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Abstract A problem of propagation of strong plane and converging shock wave is studied in a

mixture of a gas and small solid particles. It is assumed that the solid particles are continuously dis-

tributed in the gas. Jump conditions for plane and converging shock waves are derived using the

nonstandard analysis. It is also assumed that the shock thickness occurs at infinitesimal interval

and jump functions are smooth across this interval. The distribution of flow parameters across

the shock wave are presented in terms of Heaviside functions and Dirac Delta measures.
� 2012 Ain Shams University. Production and hosting by Elsevier B.V.
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1. Introduction

In recent years, the study of propagation of shock waves in a
mixture of a gas and small solid particles have received consid-

erable attention due to its application in space exploration,
reentry capsules, nozzle flow, lunar ash flow, astrophysics
space science and many other engineering problems. Many
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authors [1–7] studied the problems concerning the propagation
and computation of flow field behind the strong shock wave in
a mixture of a gas and small solid particles. Salas Manuel and

Iollo [8] have derived the shock jump conditions in their prim-
itive form using generalized functions. Hamad [9] studied the
behavior of entropy across shock waves in dusty gases. Jena
and Sharma [10] analyzed the self similar solution of shock

wave in dusty gas. Baty et al. [11,12] have used the method
of nonstandard analysis, developed by Robinson [13] to derive
the jump conditions for converging shock wave in a perfect

gas. Baty and Tucker [14] used the same method to derive
the jump conditions for one-dimensional, diverging, magneto-
gasdynamics shock waves emerging on the surface of a star.

Singh et al. [15,16] have studied the nonstandard analysis of
converging shock wave in non ideal gas and nonideal magneto-
gasdynamics. In the above analysis it was assumed that the

shock thickness occurs at an infinitesimal interval and jump
functions in the gas parameters occur smoothly across this
interval.
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In the present article, nonstandard analysis is used to study
the propagation of strong shock wave in a one dimensional,
unsteady, inviscid flow in a mixture of a gas and small solid

particles. Here, it is assumed that the solid particles are contin-
uously distributed in the medium. Predistributions of the
Heaviside functions and Dirac Delta measures are used to

model the microstructure the flow field across the shock wave.
The nonstandard jump functions used in this article are as

follows: For standard jump function w(y) with [w] = w1 � w0

at y = 0, a nonstandard jump function is defined below
w(y) = w0 + [w]H(y),

where H(y) is piecewise differentiable nonstandard Heavi-
side function. Distinct nonstandard jump functions of flow

variables are derived for plane and converging shock waves.
It is also assessed as to how (i) the ratio of specific heats of
the gas, c (ii) the ratio of density of the solid particles to that

of initial density of the gas G and (iii) the mass concentration
of the solid particles kp in the mixture, affect the distribution of
flow parameters across the shock wave.

2. Governing equations

The equations governing the motion of one dimensional, un-

steady, compressible, inviscid, mixture of the gas and solid par-
ticles can be written in the following form [2]:
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where u is the particles velocity, q is the density of the mixture,
p is the pressure, e is the internal energy per unit mass of the
mixture, m(=1/q) is the specific volume; t is the time, y is the

radial distance. The letter j takes value 0, 1 or 2 accordingly
as the motion is planar, cylindrical or spherically symmetric,
respectively. Here, it is assumed that the mixture of a gas

and solid particles obey an equation of state of the form [10]

p ¼ ð1� kpÞ
qRT
1� Zp

; ð2:4Þ

where Zp is the volume fraction of the solid particles, kp is the

mass fraction of solid particles, R is the gas constant and T is
the absolute temperature. The relation between Zp and kp is gi-
ven by

kp ¼
Zpqsp

q
; ð2:5Þ

where qsp is the density of the solid particles. The internal en-
ergy of the mixture is related to the internal energies of the two
species, which may be written as

e ¼ cmmT ¼ kpcsp þ ð1� kpÞcv; ð2:6Þ

where c is the specific heat of gas at constant volume, csp is the

specific heat of solid particles and cvm is the specific heat of the
mixture at constant volume.

The specific heat of the mixture at constant pressure is given

by

cpm ¼ ð1� kpÞcp þ kpcsp; ð2:7Þ
where cp is specific heat of the gas at constant pressure. The ra-

tio of the specific heats of the whole mixture is given by

C ¼ cpm
cm
¼

cþ dbsp

1þ dbsp

; ð2:8Þ

where

bsp ¼
csp
c

; d ¼ kp
1�kp and

q ¼ ð1� ZpÞqg þ qsp:
ð2:9Þ

Relation between volume fraction of the solid particle Zp

and density of the mixture may be written as

Zp ¼
qZa

qa

; ð2:10Þ

where

Za ¼
kp

Gð1� kpÞ þ kp
; ð2:11Þ

where qa is the initial density of the mixture, Za is the initial
volume fraction of solid particles, G ¼ qsp

ðqgÞ0
is the ratio of the

density of the solid particles to the initial density of the gas.

The particular case G= 1 corresponds to Za = kp.
Internal energy of the mixture is given by

e ¼ pð1� ZaÞ
qðC� 1Þ : ð2:12Þ

On using the relation (2.12) in Eq. (2.3) reduces to the fol-

lowing form
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3. Jump conditions for normal shock

To derive the jump conditions for the strong shock waves, we
assume the motion of normal shock wave propagating in the

mixture. Also, on both sides of the shock wave the flow param-
eters m, u and p are assumed to be constant. Consequently, the
shock wave does not accelerate and the shock speed U remains

constant. Therefore, the characteristics for the corresponding
shock will be straight lines in the (y � t) space. Along the char-
acteristic line the flow variables m, u and p may be assumed to
have the following form across the shock wave [11]:

mðgÞ ¼ ml þ ½m�WðgÞ; ð3:14Þ
uðgÞ ¼ ul þ ½u�VðgÞ; ð3:15Þ
pðgÞ ¼ pl þ ½p�ZðgÞ; ð3:16Þ

whereW, V and Z are assumed to be predistributions of Heav-
iside function defined in [6], which belongs in fixed infinitesimal
interval (0, e), e being an arbitrary fixed infinitesimal,

g = y+ Ut is a characteristic line, U is the shock velocity and
[w] = w1 � w0, with subscripts and referring to the right and left
conditions across the shock, respectively. On using Eqs. (3.14)–

(3.16) in Eqs. (2.1)–(2.13) reduces in the following form:

u�½m�W0 � m½u�V0 ¼ 0; ð3:17Þ
u�½u�V0 þ m½p�Z0 ¼ 0; ð3:18Þ
u�ðp½m�W0 þ m½p�Z0Þ þ ðC� 1Þðm� maZaÞp½u�V0 ¼ 0; ð3:19Þ
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where

u� ¼ ul þUþ ½u�V: ð3:20Þ

The Eqs. (3.17), (3.18) and (3.19) may be expressed in the
following matrix form:
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ð3:21Þ

The nontrivial family of ODE’s may be found by specifying
the nonstandard function and, if the determinant of the matrix
of coefficients in Eq. (3.21) vanishes.

The condition

½m�u� �½u�m 0

0 ½u�u� p½m�
½m�pu� ðC� 1Þðm� maZaÞp½u� pmu�

�������

�������
¼ 0; ð3:22Þ

is satisfied if

u� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðCm� ðC� 1ÞmaZaÞ

p
: ð3:23Þ

Eq. (3.22) in conjunction with (3.23) show that a nontrivial

solution exists defining the ODE’s specifying the nonstandard
Heaviside function for isentropic flow. Since shock propaga-
tion is not an isentropic process, Eq. (3.22) may be replaced
by following underdetermined system:
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0 ½u�u� p½m�
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3
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� �
; ð3:24Þ

together with the entropy defined in a dusty gas [9]

sm ¼ cp ln
T

T0

� ðC� 1Þð1� kpÞ
C

p
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� �
; ð3:25Þ

where T0 is the initial temperature, p0 is the initial pressure of
the mixture. Nonstandard Heaviside functions W, V and Z on

the interval (0, e) are determined satisfying the boundary
conditions
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Integration of matrix (3.24) subject to boundary conditions

(3.26) gives the relationship between the Heaviside functions.
To determine the solution of nonstandard Heaviside functions
W0 and V0 Eq. (3.24) is rewritten in terms of nonsingular ma-

trix and an unknown function depending on Z0.
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where
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¼

0

�½p�mZ0
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; ð3:28Þ

Eqs. (3.27) and (3.28) then gives

W0

V0

� �
¼ 1

½u�½m�u�2
½u�u� ½u�m
0 ½m�u�

� �
0

�½p�mZ0
� �

; ð3:29Þ

which may be written as
W0 ¼ � ½p�mZ
0

½m�u�2 ; ð3:30Þ

V0 ¼ � ½p�mZ
0

½u�u� : ð3:31Þ

Combining Eqs. (3.30) and (3.31) yields

V0 ¼ u�½m�W0

½u�m : ð3:32Þ

Integrating Eq. (3.32) and applying the boundary condi-
tions (3.26) shows that

V �W; ð3:33Þ

with

vl½u�
½v�u�l

¼ 1;

where

u�l ¼ ul þU: ð3:34Þ

Also, combining (3.33) and (3.34) with Eq. (3.31) and then

integrating the resulting Eq. (3.32) with boundary conditions
(3.26) yields

V � Z; ð3:35Þ
½u�2

½m�½p� ¼ �1: ð3:36Þ

By combining (3.33) and (3.35) we get

W � V � Z; ð3:37Þ

which shows that the microstructure for the Heaviside func-

tions for the flow parameters m, u and p, jump conditions are
coincident across an inviscid shock in dusty gas for an arbi-
trary infinitesimal interval (0, e).

Using Eq. (3.33) in (3.34) gives the following expression for

shock speed

U ¼ 1

½v� ½ml½u� � ul½m��: ð3:38Þ

Eq. (3.38) is shock speed determined from equation of mo-
tion in conservative form.

4. Jump conditions for converging shock

To have an analysis similar to the normal shock analysis dis-

cussed earlier, the governing equations of motion are consid-
ered along characteristic curves in (y � t) space. We now
introduce the non dimensional variables p, g and so that the

flow variables are written in terms of these new variables in
the following form [12]:

qðy; tÞ ¼ q0gðgÞ; uðy; tÞ ¼ _XsðtÞtðgÞ; and pðy; tÞ
¼ q0

_X2
s ðtÞpðgÞ; ð4:39Þ

where

g ¼ y

_XsðtÞ
and _XsðtÞ ¼ Að�tÞa: ð4:40Þ

Here Xs(t) is the location of the shock front and q0 is the initial
density in front of the shock wave. A and a are constants. The
functions of Eqs. (4.39) and (4.40) are defined on 1 6 g <1,
t< 0. It may be noted here that the converging shock fronts
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are located at g = 1 along the characteristic curve, nonstan-

dard jump functions across the shock front can be written in
terms of non dimensional variables p, g and in the following
form

gðgÞ ¼ g0 þ ½g�LðgÞ; ð4:41Þ
vðgÞ ¼ v0 þ ½v�KðgÞ; ð4:42Þ
pðgÞ ¼ p0 þ ½p�NðgÞ; ð4:43Þ

where L(g), K(g) and N(g) are assumed to be differentiable on
(1,1 + e) and belong Lloc(R) space of locally integrable func-
tions. Also, each Heaviside predistribution function is assumed

to have its jump contained on the same interval (1,1 + e). The
boundary conditions for the nonstandard Heaviside functions
at the end point of the interval (1,1 + e) are given as
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Kð1Þ
Nð1Þ

2
64

3
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0

0

0

2
64
3
75 and

Lð1þ eÞ
Kð1þ eÞ
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2
64

3
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1

1

1

2
64
3
75: ð4:44Þ

In the strong shock limit, the density q1, velocity u1, and
pressure p1 behind the converging shock front are assumed
to have the following form [2]

q1 ¼
Cþ 1

C� 1þ 2Za

q0; u1 ¼
2ð1� ZaÞ

Cþ 1
_Xs and p1 ¼

2ð1� ZaÞ
Cþ 1

q0
_X2
s :

ð4:45Þ

Using the above relations we have the nonstandard jump

function on the boundary as [2].

g0 ¼ 1 and ½g� ¼ Cþ 1

C� 1þ 2Za

� 1; ð4:46Þ

v0 ¼ 0 and ½v� ¼ 2ð1� ZaÞ
Cþ 1

; ð4:47Þ

p0 ¼ 0 and ½p� ¼ 2ð1� ZaÞ
Cþ 1

: ð4:48Þ

On substituting Eq. (4.39) in mass and momentum Eqs.
(2.1) and (2.2) we get the following system of equations written
in the matrix form as

½m� 0
0 ½p�

� �
K0

N0

� �
¼

F1ðLÞ
F2ðLÞ

� �
; ð4:49Þ

where

F1ðLÞ ¼ ðg�Þ
g0

g
� j

g
;

F2ðLÞ ¼
gð1� aÞ

a
þ ð�gÞ0:

Using Eqs. (4.41) and (4.40) in (4.49) and simplifying we get

d

dg
þ j

g
þ g0

g

� �
¼ g

g0

g
; ð4:50Þ

where is function of g and g. Integrating (4.50) from 1 to g in
the interval (1,1 + e) yields

vðgÞ ¼ 1

gjgðgÞ gjþ1gðgÞ � 1� ðjþ 1Þ
Z g

1

fjgðfÞdf
� �

: ð4:51Þ

Eq. (4.51) satisfies the boundary condition (4.47) and g is
monotonically increasing on the interval (1,1 + e). Since the
value of the integral (4.51) is very small therefore, Eq. (4.51)

reduces approximately
vðgÞ � g� 1

gjgðgÞ

� �
: ð4:52Þ

and

vð1þ eÞ � 2ð1� ZaÞ
Cþ 1

: ð4:53Þ

Second equation in (4.49) reduces to a first order linear
ODE for p in terms of functions g, and g which may be written
as

dp
dg
¼ g

ð1� aÞ
a
� ð�gÞ0

� �
: ð4:54Þ

Integrating Eq. (4.54) on the interval (1,1 + e) yields
pðgÞ ¼ 1� a
a

Z g

1

gðfÞðfÞdf�
Z g

1

gðfÞððfÞ � fÞ0ðfÞ: ð4:55Þ
Since the value of second integral of (4.55) is very small and
g is monotonically increasing function, Eq. (4.55) may be writ-

ten approximately as

pðgÞ �
Z g

1

f�j 0ðfÞdf: ð4:56Þ

Integrating Eq. (4.56) gives

pðgÞ � g�jðgÞ � ð1Þ þ j

Z g

1

f�j�1ðfÞdf: ð4:57Þ

Evaluating Eq. (4.57) at g = 1 and g = 1 + e gives

pð1Þ � 0 and pð1þ eÞ � 2ð1� ZaÞ
Cþ 1

: ð4:58Þ

The Eqs. (4.52) and (4.57) are approximately same, there-
fore, we deduce that

pðgÞ � ðgÞ: ð4:59Þ

The nonstandard functions p, v and g belong in Lloc(R), and
the solution of nonstandard functions p, v and g may be deter-
mined from the boundary value problem defined in equations

(4.46)–(4.49).

5. Example

Assume that for the microstructure of inviscid converging
shock wave the density jump function g(g) 2 *Lloc(R) defined
in (4.41) and satisfying the Rankine Hugoniot condition
(4.46) is given by

gðgÞ ¼ 1þ ½g� g� 1

e

� �n

; ð5:50Þ

on the interval (1,1 + e), for n P 1. Using Eq. (5.50) in (4.51)
we get the following relation for (g)

vðgÞ ¼ g� 1

gjgðgÞ �
jþ 1

gjgðgÞ

Z g

1

fjð1þ ½g� f� 1

e

� �n

df

� �
: ð5:51Þ

For n= 1, integrating (5.51) and applying boundary condi-
tion (4.47) yields



Figure 1 The velocity profiles: (1) v1 � G= 1, n= 1; (2)

v2 � G = 10, n= 1; (3) v3 � G = 100, n= 1; (4) v4 � G = 1,

n= 5; (5) v5 � G = 10, n= 5; (6) v6 � G = 100, n= 5 with fixed

value of kp = 0.2, c = 1.4 and b = 0.5.

Figure 2 The density profiles: (1) g1 � G= 1, n= 1; (2)

g2 � G = 10, n= 1; (3) g3 � G= 100, n= 1; (4) g4 � G = 1,

n= 5; (5) g5 � G = 10, n= 5; (6) g6 � G = 100, n= 5 with fixed

value of kp = 0.2, c = 1.4 and b = 0.5.

Figure 3 The velocity profiles: (1) v1 � c = 1.4,n= 1; (2)

v2 � c = 1.67, n= 1; (3) v3 � c = 2.0, n= 1; (4) v4 � c = 1.4,

n= 5; (5) v5 � c = 1.67, n= 5; (6) v6 � c = 2.0, n= 5 with fixed

value of kp = 0.2, G = 10 and b = 0.5.

Figure 4 The density profiles: (1) g1 � c = 1.4,n= 1; (2)

g2 � c = 1.67, n= 1; (3) g3 � c = 2.0, n= 1; (4) g4 � c = 1.4,

n= 5; (5) g5 � c = 1.67, n= 5; (6) g6 � c = 2.0, n= 5 with fixed

value of kp = 0.2, G = 10 and b = 0.5.
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vðgÞ ¼ g� 1

gjgðgÞ 1� ðjþ 1Þ 1� ½g�
e

� �
1

jþ 1
ðgjþ1 � 1Þ þ ½g�

eðjþ 2Þ ðg
jþ2 � 1Þ

� �� �
;

ð5:52Þ

satisfying the following boundary conditions

vð1Þ � 0 and ð1þ eÞ � 2ð1� ZaÞ
Cþ 1

: ð5:53Þ
6. Results and discussion

The density and velocity jump functions specified by Eqs.
(5.50) and (5.52) are computed for various values of kp, mass
concentration of the solid particles in the mixture G, ratio of
solid to that of initial density c, specific heat ratio. The profiles
for density and velocity distribution are plotted in Figs. 1–6
with small fixed infinitesimal values of e for converging shock

wave with cylindrical symmetry (j = 1) which are used to ana-
lyze the qualitative behavior of nonstandard shock wave
microstructure.

In the numerical results, the typical values of the non-
dimensional parameters taken are c = 1.4, 1.67 and 2.0,
G= 1, 10 and 100, kp = 0.1, 0.2 and 0.6, n= 1 and 5,

b = 0.5.
Figs. 1 and 2 show that an increase in the value of G causes

to decreases the velocity and density in the region of micro-

structure. Also, an increase in specific heat ratio and mass con-
centration of solid particles kp causes to decrease the velocity
and density distribution in the region which can be observed
from Figs. 3–6. Further, for n = 1 the velocity profiles across



Figure 5 The velocity profiles: (1) v1 � kp = 0.1, n = 1; (2)

v2 � kp = 0.2, n= 1; (3) v3 � kp = 0.6, n= 1; (4) v4 � kp = 0.1,

n= 5; (5) v5 � kp = 0.2, n= 5; (6) v6 � kp = 0.6, n= 5 with

fixed value of c = 1.4, G= 10 and b = 0.5.

Figure 6 The density profiles: (1) g1 � kp = 0.1, n= 1; (2)

g2 � kp = 0.2, n= 1; (3) g3 � kp = 0.6, n= 1; (4) g4 � kp = 0.1,

n= 5; (5) g5 � kp = 0.2, n= 5; (6) g6 � kp = 0.6, n = 5 with

fixed value of c = 1.4, G= 10 and b = 0.5.
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the shock wave microstructure have reverse trend as compared
to the case n= 5. For n = 1 the density increases linearly with

increasing g where as for n= 5 the profiles show a polynomial
growth in density distribution with increasing g as expected.

7. Conclusions

In this paper, we used the nonstandard analysis to derive the
shock wave jump functions for one-dimensional strong con-

verging shock wave in the mixture of a gas and small solid par-
ticles. Here, it is assumed that the solid particles are
continuously distributed in the gas. The flow field across the

shock wave is modeled in terms of Heaviside functions. It is
observed that the predistributions of the Heaviside functions
for density, velocity and pressure jump conditions are coinci-
dent across an inviscid shock wave in a dusty gas. Also, it is

found that the effect of increasing value of kp, mass concentra-
tion of solid particles in the mixture c, the specific heat ratio
and G, the ratio of the solid particles to that of initial density

is to decrease the velocity and density across the shock wave.
Further, the effect of the values of n > 1 on the density and
velocity profiles is to completely reverse the trend of profiles

with respect to the case n= 1.

References

[1] Miura H, Glass II. Development of the flow induced by a piston

moving impulsively in a dusty gas. Proc Roy Soc Lond

1985;39:7295–309.

[2] Pai SI, Menon S, Fan ZQ. Similarity solution of strong shock

wave propagation in a mixture of gas and dusty particles. Int J

Eng Sci 1980;18:1365–73.

[3] Vishwakarma JP, Pandey SN. Propagation of strong spherical

shock waves in a dusty gas. Phys Scr 2003;68:259–63.

[4] Gretler W, Regenfelder R. Variable-energy blast waves generated

by a piston moving in a dusty gas. J Eng Math 2005;52:321–36.

[5] Vishwakarma JP, Nath G. Similarity solutions for unsteady flow

behind an exponential shock in a dusty gas. Phys Scr

2006;74:493–8.

[6] Vishwakarma JP. Propagation of shock waves in a dusty gas with

exponentially varying density. Eur Phys J B 2000;16:369–72.

[7] Vishwakarma JP, Nath G. Propagation of a cylindrical shock

wave in a rotating dusty gas with heat conduction and radiation

heat flux. Phys Scr 2010;81:045401.

[8] Salas Manuel D, Angelo I. Entropy jump across an inviscid shock

wave. Theor Comput Fluid Dynam 1996;8:365–75.

[9] Hanaa Hamad. Behavior of entropy across shock waves in dusty

gases. ZAMP 1998;49:827–37.

[10] Jena J, Sharma VD. Self-similar shocks in a dusty gas. Int J Non-

Linear Mech 1999;34:313–27.

[11] Baty RS, Farassat F, Hargreaves JA. Nonstandard analysis and

shock wave jump conditions in a one-dimensional compressible

gas. Los Alamos National Laboratory Report No. LA-14334;

2007.

[12] Baty RS, Farassat F, Tucker Don H. Nonstandard analysis and

jump conditions for converging shock waves. J Math Phys

2008;49:063101.

[13] Robinson A. Non-standard analysis. Amsterdam: North-Holland;

1966.

[14] Baty RS, Tucker Don H. Jump conditions for shock waves on the

surface of a Star. Astro Space Sci 2009;319:23–30.

[15] Singh LP, Singh M, Husain A. Nonstandard analysis of

converging shock wave in non-ideal gas. J Eng Phys Thermo

Phys 2010;84(1):4–12.

[16] Singh M, Singh LP, Husain A. Nonstandard analysis of shock

wave in a non-ideal magnetogasdynamics. Int J Comput Appl

Math 2009;4(1):75–82.

Mithilesh Singh Ph.D., from Institute of

Technology, Banaras Hindu University in

2010. He is currently working as an Assistant

Professor at Dehradun Institute of Technology,

Dehradun. His area of interest is non-linear

waves in gasdynamics, homotopy perturba-

tion method and fractional calculus.



Converging shock wave in a dusty gas through nonstandard analysis 319
Akmal Husain, Ph.D., from Institute of

Technology, Banaras Hindu University,

Varanasi, INDIA in 2010. He is currently

working as an Assistant Professor at Ideal

Institute of Technology, Ghaziabad, INDIA.

His area of interest is Non-linear waves in

gasdynamics and Lie group invariance for

solution of partial differential equations.
L.P. Singh Professor of Applied Mathematics,

Institute of Technology, Banaras Hindu Uni-

versity. His area of interest is non-linear waves

in gasdynamics and computational fluid

dynamics.


	Converging shock wave in a dusty gas through  nonstandard analysis
	1 Introduction
	2 Governing equations
	3 Jump conditions for normal shock
	4 Jump conditions for converging shock
	5 Example
	6 Results and discussion
	7 Conclusions
	References


