List of Figures

Fig. No.	Figure Details	Page No
Fig. 1.1	(a) The sigma-pi model for two sp ² -hybridised carbon atoms, as in	5
	ethylene, (b) Delocalized π -electron-system in a benzene ring	, 9
	consisting of six sp ² -hybridised carbon atoms	
Fig. 1.2	The energy levels of a π -conjugated molecule, the lowest	5
	electronic excitation in between the bonding π -orbital and the	;
	antibonding π^* -orbital, (b) collection of molecular orbitals form	
	bands separated by an energy gap	
Fig. 1.3	Structures of few organic semiconductors	7
Fig. 1.4	(a) Overlapping of π -electrons along the chain, (b) Hopping and	. 8
	band transport, (c) Hopping and tunneling between the two	1
	delocalized states	
Fig. 1.5	n-type doping of poly(acetylene)	9
Fig. 1.6	p-type doping of poly(thiophene)	10
Fig. 1.7	Doping mechanisms in OSCs (a) Energy levels of OSCs, (b) n-	12
	doping: an electron is transferred from the HOMO of the dopant to	1
	the LUMO of the host, (c) p-doping: an electron is transferred from	
	the HOMO of the host to the LUMO of the dopant, generating a	
	hole at the host.	
Fig. 1.8	Schematic diagram of a resistive thermal evaporation system	14
Fig. 1.9	AFM image of P3HT-nanofibers	17
Fig. 1.10	Picture of today's OFET	19
Fig. 1.11	Cross-sectional view of different OFET device configurations (a)	25
	Bottom-gate, bottom-contact (Coplanar), (b) Bottom-gate, top-	
	contact (Staggered), (c) Top-gate, Top-contact (Coplanar), (d)	I
	Top-gate, bottom-contact (Staggered).	
Fig. 1.12	OFET Operation	26
Fig. 1.13	Energy-band diagram showing operating principle of OFETs	27
Fig. 1.14	Working of an OFET (a) Schematic structure of OFET with	30

applied voltages, (b) linear region, (c) "Pinch-off" condition, (d) saturation region
Fig. 1.15 The I-V characteristics of a typical OFET (a) Output Characteristics, (b) Transfer Characteristics

31

35

35

43

- Fig. 1.16 Applications of OFETs
- Fig. 1.17 (a) LG Electronics: the world's largest OLED HDTV presented at the 2012 Consumer Electronics Show (CES) in Las Vegas, it has a display size of 55 inches, weighs a mere 7.5 kg and is only 4 mm thick, (b) Sony: a rollable full color 4.1 inches OLED display driven by OFETs, being wrapped around a thin cylinder, (c) Polymer Vision: 'Readius', a flexible electrophoretic (e-ink) display fabricated on plastic substrates using OFET backplanes,(d) PolyIC GmbH & Co. KG: roll-to-roll printing organic RFID tags on plastic substrates.

Fig. 1.18	Carriers injection at the metal and semiconductor interface	38
Fig. 1.10	Energy hand diagram of gold and P3HT (a) before contact (b)	38

- Fig. 1.19 Energy band diagram of gold and P3HT (a) before contact, (b) 38 after the contact
- Fig. 2.1 Structure of P3HT

Fig. 2.2 (a) Preparation of thiophene Grignard monomer and synthesis of 44 P3HT by Kumada catalyst transfer polymerization, (b) Schematic representation for the flow setup using nickel complex 3 and (c) Ni(dppp)Cl₂

- Fig. 2.3 Crystal structures of different carbon allotropes: Carbon atom 46 consists of six protons and neutrons inside the nucleus, and two electrons revolve in the 1s orbital whereas the four other electrons are rotating in the next energetic 2s, 2p orbital (middle). The carbon atoms form 0D fullerene (top left), 1D CNT (top right), 2D graphene (bottom right), and 3D graphite structures
- Fig. 2.4
 Chemical structure of TCNQ
 48

 Fig. 2.5
 (a) p⁺-Si/SiO₂ wafer disc, (b) substrate, (c) cleaning of substrates
 50

 Fig. 2.6
 Chemical reaction and interaction among SiO₂ and OTS molecules, (b) Grain size increases after OTS treatment
 51
- Fig. 2.7Spin coating unit52

Fig. 2.8	Picture of furnace	53
Fig. 2.9	Vacuum coating unit	54
Fig. 2.10	Schematic representation of the nickel mask used for the source	55
	and drain electrodes deposition, (b) Image of the fabricated OFETs	
Fig. 2.11	Connection of OFET using silver paste and insulated thin copper	55
	wire	
Fig. 2.12	Semiconductor parameter analyzer	56
Fig. 3.1	Schematic 3-D structure of bottom-gate top-contact OFET	64
Fig. 3.2	The I-V characteristics of P3HT based OFET (a) output, (b)	65
	transfer characteristics	
Fig. 3.3	AFM image of the spin-coat P3HT thin-film. The scan area	65
	dimension is 5 μ m×5 μ m; inset scan area dimension is 1 μ m×1 μ m	
Fig. 4.1	Systematic structure of P3HT/graphene nanocomposite based	73
	OFET	
Fig. 4.2	Combined I-V characteristics of OFETs having different	75
	concentrations of graphene flaks in their P3HT active channel (a)	
	I_{DS} Versus V_{DS} at V_{GS} = -60 V, (b) $I_{DS}^{1/2}$ Versus V_{GS} at V_{DS} = -60 V,	
	(c) $log(I_{DS})$ Versus V_{GS} at V_{DS} = -60 V	
Fig. 4.3	SEM image of (a) P3HT/graphene thin-film coated FET channel,	76
	(b) P3HT/graphene hybrid nanocomposite material	
Fig. 5.1	UV-visible absorption spectra for P3HT solution and P3HT-	85
	nanofibers suspension in chloroform	
Fig. 5.2	(a) UV-visible absorption spectra of P3HT solutions of different	87
	concentrations, (b) Absorption peak height (at $\Lambda = 450$ nm) versus	
	P3HT concentration (wt%)	
Fig. 5.3	AFM pictures of the spin coated thin-film prepared by (a) P3HT-	88
	nanofibers suspension, (b) P3HT solution. The scan film area	
	dimension is 5 μ m×5 μ m; inset scan area dimension is 1 μ m×1 μ m	
Fig. 5.4	The I-V characteristics of the fabricated P3HT-nanofibers based	89
	OFET (a) Output Characteristics, (b) Transfer Characteristics	
Fig. 6.1	AFM images of P3HT and TCNQ doped P3HT films (a) P3HT,	98
	(b) 1% TCNQ, (c) 5% TCNQ, (d) 10% TCNQ, (e) 20% TCNQ	
	and (f) 20% TCNQ with thin-Al coating. The scale bar represents	

1µm (200 nm in the insets)

- Fig. 6.2 Combined I-V characteristics for a range (0 to 20 %) of TCNQ 99 doped, and Al coated at highly doped (20 %) P3HT channel film based FETs (a) Output characteristics drawn for $V_{GS} = -60$, (b) Transfer characteristics $I_{DS}^{1/2}$ versus V_{GS} at $V_{DS}=-60$ V, to estimate the V_{TH} for all fabricated OFETs, (c) $\log(I_{DS})$ versus V_{GS} at $V_{DS}=-60$ V, to estimate the value of on/off current ratio for all fabricated OFETs, (d) Schematic structure of top-contact OFET, channel covered with Al thin-film (10 nm)
- Fig. 6.3 Structure of the OFF- and ON-states of doped-P3HT OFET with 104 thin-Al-coating and the depletion layer formed in the channel. The relative conductance is represented by more darkness