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2.1 Introduction 

In recent years, there are renewed interest and activities in developing 

gyro-devices, like, gyrotrons, gyro TWTs, gyroklystrons, etc., which belong to the 

fast-wave microwave electron beam device family.  These fast wave devices 

utilize a periodic gyrating electron beam in a smooth wall interaction structure 

supporting a fast waveguide mode.  The operating principle of such a device is 

based on the electron cyclotron resonance maser (ECRM) instability that allows 

for large transverse dimensions of the interaction structure, operation at higher 

harmonics of the waveguide and beam cyclotron harmonic modes making the 

generation or amplification to produce high powers even at millimeter 

wavelengths using reasonable values of background magnetic fields.  Amongst all 

the gyro-devices, gyrotron, which is a fixed frequency high power oscillator in the 

millimeter and sub-millimeter waves range, has been matured both analytically 

and experimentally during the last few decades primarily due to its variety of 

applications.  Consequently, the various relevant concepts of other gyro-devices, 

like, gyroklystrons, gyroTWTs, gyrotwystrons have been derived from those of 

gyrotrons [Flyagin et al. (1988), Granatstein et al. (1983), Symons et al. (1986)]. 

 Gyroklystron, an amplifier of this family, is emerged as a promising 

candidate due to its capability to provide high gain and moderate bandwidth with 

good linearity and phase stability in the millimeter and sub-millimeter wave 

regime [Barker et al. (2001), Nusinovich (2004)].  In the family of gyro-devices, 

gyroklystron amplifiers are still at the development stage and have not reached to 

the status of a matured device in the manufacturer product range.  

Analytical research led to the considerable physical insight into the 

principle of operation of the gyroklystrons.  There are primarily two analytical 

approaches used for modeling of the gyroklystron amplifiers as reported by 

different authors [Tran et al. (1986), Salop et al. (1986), Geng et al. (2004), 

Nusinovich (2004), Luo et al. (2005), Wang et al. (2008), Jianhua et al. (2011), 

Shou-Xi et al. (2012)].  In the first approach, a fixed profile function is used to 

describe the RF field in the cavities of gyroklystrons, i. e., the effect of the 

electron beam on the RF profile is neglected.  The second approach is based on 
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the self-consistent theory where the equations of motion for the electrons are 

solved simultaneously with the help of the field equations, taking into account the 

effect of the electron beam on cavity field profile, instead of using a fixed field 

profile. These models are basically derived using the work reported by Fliflet et 

al. for analyzing the gyrotron oscillators [Fliflet et al. (1982)].  However, the 

methods adopted for numerical solution of the equations to compute the efficiency 

of the gyroklystron are different.  These methods include time independent and 

time dependent analysis. 

Some of the reported analytical work for investigating the gyroklystron 

beam-wave interaction behavior are: the development of the generalized time 

independent single mode analysis considering the fixed RF profiles based on the 

linear and nonlinear analyses, point gap model [Tran et al. (1986), Nusinovich 

(2004)], and development of large signal codes for gyroklystron amplifier using 

the self-consistent calculation [Salop et al. (1986), Geng et al. (2004), Luo et al. 

(2005), Wang et al. (2008), Jianhua et al. (2011), Shou-Xi et al. (2012)].  These 

gyroklystron models are restricted using certain assumptions, i.e., ignoring space 

charge effects, complete isolation between the RF cavities, uniform guiding 

magnetic field to make the analysis simpler and to reduce the computation time. 

The effects of velocity spread are also not taken into considerations while carrying 

out the analysis  [Tran et al. (1986), Geng et al. (2004), Nusinovich (2004), Luo et 

al. (2005), Wang et al. (2008), Jianhua et al. (2011)] whereas included by [Salop 

et al. (1986)], and [Shou-Xi et al. (2012)].   In most of the reported literature on 

gyroklystrons, the single mode operation is considered in each cavity except in 

[Luo et al. (2005)] where a semi-multimode approach is used to analyze the 

beam-wave interaction behavior in the operating mode as well as the other modes 

with the same azimuthal index but different radial indices. 

In the earlier reported work of single mode gyroklystron analysis [Tran et 

al. (1986)], the results are presented in terms of normalized parameters through 

graphical analysis based on contour plots [Tran et al. (1986)] which has been 

extended and reported here in this chapter is in terms of the mathematical model. 

Since, it is rather difficult to optimise the performance of a gyroklystron amplifier 
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using this approach through the graphical interpretation of the contour plots. 

Therefore, in the present Chapter 2, this analysis for gyro-devices based on the 

contour plots has been extended to analyze the gyroklystron amplifiers in terms of 

computer friendly mathematical model. In [Tran et al. (1986)] the equations of 

motion are solved only for the output cavity of the gyroklystron to optimize the 

orbital efficiency of the device by arbitrarily choosing the normalized parameters 

of specific range. Thus, [Tran et al. (1986)] does not provide the comprehensive 

scenario of the amplification process taking place in each stage of the device as 

one moves from the input cavity to output cavity. Furthermore, the variation of 

efficiency with frequency is not carried out in [Tran et al. (1986)] to estimate the 

bandwidth of the device. Therefore, in the present Chapter 2, the equations of 

motion have been solved for each cavity of the gyroklystron amplifier by 

considering actual parameters of the device instead of arbitrarily chosen 

parameters to estimate the efficiency in each cavity. The bandwidth of the device 

is estimated by studying the effect of frequency variations on RF output power. 

Moreover, the effects of electron beam velocity spread on the performance of 

gyroklystron amplifier are considered in the present model, which were not taken 

into account in [Tran et al. (1986)].   

For the benchmarking of the developed mathematical model, the 

performance evaluation of the typical selected 35 GHz two-cavity and four-cavity 

experimental gyroklystron amplifiers have been carried out and validated against 

the reported experimental results in the literature.  The mathematical model 

developed here will be used in developing the design methodology and 

performance improvements techniques for the gyroklystron amplifiers in the 

subsequent chapters. 

2.2 Nonlinear Analysis  

The nonlinear analysis is used to study the evolution of the electron beam 

in the background of electromagnetic wave supported by the interaction structure 

and a static axial magnetic field.  The nonlinear theory presented here is more 

general and advantageous in many ways.  One of the features of the present 
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analysis lies in its validity for all the gyroklystrons operating at arbitrary cyclotron 

harmonics and any waveguide mode.  It is important to maintain synchronism 

between external magnetic field and the gyrating electrons to enhance the 

interaction efficiency.  This goal can be achieved by tapering of the external 

magnetic field [Nusinovich (1992)].  The non-uniformity of background magnetic 

field can also be implemented in the present theory.  This is a full nonlinear 

description of the interaction process that too depicts the device saturation effect. 

The analysis starts with the Maxwell’s equation leading to express field 

components of a circular cylindrical waveguide excited in the TEmn mode.  In 

order to include the effect of the electron beam, a source present term in the wave 

equation is considered.  Further, in order to obtain the wave equation in terms of 

the slow time scale variables, the transformation of the coordinates from the 

cylindrical system to guiding center system is required.  Graf’s summation 

theorem for Bessel's functions has been used to incorporate this transformation 

[Winternitz et al. (2001), Basu (1996)].  Finally, the circuit equations govern the 

evolution of amplitude and phase of electromagnetic fields.  The electron beam 

dynamics, which govern the motion of the RF wave and electrons in the presence 

of a static axial magnetic field (assuming the space charge fields to be negligible), 

is explained with the help of relativistic Lorentz force equation for an electron 

interacting with a TEmn waveguide mode.  

In the present approach, certain assumptions are made.  The space-charge 

effects on the electron beam are ignored.  Here, in this nonlinear theory, it is 

assumed that all the electrons have the same kinetic energy.  A quasi-static system 

is assumed in the sense that the particles, entering the interaction region separated 

by integral multiples of a wave period, will travel along similar trajectories.  With 

this assumption, the slow-time scale formalism can be followed where fast scale 

phenomena such as the electron cyclotron motion, and the sinusoidal variations of 

the RF field are eliminated through averaging over a period while the more 

important slow-time scale spatial variations of the fields are retained.  In this 

procedure, the dynamics of a single wave is determined in terms of ensemble 

average over the nonlinear electron trajectories.  The misalignment effect can be 
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observed using the nonlinear analysis by assuming the change in the initial 

distribution of guiding centers of the particles. 

Since, gyroklystron operates in circular transverse electric (TEmn) modes 

(similar to gyrotron) near cutoff, i.e., ( )
1/2

||
c k k kω ⊥= = + with k⊥  >> ||k , where ω 

is the RF angular frequency, c is the velocity of light, k⊥  and ||k  are the transverse 

and axial wave numbers, respectively, of the waveguide modes.  In this case, we 

take 
mn wc k k rω ν⊥= ≈ =  for TEmn modes, where rw is the cavity radius and νmn is 

the n
th

 zero of Bessel function ( )mJ x′ .  The combination of this condition and 

cyclotron condition, 
csω ω=  determine the operating mode of a gyroklystron.  

Here, 0c eeB mω γ= is the relativistic electron cyclotron frequency, s is the 

harmonic number, me is the electron rest mass, B0 is the DC magnetic field, and γ 

is the relativistic factor.  The gyroklystron interaction results from phase bunching 

of electrons by an RF field due to the energy dependence of their cyclotron 

frequency.  

The generalized nonlinear theory for a harmonic gyroklystron can be 

developed in the form of generalized pendulum equations used for the gyrotrons, 

as the RF interaction structure of a gyroklystron is quite similar to a gyrotron.  

The equations of motions for an electron moving in combined electric and 

magnetic fields in terms of energy 2ε ( )
e

m cγ=  
and momentum ( )cmp eβγ=

 
 can 

be given as: 

        
εd

ev E
dt

= − ⋅      ,                                                                       
(2.1)  

dp e
ev v B

dt c
= − − ×    ,

                                                                  
(2.2)

 

where, e, v, E, and ( )
1 2

2 2

||
1γ β β

−

⊥= − −  are the electronic charge, electron velocity, 

electric field, and relativistic mass factor, respectively.  ( )v cβ⊥ ⊥=  and 

( )v cβ =
� �

are the normalized electron velocities in transverse and axial directions, 

respectively. In the present theory, a fixed axial profile of the electromagnetic 

field is assumed but in the azimuthal direction, it is rotating.  This assumption is 
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valid when the source term in the Maxwell’s equation is negligible, i.e., the effect 

of presence of an electron beam does not alter significantly the field profile.  For a 

high quality factor gyrotron and gyroklystron, this approximation is reasonable.  

The effect of the RF magnetic field on the electron motion is ignored provided 

that the phase velocity of RF field is much greater than the speed of light that 

obtained for a wave near cutoff.  The magnetic field is taken to be the axial static 

guide field B = B0 ẑ .  The energy variable ( ε ) can be written in terms of a relative 

energy variable (w) using Einstein’s mass-energy equivalence relation and axial 

dependence can be transformed as: 

  
2 2

0

02

0

1e e

e

m c m c
w

m c

γ γ
γ γ

γ

−
= = − , and ( )0Z c zω β=

�
                      (2.3) 

respectively.  Here (γ0) is the initial value of relativistic factor and (γ) is the final 

value of relativistic factor.    Therefore, equation (2.1) can be transformed as:

 

                

0

2

0( )e

dw e
pE

dZ m c

β

ω γ γ β
= �

�

   ,                                                         (2.4) 

where, 
0β
�

 and γ0 are the values of β
�
 and γ at the input of the interaction structure, 

respectively.  In the complex notation, p and E can be written as 

cos sin ,i

x yp p ip p i p p e
ζζ ζ+ + += + = + =

 

( ) ( ) ( )cos sin ,i t

x y
E E iE E t i E t E e ω ψω ψ ω ψ +

+ + += + = + + + =  

where,  ζ is the angle of the electron momentum vector about the gyro-center (Fig. 

2.1).  The electron gyro-center is located at a radius rb from the cavity center. 

Now,  

( ) ( )( )ψωζψωζ +++=+= ++ ttEpEpEpEp yyxx sinsincoscos.

 
        ( ) *cos( ) Re( ) .p E t p Eζ ω ψ+ + + += − + =                         (2.5) 

Using (2.5), (2.4) can be expressed as 

0 *

2

0

Re( ) .
( )

e

dw e
p E

dZ m c

β

ω γ γ β + += �

�                                              

(2.6) 

 Similarly, for the phase of the electron can be written from (2.2) as: 

0 0
Im( ) .

c ed
p E

dZ p

β ω βζ

β ω β ω
∗

+ +

+

= −� �

� �                                            

(2.7) 
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Fig. 2.1  Arrangement of gyrating electrons in their Larmor radius in the cylindrical 

cavity with cartesian and cylindrical coordinate systems. 

Here, ( )0c e
eB mω γ= is the cyclotron frequency.  In the Fig. 2.1, the coordinate 

of an electron gyrating along the cavity center at a beam radius rb.  Here, rL, rw, 

and R are the Larmor radius, cavity radius and the position of electron in the 

cavity center respectively.  The electric field for a TEmn mode near cutoff in a 

circular cross-section can be written in the cylindrical coordinate system (R,
0φ ) 

with origin at the center of the cavity (Fig. 2.1) as: 

     
0

( )

0
ˆ ˆ( ) i t

r
E E R E e

ω ψ

ϕ ϕ += + ,
                                                      

(2.8) 

0

0
( ) ( ) ( )

im

R m

m
E i E f z J k R e

k R

ϕ−

⊥

⊥

= ,                                           (2.9) 

  0

0 0
( ) ' ( ) im

m t
E E f z J k R e

ϕ

ϕ

−= .                                                  (2.10)

                                         
The field used here is that of a rotating mode, E0 is the field amplitude, and f (z) is 

the normalized axial field profile of unit amplitude.  Now, using the Graf’s 

summation theorem for Bessel functions, the electric field in the (R,
0φ ) coordinate 

system can be transformed to (r,φ ) coordinate system centered at electron gyro-

center to obtain the synchronism condition (ω ≈ sωc) [Basu (1996)].  Hence, the 

component of the RF field for the s
th

 order cyclotron resonance can be written as: 

)()ˆˆ( ψω
φ φ ++= ti

srs eErEE
                                                                              

(2.11) 
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0 0( )

0
( ) ( ) ( ) ( )

im is

rs m s b s

s
E i E f z J k r J k r e e

k r

ϕ ϕ ϕ− − −

± ⊥ ⊥

⊥

=
                                   

(2.12) 

0 0( )

0
( ) ( ) ' ( )

im is

s m s b s
E E f z J k r J k r e e

ϕ ϕ ϕ

ϕ

− − −

± ⊥ ⊥= .             
                              

(2.13) 

The electric field of a TEmn cavity mode can be then expressed as: 

0 0
sin[ ( ) ] cos[ ( ) ]i i

r
E E m s e iE m s eϕ ϕ

ϕθ ψ ϕ θ ψ ϕ
+

= − + − − + + − −
               

(2.14) 

where, Er and φE  are defined as rsr EE = and sEE φφ = .  The slow-time scale phase 

variable t sθ ω ϕ= −  has been introduced and ζ  to be transformed intoθ in the 

equation (2.7).  The angle of electron momentumζ is related with electron phase 

φ  as 2πφζ += .  Using (2.14), (2.6) and (2.7) can be written as:

  

0

0

cos( ( ) )
e

dw e
p E m s

dZ m c
ϕ θ ψ ϕ

ωγ
⊥
′= + − −

                                                   

(2.15)

 

0 0

0

(1 )
sin[ ( ) ]

r

e

d en w
w E m s

dZ m c p

θ
δ θ ψ ϕ

ωγ ⊥

−
= − − + − −

′
  ,

                              

(2.16) 

where, ( ) 2 2 1 2

0 0
( 2 )

e
p p m c w wγ β⊥ + ⊥

′ = = − + and ωωδ 00 1 cs−=
 

is the magnetic 

field detuning parameter where, ( )0 0 0c e
eB mω γ= .  In the gyrotrons, there is no 

bunching of the electron beam at the entrance to the cavity, therefore, choice of 

RF phase ψ can be arbitrary.  In general, ψ can be expressed in terms of the axial 

dependence Z, it is assumed to be constant throughout the interaction region by 

taking as 2)( 0 πφψ −=−− sm  and setting ω ≈ sωc0.  Hence, (2.15) and (2.16) can 

be written as:  

0

sin
Edw

p
dZ sB

ϕ θ⊥
′=   ,

                                                               

(2.17) 

0

0

(1 )
cos .rd E w

w
dZ B p

θ
δ θ

⊥

−
= − −

′                                           

(2.18) 

Equation (2.17) represents the inertial bunching of electrons due to the effect of 

azimuthal electric field which results a modulation in energy distribution of 

electrons.  Further, the phase variation occurs due to radial electric field and the 

inertial bunching.  The argument of the Bessel function Js of the electric field can 

be written in terms of energy variable as: 
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1

2 2
0 2

0 0

1
[1 (2 )]

sw
k r r s w w sp

c

γβ
β

γ β
⊥

⊥ ⊥ ⊥

⊥

′≈ ≈ = − − =   ,                     (2.18a) 

Now, introducing the energy and axial position variable as: 

2 2

0 0 0

2 2
(1 )u w

γ

β β γ⊥ ⊥

= = −

 

,

    

2 2

0 0

02

z
Z

β β
ς π

β λ
⊥ ⊥= =

�

 .                     (2.18b) 

The equations (2.17) and (2.18) can be written as: 

1

0 0

!2
2( ) ( ) ' ( ) sin

s

ss s

pdu s
Ff J sp

d s
ς θ

ς β β
⊥

⊥−

⊥ ⊥

′
′=

                                                          

(2.19)

 
2

0 0

1 2

0

(1 2)!2
( ) ( ) ( ) cos

'

s

ss s

t

ud s
u s Ff J sp

d s p

β βθ
ς θ

ς β
⊥ ⊥

⊥−
⊥

−
′= ∆ − −   ,

                          

(2.20) 

where, the normalized field amplitude (F), normalized length (µ) and the detuning 

parameter (∆) are defined as 

              

1
40

0 1

0

( )
!2

s
s

m s bs

E s
F J k r

B c s
β

−
−

⊥ ± ⊥−

 
=  

 
,                                                     (2.20a) 

2

0

0

Lβ
µ π

β λ
⊥=
�

 ,                                                                                 (2.20b) 

     ( )0
02 2

0 0

2 2
1

c
s

δ
ω ω

β β⊥ ⊥

∆ = = −  .                                                            (2.20c) 

The plus and minus sign in the Bessel function subscript denotes the counter and 

co-rotating mode of rotation of the RF field.  The electric field amplitude E0 can 

be calculated as 0

0

2

| ( ) |

in

w m mn

QP
E

L R Jωε π ν
= [Joye et al. (2004)].  Here Q is the total 

quality factor of the cavity, Pin is the driver power, L is the length of cavity and rw 

is the cavity wall radius.  The three important parameters have been introduced, 

and the equation of motions will finally be expressed in terms of these parameters.  

Under the condition of weakly relativistic electron beam and the condition  

2

0 2 1sβ⊥ ≪

 
,
                                                                       

(2.21) 

is satisfied, then p⊥
′  can be approximated as ( ) ( )

1/2 1/22

0 0
2 1p uβ ω β⊥ ⊥ ⊥

′ ≈ − = − . 

Under the condition given by (2.21), Bessel function ( )sJ sp⊥
′  can be approximated 

as: 
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                   ( ) 0,1,
2!

1
≠<<








= mx

x

m
xJ

m

m   

                            ( ) 0,1,
4

1
1

2
=<<−= mxx . 

Then, equations (2.19) and (2.20) can be expressed in terms of normalized 

parameters F, µ, and ∆ as 

1/22 ( )(1 ) sin
du

Ff u
d

ς θ
ς

= −
                                                              

(2.22)
 

( /2) 1( )(1 ) cossd
u sF f u

d

θ
ς θ

ς
−= ∆ − − −

                                            
(2.23) 

Also, the normalized momentum (p) of electrons can be expressed in terms of 

their normalized energy (u) as [Nusinovich (2004)]: 

2
2

2

0

1 1
p

u p
p

⊥

⊥

= − = −   .                                                                      (2.24) 

Now, after differentiating equation (2.24) with respect to ς and using equation 

(2.24) in equations (2.22) and (2.23) we get 

( )( ) ( )
1
sin

sdp
Ff p

d
ς θ

ς

−
= −     ,                                                         (2.25) 

              ( ) ( )( ) ( )
22 1 cos    

sd
p sFf p

d

θ
ς θ

ς

−
= ∆ + − −  .                                  (2.26) 

These are the two nonlinear pendulum equations which describe the interaction of 

an electron beam with the cavity RF field of a gyrotron and a gyroklystron 

amplifier with ( ) 1
in

p ς =  and ( ) 0 ,  
in

θ ς θ=  where 0θ  is uniformly distributed all 

over the phase (0, 2π) and where p, θ, F, ∆ and ς  are the normalized momentum, 

electron phase, normalized field amplitude, frequency detuning parameter and 

normalized axial position respectively. In the equations (2.25) and (2.26) f(ς) is 

the axial field profile which is approximated by Gaussian function for most of the 

cases and is given by: 

( )2( ) exp (2 )f ς ς µ= −  or ( )2(z) exp (2 )f z L= −  ,                       (2.27)                                                

where, L is the length of the cavity. 
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In devices like gyrotrons and gyroklystrons the maximum energy transfer 

occurs when the electron cyclotron motion is approximately in synchronism with 

the azimuthal RF field component. By considering this fact along with the 

assumptions of constant guiding center radius and vanishing RF magnetic fields, 

which are very small for TEmn modes near the cutoff. The equations of motion 

described by equations (2.25) and (2.26) can be approximated to one dimensional 

equation known as the adiabatic approximation. Under adiabatic approximation 

the equations (2.25) and (2.26) can be expressed as [Dumbrajs et al. (1998), Tran 

et al. (1986)]: 

2( 1 | | ) ( )
dp

i p p iFf
d

ς
ς

= ∆ − + +  .                                                   (2.28) 

In the case of gyroklystron, due to beam-wave interaction process the 

bunching of electrons occurs as they drift toward the output cavity from input 

cavity. As these bunched electrons passes through the output cavity, a strong 

interaction between the electrons and the RF wave present in the cavity takes 

place. Thus, in a gyroklystron pre-bunching of electrons occur as they reached at 

the entrance of the output cavity which can be defined in terms of bunching 

parameter (q). The whole bunching process of the electrons in a gyroklystron can 

be expressed in terms of electrons phase variation (θ) and momentum variation 

(p) as 
0 0

sinqθ θ θ ψ= + −   and ( )
i

in
p e

θς ς −= = . 

The gyrating electrons in gyroklystrons drift towards the output RF cavity 

after travelling through the one or more pre-bunching RF cavities and associated 

interconnecting drift tubes of the device. The drift tubes are designed such that the 

desired as well as competing modes are not excited, hence RF field amplitude 

inside the drift tube should be zero.  Therefore, the equation (2.28) for drift tubes 

can be written as: 

2( 1 | | )
dp

i p p
dς

= ∆ − +  .                                                           (2.29) 

In order to calculate efficiency of the device, electron momentum p is calculated 

in each RF cavities using expression (1).  At the same time, the electrons phase 

variation θ occurring due to beam-wave interaction in the preceding cavities of 
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each associated interconnecting drift tubes is calculated at the end of drift tubes 

using expression (2.28). After this, the average of all the electrons momentum 

obtained at the end of the interaction length of the output cavity is taken over the 

initial phase angle of the electrons for calculating the transverse efficiency (η⊥
) of 

the device.  Mathematically, it can be expressed as: 

2
02

0

1 | ( ) |
2

out

d
p

π θ
η ς ς

π
⊥

= − =∫     .                                                  (2.30) 

Here we have chosen 3 2
in

ς µ= − and 3 2
out

ς µ=  as the normalized input 

and output lengths for the output cavity as they are a good approximation to actual 

gyroklystron output cavity. 

The electronic efficiency of the gyroklystron amplifier can be simply 

defined as ratio of RF output energy (γ0-γ) to the DC input electron beam energy 

(γ0-1).  Since, (γ0) can be expressed in terms of beam voltage (Vb) as: 

0

(kV)
1

511

b
V

γ = +   .                                                                             (2.30a)    

This efficiency can also be determined by calculating the average loss of 

electrons energy from their initial value.  Therefore, electronic efficiency can be 

expressed in terms of electrons transverse efficiency (η⊥
) and relativistic factor 

(γ0).  Mathematically, using equation (2.30) and (2.30a) the electronic efficiency 

of the gyroklystron amplifier can be determined as: 

                  

      ( )

2

0 0

1

0 0
1 2 1

γ γ β
η η

γ γ
⊥

⊥−

−
= =

− −
   .                                                      (2.31) 

Once the electronic efficiency of the device is calculated the output power and 

gain of the device can be estimated as: 

out b b
P V Iη=    ,                                                                             (2.32) 

10log out

in

P
Gain

P

 
=  

 
  ,                                                                 (2.33) 

where, Ib, and Vb are the beam current, and beam voltage, respectively. 
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2.2.1 Effect of the beam velocity spread 

The electron beam velocity spread is an important aspect which should be 

incorporated to investigate the RF behavior of the device to have a more practical 

aspect. This is because during the experiments, 2% to 4% velocity spreads are 

always present due to which the electron beam quality degrades and as a result of 

this, both output power and efficiency of the device decreases. Since, the electrons 

emission from a real cathode is not uniform due to some of practical constraints, 

like, non-uniform heating of cathode, roughness in the cathode surface, and the 

repulsion of electrons due to space charge forces. To include these effects in the 

present analysis the normalized parameters described in equations (2.20a), (2.20b) 

and (2.20c) can be expressed in terms of the velocity dependent and independent 

components as [Dumbrajs et al. (1999)]: 

4s

F
F C β −

⊥= ,                                                                                (2.34a) 

2

Cµ

β
µ

β
⊥=
�

,                                                                                (2.34b) 

and            
2

C

β
∆

⊥

∆ =   .                                                                                  (2.34c) 

Here, CF, Cµ, and C∆ are independent to electrons transverse and axial velocity. 

Using the equations (2.20a), (2.20b) and (2.20c), these velocity independent 

normalized parameters of field, length, and detuning can be obtained as: 

1
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1
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F m s bs

E s
C J k r

B s

−

± ⊥−

 
=  
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 ,                                                        (2.34d) 

L
Cµ π

λ
=  ,                                                                                     (2.34e) 

( )02 1 cC sω ω∆ = −  .                                                                      (2.34f) 

The velocity spread effects in gyroklystrons can be incorporated by considering 

the population of electrons having different transverse ( β⊥
) and axial ( β

�
) 

velocities in the above defined normalized parameters. Mathematically, the 

electron velocity distribution for such a population of electrons can be 
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approximated by a Gaussian function as were reported for gyrotrons by 

[Dumbrajs et al. (1999)]: 

( )
2

0

2

1
( ) exp

22
e

f
β β

β
σσ π

 −
 = −
 
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� �

�
                                                      (2.35) 

where σ is the root mean square deviation. The full width at half maximum for 

axial velocity spread δβ
�
is taken as 2δβ

�
. Mathematically, it can be defined as: 
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    .                                                                    (2.36) 

Also, the axial velocity spreads are related with the root mean square deviation as: 

1.8 2δβ σ=
�

       .                                                                                (2.37) 

2.2.2 Linear analysis 

The solutions of nonlinear equations (2.25) and (2.26) can be linearly 

approximated using power series method for studying the linear behavior of the 

gyroklystron amplifier.  To perform the linear analysis, first we consider the 

simplest case of a two-cavity gyroklystron, i.e., only one cavity in the prebuncher 

and after that it can be easily extended for the multicavity gyroklystrons.  Since 

the normalized field amplitude (F) is small, the nonlinear pendulum equations 

given by equation (2.25) and (2.26) are integrated analytically by expanding the 

normalized momentum p and electron phase θ in the small parameter F as follows 

[Tran et al. (1986)]: 

(0) (1)

(0) (1)

...

....

p p p

θ θ θ

= + + 


= + + 
                                                                      (2.38) 

On inserting this expansion in equation (2.25) and (2.26) and considering the case 

of fundamental harmonic operation, i.e., s = 1, 

   
(0)

0
dp

dς
=                                                                                    (2.39a) 
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θ
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The equations (2.39a) and (2.39b) describe the undisturbed state of the electron 

beam (when no RF field is applied).  On integrating these equations we get: 

( )(0)
1p ς =                                                                                (2.40a) 

( ) ( )(0)

0 0in
θ ς θ ς ς θ ς= + ∆ − = − ∆                                            (2.40b) 

where θ0 is uniformly distributed all over the phase [0, 2�].  Now equation (2.39c) 

which describes the electron momentum modulation by the RF field is integrated 

using field profile equation (2.28) and equation (2.40b).  This gives the electron 

momentum at the output of the first cavity approximated up to the first order in F 

as: 

( ) ( ) ( )(0) (1)

1 1 1 0
1 ( )sin

2
out out out

p p p F G x
π
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where the function G is defined by 

( ) ( )
2 23

0

2
cos 2t x

G x e xt dt e
π

− −= ≈∫       ,                                     (2.42) 

and 4x µ= ∆ . 

Similarly, equation (2.39d) which describes the bunching of the electron phase 

angles is solved and the obtained results of this equation are added to equation 

(2.40b) to get the electron phase angles at the output of the first cavity is given by: 

{ }
2

1 0 1 1 1 1 0 1 0 0

3
( ) 3 sin cos cos

2 2

x
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F e x

π
θ ς θ µ µ µ θ µ θ θ−= − ∆ + + − .  (2.43) 

After the first cavity, drift section is there where momentum p remains constant 

(since no RF field is excited, i.e., F = 0) and due to inertial bunching mechanism 

bunched phase angles θ will evolve in drift tube as: 

2
1

1 1 0
sinxd

F e
d

θ
π µ θ

ς
−= −∆ +   .                                                    (2.44) 
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The bunched phase angles at the end of the drift section is obtained by solving 

above equation with the initial condition specified by equation (2.43): 

0 1 1 0

3
sin

2
b d d

qθ θ µ µ θ
 

= − ∆ + ∆ + 
 

  ,                                     (2.45) 

where 
d

µ  is the drift length and q is defined as the bunching parameter and is 

given by: 

2
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 
  .                                                 (2.46) 

As a result, the electron phase angles, at the input of the second cavity can be 

parameterized by the bunching parameter q and the constant phase ψ which is the 

phase difference between the cavities and the electron rotational drift, as: 

0,2 0 0
sinqθ θ θ ψ= + −                                                                 (2.47) 

1 1
( 3 / 2)

d d
ψ µ µ= ∆ + ∆    .                                                       (2.48) 

Again, on solving the pendulum equations up to the first order in F1 and F2, the 

transverse momentum at the output of the second cavity can be easily calculated 

as: 
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Using equation (2.49), one can calculate the small-signal efficiency of the device 

as the orbital efficiency which is necessary for calculating the electronic 

efficiency of a gyroklystron amplifier is obtained by performing an average over 

the initial phase angles 
0

θ  and mathematically it can be expressed as: 

( )
0

2

2
1lin
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p

θ
η ς⊥ = −    .                                                                  (2.50) 

In the output cavity of the gyroklystron, the range of integration is taken as -

√3µ/2≤ ς ≤√3µ/2.  By using equations (2.47), (2.49), and (2.50), we can obtain the 

relation for the electronic efficiency as: 
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where F2 is the normalized field amplitude induced in the second cavity by the 

phase-bunched and is given by [Gold et al. 1990]: 

2
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Here, I2 is the normalized beam current defined as: 
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Here, Ib is the beam current in amperes, Q is the total quality factor of cavity, and 

L2 is the length of the output cavity.  If I2 and F2 are known, the transverse 

efficiency can also be obtained by using power balance equation as: 

2

2 2
I Fη⊥ =      .                                                                           (2.54) 

The analysis discussed above generalizes to an N-cavity gyroklystron as follows: 
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where,  j = 1 to N-1,  pout,j, is the normalized momentum at the output of the j
th

 

cavity, 
, 1c j

θ +
 is the phase angles at the mid-plane of the (j + 1)

th   
cavity and 
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and              � 1 1 1, ,

3 3
( )

2 2
j j jj j j jd j d jψ µ µ µ ψ ψ+ + += ∆ + ∆ + ∆ + −   .           (2.57c) 

2.3 Results and Discussion 

The gyroklystron analyses developed above are used to examine the RF 

behavior of the amplifier; the numerical codes have been developed for this 

purpose. These codes are further used for the design and analysis of the 

gyroklystron in the subsequent chapters.  In the present analyses, the differential 

equations are solved using fourth order Runge-kutta method.  In the numerical 

integration of the coupled equations (2.25) and (2.26) of the single-mode analysis, 

64 macro-electrons are used, with zero initial energy and equally distributed in 
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initial phase. The limit of integration is taken as 3 / 2 3 / 2µ ς µ− < <  which 

corresponds to exp(-3) power points of axial field profile, which is a good 

approximation for the resonant cavities, which are used as the RF interaction 

structure in gyroklystrons [Fliflet et al. (1982)].  Each macro electron represents a 

group of electrons starting with similar energy and phase distribution.  For the 

accuracy, number of electrons should be increased.  For the 64 number of 

particles, accuracy is found to be sufficient enough.  All the electrons are assigned 

the initial transverse and longitudinal energy based on the calculation done from 

the beam voltage (Vb) and the velocity pitch factor (α).  The electrons are 

uniformly distributed over the interval [0, 2π]. 

 

Fig. 2.2  Contour plot of orbital efficiency ( ⊥η ) as a function of normalized field 

amplitude (F)  and normalized length (µ). 

2.3.1 Efficiency contours  

The single-mode analysis described in the preceding section 2.2 is used to 

calculate the momentum and phase of the electrons, contour plots of transverse 

efficiency, output power.  The nonlinear pendulum equations (2.25)-(2.26) are 

solved using fourth order Runge-Kutta algorithm with Gaussian axial field profile. 

Consequently, the contour plots of the efficiency ( ⊥η ) in F-µ  and I-µ  space is 

obtained.  The contour plot ( )µη ,F⊥  is used for the optimization of the 

gyroklystron design.  Since, all the relevant design parameters such as wall 

loading, beam thickness effect, and voltage depression can be expressed in terms 
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of F and µ [Kreischer et al. (1985), Tran et al. 1986].  The ( )µη ,I⊥ contour plot 

can be used to determine the efficiencies for known value of beam current. 

An efficiency contour plot of a gyroklystron amplifier in F-µ  space is 

shown in Fig. 2.2 for the fundamental harmonic operation.  In the figure, for each 

value of F and µ, the optimum ∆ has been estimated corresponding to the 

maximum efficiency.  The maximum transverse efficiency is obtained 90%, 

corresponding to F and µ as 0.145 and 15.5, respectively.  This figure provides 

qualitative information about the performance of the gyroklystron in terms of the 

work done on the electron bunch with the variation of normalized field amplitude 

(F) and normalized interaction length (µ).  At the lower value of F and µ the 

efficiency value is small, which reveals the little work done on the electron beam.  

With the increase in value of these two parameters, the efficiency increases, and at 

a certain point, it reaches to its maximum.  Further increasing the value of F and 

µ , the efficiency value is reduced, which means that electron beam starts gaining 

the energy from the RF wave.  In this plot, several high efficiency regions are 

obtained but the gyroklystron design is preferred in the lowest value of the F and 

µ region due to some physical and technological constraints such as start 

oscillation current, beam spreading and space charge effects. 

Further, in order to study the evolution of electron bunching on orbital 

efficiency η⊥ , the momentum of the electrons versus axial distance has been 

plotted for different values of device parameters.  In Fig. 2.3, the momentum of 

electrons has been plotted against the axial position of the output RF cavity for a 

set of gyroklystron parameters corresponding to the optimum bunching condition, 

i.e.,  field amplitude (F) = 0.145,  length (µ) = 15.5, detuning parameter (∆) = 

0.538, bunching parameter (q) = 3.17, and RF phase ψ = 0.84π, necessary for 

maximum efficiency.  Under this optimum condition, the electron bunches give 

up their maximum energy to the RF field.  It can be seen from Fig. 2.3, that 

towards the output end of the interaction length, a large number of electrons are in 

the lower momentum state and only few of them are in a higher momentum side.  

The corresponding phase bunching of the electrons in axial direction is shown in 

Fig. 2.4.  The maximum axial bunching occurs nearly at the middle of the output 
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cavity where RF field is maximum in the cavity as shown in Fig. 2.5.  This shows 

that a strong beam-wave interaction process takes place at the center of the output 

cavity. 

The Fig. 2.6(a) has been plotted for the same optimized parameters, only  

the bunching parameter q value has been increased to 4.5 in order to see the effect 

of over bunching.  This results in degradation of the efficiency from 89% to 55% 

due to the presence of more electrons in the higher momentum side at the output 

end as shown in the Fig. 2.6(a).  The efficiency further decreases, when we reduce 

the frequency detuning parameter ∆ from its optimized value as shown in Fig. 

2.6(b).  This happens due to the presence of most of the electrons in a higher 

momentum side, resulting in poor bunching and hence less efficiency as the 

electrons energy is very less perturbed by the RF from their initial value due to 

weak beam-wave interaction process. 

 
Fig. 2.3 Normalized momentum as a function of normalized interaction length for 

optimum bunching condition. 

 

Fig. 2.4  Electrons phase bunching along the normalized distance . 
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Fig. 2.5 Normalized field amplitude and transverse efficiency as a function of 

normalized distance. 

 
   (a) 

 
 (b) 

Fig. 2.6 Normalized momentum versus normalized distance plots for a set of 

gyroklystron parameters (a) over bunching condition, and (b) variation in 

detuning parameter from optimal bunching. 
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Fig. 2.7  Contour plot of orbital efficiency as a function of normalized beam current and 

normalized length. 

The contour plots of the efficiency in I-µ  space corresponding to F-µ  space 

optimized with ∆, q and ψ is shown in Fig. 2.7, which is obtained using energy 

balance equation.  The ( ),Iη µ⊥  contour plot is helpful in deciding the value of 

the beam current for the optimum efficiency.  It must be noticed that these plots 

are quite general and can be applied to design the gyroklystron of any value of 

frequency and output power. 

2.3.2 Numerical Benchmarking  

The generalized linear and nonlinear analyses discussed in the preceding 

section 2.2 are further exploited to observe the gyroklystron amplifiers behavior 

with the aid of computer friendly numerical code.  To validate the developed 

analytical model, Ka-band two-cavity and four-cavity gyroklystron amplifiers 

experiments reported in the literature have been selected [Choi et al. (1998), 

Garven et al. (2000)].  This performance estimation has been carried for the 

numerical benchmarking the code, so that they can be successfully implemented 

for the design and analysis of the gyroklystron amplifier in the subsequent 

chapters.  The flowchart in Fig. 2.8 illustrates the step by step procedure followed 

for the output performance realization of a gyroklystron amplifier. 
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Fig. 2.8  Flow chart for the performance estimation of a gyroklystron amplifier. 

Table 2.1 Design specifications for 35 GHz, 200 kW two-cavity gyroklystron 

amplifier [Choi et al. (1998)]. 

Parameters Specifications 

Operating Mode TE01 

Beam Voltage (Vb) 70 kV 

Beam Current (Ib) 8.2 A 

Velocity Pitch Factor (α) 1.43 

Center Frequency (f) 34.95 GHz 

DC Magnetic Field (B0)                 1.31 T 

Input Cavity Length 12.85 mm 

Output Cavity Length 23.56 mm 

Input Cavity Radius 5.6 mm 

Output Cavity Radius 5.35 mm 

Drift Tube Length 14.57 mm 

Drift Tube Radius 4.1 mm 
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2.3.2b Two-cavity gyroklystron amplifier 

The analysis of 35 GHz, 200 kW fundamental harmonic two-cavity 

gyroklystron with all the cavities operating in the TE01 mode has been carried out 

using the approach developed above.  Table 2.1 shows the design specifications 

taken for analysis of 35 GHz, 200 kW two-cavity gyroklystron.  

The operating point of the present gyroklystron has been chosen with the 

help of the efficiency contour corresponding to its normalized output cavity 

length.  The electronic efficiency of the device under consideration is calculated 

by using the linear and nonlinear theory. 

 

Fig. 2.9  Efficiency as a function of frequency. 

 

 

Fig. 2.10  RF output power and gain as a function of input power. 
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Figure 2.9 shows the comparison of the reported experimental results with 

the analytically obtained results from the linear and nonlinear analysis for the 

variation of output power with drive frequency.  It is clear from Fig. 2.9 that the 

present gyroklystron amplifier achieves highest efficiency at center frequency 

34.95 GHz.  The electronic efficiency corresponding to the center frequency 34.95 

GHz as estimated by the linear theory is 32.8%, and from nonlinear analysis is 

35%.  The experimental reported efficiency of this device is around 36%. 

Figure 2.10 shows the peak output power and gain as a function of input 

power calculated analytically using linear and nonlinear theories.  As seen from 

figure, the output power reaches the saturated value of 200 kW at 922 W drive 

power corresponding to 23.36 dB gain.  Furthermore, the analytical results 

obtained here are validated against the experimental results reported in the 

literature.  The results obtained here from nonlinear analysis are found to be in 

good agreement with the reported experimental values, whereas the deviation of 

linear theory results can be explained on account of its limitation not to consider 

the nonlinear saturation effects. 

Table 2.2 Design specifications for 35 GHz, 200 kW four-cavity gyroklystron 

amplifier [Garven et al. (2000)] 

Particulars Specifications 

Mode TE01 

Beam Voltage (Vb) 72 kV 

Beam Current (Ib) 9.6 A 

Velocity Ratio (α) 1.36 

DC Magnetic Field (B0) 1.335 T 

Input Cavity Length 12.88 mm 

Second Cavity Length 14.59 mm 

Third Cavity Length 14.59 mm 

Output Cavity Length 23.58 mm 

Drift Tube Length 14.59 mm 

Quality Factor (Input Cavity) 188 

Quality Factor (Second Cavity) 200 

Quality Factor (Third Cavity) 200 

Quality Factor (Output Cavity ) 170 
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2.3.2b Four-cavity gyroklystron amplifier 

Like the conventional klystrons, the two-cavity gyroklystron serves as the 

basic model for the gyroklystron amplifier.  However, it is not so practical useful. 

Since, its gain is limited due to the limited beam-wave interaction process.  The 

typical power gain of a two-cavity gyroklystron amplifier is about 20 dB.   In 

order to achieve a higher gain, the bunching process in a gyroklystron amplifier 

needs to be enhanced.  Addition of more bunching cavities in between the first 

cavity and the output cavity strengthens the bunching process, that produces an 

increase in the energy available at the output, and hence the overall gain of the 

device increases.  The overall efficiency of the tube is also improved to a lesser 

extent.  Moreover, one can achieve higher bandwidth in a multicavity 

gyroklystron as compared to two-cavity gyroklystron by stagger tuning the 

various cavities to slightly different frequencies [Choi (1998), Nusinovich et al. 

(1997)].  Keeping these points into consideration, and to make the present study 

more useful for a practical device, the analysis of a Ka-band, four-cavity 

gyroklystron amplifier is implemented.  

The analysis of 35 GHz, 200 kW fundamental harmonic four-cavity 

gyroklystron with all the cavities operating in the TE01 mode has been presented 

using linear and nonlinear theories.  Table 2.2 shows the design specifications 

taken for analysis of 35 GHz, 200 kW four-cavity gyroklystron amplifier. 

 

Fig. 2.11  Electronic efficiency variation in each cavity as a function of length. 
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Fig. 2.12  RF output power as a function of frequency. 

 

 

Fig. 2.13  Output power and gain as function of input power. 

 

 

Fig. 2.14  Output power and efficiency variation with beam current. 
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The electronic efficiency of the device which is defined as the conversion 

of DC beam power to RF output power is calculated using equation (2.31). The 

electronic efficiency in each cavity is shown in Fig. 2.11.  It can be seen from Fig. 

2.11 that as the electrons move from input cavity to output cavity the efficiency in 

each cavity increases. Also, one can see that the efficiency in input cavity and 

second cavity is quite small. This is because energy exchange between the RF and 

the electron beam is very small in these cavities due to net energy is gained by the 

electrons for bunching process. The maximum efficiency is obtained at the output 

cavity due to the strong beam wave interaction occurring between the azimuthally 

bunched electron beam and the RF induced by these electrons in the output cavity. 

The resultant electronic efficiency is about 26% and the corresponding output 

power is around 180 kW. Figure 2.12, shows the comparison of the reported 

experimental results with the analytically obtained results for the variation of 

output power with drive frequency.  It is clear from Fig. 2.12 that the present 

gyroklystron amplifier achieved 180 kW peak output power at center frequency 

34.9 GHz with a -3 dB bandwidth of 202 MHz (0.58%).  It can be seen from the 

Fig. 2.12, the analytical results obtained here are in good agreement with the 

reported experimental results within ± 5%. Fig. 2.13 shows the peak output power 

and gain as a function of input power.  As seen from figure, the output power 

reaches the saturated value of 180 kW at 0.43 W drive power corresponding to 56 

dB gain in case of nonlinear theory and 142 kW with 55 dB gain from linear 

theory.  The results obtained from nonlinear analysis are in agreement with the 

reported experimental results within ∼5%. 

2.3.3. Sensitivity Analysis 

The sensitivity analysis of the gyroklystron amplifier is carried out in detail 

by studying its parametric variation with different parameters with the help of 

four-cavity gyroklystron selected in the previous section.  The output power and 

efficiency variation has been observed with respect to beam current, quality factor 

and electron beam velocity ratio.   
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Fig. 2.15  Output power and efficiency variation with quality factor. 

 

Fig. 2.16  RF output power variation with frequency for different velocity spreads. 

The output power and efficiency increases as the beam current increases, 

which is due to the operation of the device near the start oscillation current (Fig. 

2.14).  The Fig. 2.15 shows the variation of output power and efficiency as a 

function of the quality factor of the output cavity.  The peak output power about 

200 kW has been obtained around quality factor 210.  However, the quality factor 

of the output cavity is chosen 170 for the stable operation of the device 

corresponding to peak output power 180 kW in order to avoid the undesired 

oscillation which occurs due to the operation of the device very near to start 
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oscillation current. The electron beam velocity spread plays a vital role in power 

growth mechanism inside the cavity. In Fig. 2.16, the effect of electron beam 

velocity spread on the output power and bandwidth is analyzed. The output power 

and bandwidth decrease as the beam velocity spread increases. This happens 

because some of the electrons have lower energies and hence transfer lesser 

amount of energy to the RF. For an ideal beam with no velocity spread, the peak 

output power is 180 kW and for a beam with 4% velocity spread, the peak output 

power is 165 kW at 34.9 GHz. Accordingly, the 3 dB bandwidth of the device 

drops from 0.58% to 0.46%. 

2.3 Conclusion 

For the analysis of a gyroklystron amplifier, both small signal and large 

signal analyses are in vogue.  Small signal analysis based on the linear theory is 

used to study the device behavior in the linear regime.  On the other hand, the 

large signal analysis based on the nonlinear theory is used to predict output power, 

efficiency, saturated gain, and phenomenon of electron cross-over and debunching 

thereby providing better understanding of the beam-wave interaction and 

saturation mechanisms.  A self-consistent nonlinear signal formulation for the 

gyroklystron has been developed considering electron velocity spread effects to 

study the beam-wave interaction behavior of a gyroklystron amplifier under the 

time independent single mode consideration.  

The electron beam velocity spread always present practical device because 

of the non-uniform electrons emission from a real cathode due to practical 

constraints, like, non-uniform heating of cathode, cathode surface roughness, and 

electrons repulsions due to space charge. 2 to 4% electron velocity spreads are 

usually found in the practical devices and this degrades the tube performance, 

both RF output power and efficiency. The nonlinear analysis is modified to 

include this effect by making the normalized parameters: field amplitude, 

momentum and electron phase terms velocity dependent.  

Gyroklystron efficiency is optimized by optimally selecting the field 

amplitude, length and detuning parameters as well as value of the beam current. 
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The existing manual method of optimizing efficiency through the contour plots of 

the efficiency has been made automatic logical loop controlled.  

Taking resort of the reported experimental work, the performance of 

typical 35 GHz, cylindrical two-cavity and four-cavity gyroklystron amplifiers 

operating at the TE01 mode, using the analytical approach developed here, has 

been investigated as well as validated. The results obtained through the nonlinear 

analytical model developed here have been found in agreement of ∼5% with those 

of the reported experimental values. 

The effects of the various device parameters, such as, variations in the 

beam current, quality factor, beam voltage, and velocity spread on the device 

electronic efficiency, bandwidth and RF output power are explored and discussed. 

This sensitivity studies will help this device developer to analyze their device 

under practical conditions.   

The analytical results obtained by the large signal analysis developed in the 

present chapter will also be validated with the PIC simulation values obtained 

using available 3D commercial software MAGIC in the next chapter, Chapter 3. 

After validating our large signal analysis through PIC simulations, the studies will 

be extended further in the subsequent chapters for exploring the design and 

performance improvements techniques of the gyroklystron amplifiers.  


