8.2	Scanning electron micrographs of PVDF,	150
	PVDF-10ZrC, PVDF -20ZrC and PVDF-50ZrC	
	composites.	
8.3	TGA of pure PVDF, PVDF-10ZrC, PVDF-	151
	20ZrC and PVDF-50ZrC composites.	
8.4	(a) Stress-strain curves for pure PVDF, PVDF-	152-153
	10ZrC, PVDF-20ZrC and PVDF-50ZrC	
	composites, (b) Young's modulus of PVDF and	
	composites and (c) Elongation at breaking point	

of PVDF and composites.

8.5	Frequency dependence of dielectric permittivity	155-156
	and tan δ of CCTZO (a and b), PVDF (c and d),	
	PVDF and all the composites at 40° C (e and f),	
	PVDF-10ZrC (g and h), PVDF-20ZrC (i and j)	
	and PVDF-50ZrC (k and l).	
8.6	M' vs log f plots of PVDF and composites at 40 ⁰	162-164
	C (a), M" vs log f plots of PVDF (b), PVDF	
	and PVDF-ZrC composites at 40°C (c), PVDF-	
	10ZrC (d), PVDF-20ZrC (e) and PVDF-50ZrC	
	(f).	
8.7	Log τ vs 1000/T curves for CCTZO, PVDF,	167
	PVDF-10ZrC, PVDF-20ZrC and PVDF-50ZrC.	
8.8	Variation of effective dielectric permittivity	169
	(ϵ_{eff}) measured at 100 Hz and $40^{o}C$ for PVDF-	
	ZrC composites based on various models.	
8.9	Dielectric loss in the frequency domain and	171
	spectrum was deconvoluted from H-N fits for	
	PVDF-50ZrC.	