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Abstract Using kinetic Monte Carlo simulations, we study the effect of oscillatory kinetics
due to surface reconstructions on Ziff-Gulari-Barshad (ZGB) model discontinuous phase
transition. To investigate the transition, we do extensive finite size scaling analysis. It is
found that the discontinuous transition still exists. On inclusion of desorption in the model,
the order-parameter probability distribution broadens but remains bimodal. That is, the first-
order phase transition becomes weaker with increase in desorption rate.

Keywords ZGB model of surface reaction · Surface reconstruction · CO desorption ·
Discontinuous phase transitions

1 Introduction

Surface reaction models exhibit rich and complex variety of phenomena, including chaotic
behavior, bistability, critical phenomena, out-of equilibrium phase transitions, etc. Under-
standing of such complex behavior can be helpful in explaining experimental results associ-
ated with catalysis and also for designing more efficient processes [1, 2]. The study of phase
transitions in such non-equilibrium surface reaction models has attracted considerable at-
tention. While a vast amount of research has been conducted on universality in continuous
transitions [3, 4], comparatively little attention has been given to discontinuous transitions.
The Ziff-Gulari-Barshad (ZGB) model [5], due to its simplified approach to modeling of
catalytic oxidation of CO, gives us an opportunity to study the discontinuous transitions
of a monomer-dimer surface reaction to a monomer-poisoned state. Many aspects of the
ZGB discontinuous phase transition between the reactive and the poisoned states have been
investigated [6]. These include propagation and fluctuation behavior of interfaces between
active and poisoned states [5, 7, 8]; epidemic properties of an active droplet embedded in the
poisoned state [9, 10]; and nucleation of droplets within the metastable active state [7, 11].
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We note that more realistic models have been proposed for a better description of this
technologically significant surface catalyzed reaction [12]. However, as mentioned above,
the simple ZGB based models help us gain fundamental understanding of the effect of dif-
ferent factors on nonequilibrium phase transitions in surface catalyzed reaction systems. In
fact, recently, a variant of the simpler stochastic lattice-gas Schloegl’s second model for
autocatalysis has been studied as a prototype of a nonequilibrium discontinuous phase tran-
sition [13–15].

The ZGB model assumes the catalytic surface to be a two-dimensional square lattice with
periodic boundary conditions. This model follows the Langmuir–Hinshelwood mechanism
for catalytic reaction [16].

CO(g) + S → CO(S) (1)

O2(g) + 2S → 2O(S) (2)

CO(S) + O(S) → CO2(g) (3)

Here ‘S’ denotes a vacant site on the surface. The normalized probability PCO (proportional
to the respective reactant pressure) determines the possibility that the next molecule to strike
the surface is CO. Otherwise; an oxygen molecule may be selected to approach the surface
with probability 1 − PCO (= PO2). The CO molecule from the gas phase can adsorb only
onto a vacant site, while the oxygen molecule first dissociates into atoms and then may get
adsorbed onto two neighboring vacant sites. The processes are irreversible once they occur.
Adjacent O and CO react instantaneously to form CO2, which desorbs leaving behind two
empty sites. The Monte Carlo simulations, based on this picture of the surface, show two ki-
netic (or irreversible) phase transitions. Below a certain probability (PCO < P1), the surface
is oxygen poisoned, while above a higher CO partial pressure (PCO > P2), the surface is
CO poisoned. The first oxygen poisoning transition at P1 is continuous, whereas the second
transition (at P2) to the CO poisoned state is discontinuous.

There are several aspects of this simplistic model that do not follow the experimental
reality. Foremost among them is that real systems do not show the second-order transition
to an oxygen-poisoned state [17–19]. On the other hand, discontinuous transitions between
states of low and high CO coverage, governed by temperature changes, have been observed
experimentally [20]. Above a certain critical temperature a smooth crossover replaces the
transition. Inclusion of CO desorption rate (k) in the ZGB model (popularly denoted as the
ZGB-k model) was found to model this effect successfully. An earlier study by Tome et
al. [11] estimated a critical desorption rate kc = 0.0406 as the value at which the bimodal
order-parameter probability distribution becomes unimodal. Preliminary and more extensive
recent results on fourth order cumulant of CO coverage as well as finite size scaling analysis
indicate the presence of a Ising model like critical desorption rate (kc) between k = 0.03
and 0.04 [11, 21]. Above kc the transition becomes a smooth crossover. The inclusion of the
Eley-Rideal (ER) step in the ZGB model results in termination of the coexistence curve at
a value of kc that decreases with the probability of the ER step [22]. Subjecting the model
to symmetrically oscillating reactant pressure leads to the smoothening of the ZGB-k phase
transition [23]. The introduction of an asymmetrically oscillating reactant pressure makes
the transition second-order. Fourth order cumulants and finite size scaling evidence suggests
that this far from equilibrium phase transition belongs to the equilibrium Ising universality
class [24].

An extensively studied aspect of catalytic oxidation of CO on Pt-group metal surfaces is
the oscillatory kinetics observed both in the low pressure and the high reactant pressure con-
ditions. Oscillations in the low-pressure limit are due to coupling of surface reconstructions
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with the reactant coverage [25]. In contrast, oscillations at higher pressures (up to atmo-
spheric) may arise because of coupling of the CO oxidation reactions with surface oxidation
[25–27]. Attempts to develop a theoretical understanding of this problem include analytical
mean-field and pair approximation approaches [28–30]. These use variables representing
the surface structure e.g., hexagonal versus square coupled with variables representing the
surface concentrations. On the other hand, Monte Carlo simulations and lattice gas cellu-
lar automata address the mesoscopic mechanisms producing these oscillations and therefore
have been preferred in recent publications.

It is known from experiment that the surface reconstruction takes place if the coverage of
certain adsorbates (e.g., CO or NO) increases above or drops below a certain critical value
[25]. Based on this, within the ZGB framework, Albano proposed a modified model, which
demonstrated oscillatory behavior of coverage due to surface reconstructions [31, 32]. In
this study an arbitrary CO surface coverage (θCO) fraction was used to define surface re-
construction. That is, when θCO < 0.1 the surface reconstructs globally and only CO (but
no O2) can adsorb on to the reconstructed phase. On reaching θCO = 0.485, all surface
sites change to the unreconstructed phase which allows O2 adsorption. The proposed model
demonstrated regular oscillations in CO2 reaction rate. However, such regular oscillations
have been experimentally observed only in the Pt(100) system and that also for small num-
ber of periods [33, 34]. To explain different facets of experimental observations, models
based on the assumption that the formation of patches of CO surface coverage could lead
to local surface reconstruction have also been proposed [32]. Kortluke et al. [35] further
extended the local reconstruction approach and proposed that individual sites on the sur-
face could also transform to the reconstructed phase. More recently, Provata et al. [36] have
again used a modified global reconstruction model. Unlike earlier models in which the re-
structured phase was assumed on the basis of its adsorbate preference, here direct surface
lattice reconstruction was achieved. On assumption of global surface reconstruction for high
lattice coverage of one of the reactive species, regular CO2 reaction rate oscillations similar
to that in Albano’s model were observed.

For both global and local reconstruction models, on taking the long time average of the
oscillating CO coverage for a given PCO as the order parameter, a phase diagram showing
different regimes of reactivity with respect to the applied PCO is obtained. The introduction
of reconstruction naturally leads to the disappearance of the continuous transition to oxygen
poisoned state present in the classical ZGB model. Further, the phase diagram obtained by
assuming global reconstruction also suggests (similar to the classical ZGB model) that there
is a discontinuous transition from the oscillatory reactive to a completely poisoned state at a
critical value of PCO [31]. Alternatively, the assumption of local reconstruction leads to the
rounding of this transition [37]. The present study focuses on the suggested discontinuous
phase transition in the global reconstruction model [31]. As is evident from the foregoing
discussion, this model does not take into account realistic experimental conditions. However,
such a simplistic study does give us an opportunity to study the effect of oscillatory kinetics
on a discontinuous transition. We, therefore, first do an extensive statistical analysis on this
system analogous to those carried out in recent literature [11, 22–24] on non-equilibrium
ZGB based model systems. The analysis confirms that indeed there exists a first order irre-
versible transition in the phase diagram of this ‘global surface reconstruction’ model [31].
Then the effect of CO desorption on this phase transition is investigated. We compare our
results with the extensive results available on phase diagram of the earlier mentioned ZGB-k
model. Thus, at increasing desorption rates we compute the order-parameter probability dis-
tribution in the transition region. An extensive finite size scaling analysis of the transition is
presented.



672 I. Sinha, A.K. Mukherjee

2 Model and Simulation Procedure

Under low-pressure regimes, the catalytic oxidation of CO on Pt surfaces exhibits oscilla-
tory behavior due to the difference in the sticking coefficients for O2 on the different surface
phases. The transition between the surface phases is adsorbate induced. Thus, the adsorp-
tion of CO up to a certain threshold leads to a first order transition of the reconstructed
surface phase [hex on Pt(100)] to the non-reconstructed surface phase [1 × 1 on Pt(100)].
In this study, we consider the global reconstruction model of Albano approximating the
Pt(100) case. The ratio of the O2 sticking coefficients on Pt(100) between reconstructed and
non-reconstructed is < 10−2. Keeping in view the wide difference between the O2 sticking
coefficients of the reconstructed and non-reconstructed phases, their corresponding model
values are assumed to be 0 and 1, respectively. In context of the present model, once an oxy-
gen molecule has been selected to approach the catalyst surface (with probability 1 − PCO),
the sticking coefficient is the probability of adsorption of the dissociated oxygen atoms on
to adjacent vacant sites.

The simulations start from an empty square lattice of side length L. A time unit or the
Monte Carlo step (MCS) of our simulation involves L2 trials, i.e. during a time unit each
site of the lattice is visited once on an average. Each simulation, at a fixed value of PCO,
consists of the following sequence of events. The initial state of the surface corresponds to
the reconstructed phase with the oxygen-sticking coefficient equal to zero. Effectively, this
means that only adsorption of CO occurs in a random manner on the vacant sites in model
catalyst surface at a rate proportional to PCO. Once CO coverage (θCO) exceeds ≥ 0.485, all
sites in the model catalyst surface transform to the non-reconstructed phase. The sticking
coefficient of oxygen becomes 1, the normal ZGB algorithm is initiated and θCO decreases
because of reactions between neighboring adsorbed CO and O. Whenever the condition
θCO ≤ 0.1 is achieved, all sites in the system are assumed to transform to the reconstructed
phase. Thereafter, as mentioned earlier, only CO adsorption occurs at a rate proportional
to PCO until the condition θCO ≥ 0.485 is achieved again. This completes one cycle of the
adsorbate coverage induced transition. The critical adsorbate coverage conditions (θCO ≥
0.485 and θCO ≤ 0.1) at which the catalyst surface undergoes phase transitions, and the
corresponding oxygen sticking coefficients are typically the values used by Albano in his
model [28]. The purpose of using these values is to enable comparison with the results of
Ref. [28]. It must be mentioned that the values used by Albano are arbitrary. Changing the
critical adsorbate coverage conditions (θCO ≥ 0.485 and θCO ≤ 0.1), as described above,
affects the results only qualitatively [28].

The simulations are then carried out at different desorption rates (k), ranging from 0 to
0.04. In this case, for each reactant pressure, a Monte Carlo simulation is carried out by gen-
erating a sequence of adsorption (with probability 1−k) and desorption (with probability k)
trials. Rest of the algorithm remains the same.

3 Results and Discussion

Corresponding to θCO, the oxygen coverage and CO2 production rate are denoted by θO and
RCO2 respectively. Figures 1a, 1b and 1c show the oscillatory behavior of θCO, θO and RCO2

respectively with increase in simulation time (in MCS) at k = 0. The results are presented
at PCO = 0.5238, which is near the transition, on the reactive side. There is some fluctuation
in both the period and amplitude of the oscillations. This is similar to the results given
in Ref. [28] for near transition regimes. However, over longer periods of time, the overall
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Fig. 1 Oscillations in system
parameters with time (in MCS).
(a) θCO versus time, (b) θO
versus time and (c) RCO2 versus
time plots
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oscillatory behavior seems to be in a steady range. All such simulations at and near the
transition are carried out for 105 MCS time length. Out of these, the initial 7 × 104 steps
are disregarded. Keeping in view the oscillatory nature of RCO2 and θCO, we take their time
average over the next 3 × 104 steps and denote them as RCO2 and θCO. The latter θCO is
assumed to be the order parameter. Equivalent results are obtained even if RCO2 is considered
to be the order parameter. It is important to mention that recent phase transition studies on
modified ZGB model systems subjected to oscillating reactant pressure have also assumed
the time averaged θCO or time average RCO2 to be the order parameter [23, 24].

The probability distribution for θCO (denoted by P (θCO)) is evaluated using the fol-
lowing procedure. The number of times (Ni) the order parameter falls in the interval
[(i − 1)�, (i)�] is recorded. Here the magnitude of the interval i is � = 0.01 follow-
ing 1 ≤ i ≤ 100. The total number of Monte Carlo simulations is given by

∑
i Ni = N .

The number of simulations (N) required for generating sufficient statistics is computed by
N × (L × L) = 4.5 × 105, for instance, N = 1250 when L = 60. The probability that θCO

falls in the interval i is given by pi = Ni/N . Figure 2 presents the probability distribution
for θCO against PCO at k = 0 for two different system sizes (L = 180 and 120) near the
coexistence region. The figures show the narrow range of PCO values where the probability
distribution is bimodal, indicating a first order transition. Away from this region the distribu-
tion becomes unimodal. At the coexistence point, the areas under both peaks are equal [38,
39]. However, the reactive side distribution in the figures show broadening, making difficult
a direct determination of the finite size coexistence value by this method.

To confirm that there indeed exists a discontinuous transition between the reactive and
poisoned state for k = 0, we employ the finite-size scaling (FSS) method established in
recent publications for analyzing such nonequilibrium surface phase transitions [11, 21–24].
The finite size scaling analysis of the fluctuations in θCO in a L × L system was evaluated
by the following expression.

χL = L2
(〈

θ
2
CO

〉
L

− 〈
θCO

〉2
L

)
(4)

Figure 3a depicts χL versus PCO plots for systems (k = 0) with different sizes. As expected,
the maximum values of the order-parameter fluctuation curve shift and increase in height
with increasing L. That is, the peak positions of χL approach the infinite transition point with
increasing L. For an equilibrium first-order phase transition the relation χmax

L
∼ Ld should

be followed. Here d is the spatial dimension of the system. In Fig. 3b we plot ln(χmax
L )

against ln(L). A perfectly linear fit is obtained with a slope 1.99. This agrees well with the
expected value of d = 2 for a first order transition [22, 23].

Several recent studies have demonstrated that the fourth-order reduced cumulant of the
order parameter is an effective approach to locate and classify even non-equilibrium phase
transitions [11, 21–24]. This is a tool which quantifies the shape of the order-parameter
distribution. The fourth-order cumulant, taking θCO as the order parameter [11] is given by
the following expression.

uL = 1 − μ4

3μ2
2

(5)

where

μn = 〈(
θCO − 〈θCO〉)n〉

L
=

∫ 1

0

(
θCO − 〈θCO〉)n

P ( θCO) dθCO (6)

denotes the nth central moment of θCO and P (θCO) is the probability distribution for θCO.
The equal area bimodal distribution corresponding to coexistence yields a positive maxi-
mum for the cumulant versus PCO, flanked on either side by negative minima and approach-
ing zero far away from the transition. In Fig. 4, we show the variation of uL with PCO
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Fig. 2 Order-parameter (θCO) probability distribution at different PCO values showing the narrow coexis-
tence region at k = 0 at (a) L = 180 and (b) L = 120
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Fig. 3 (a) The order-parameter
fluctuation χL against L plots for
different system sizes (k = 0).
The dotted lines joining the data
points are guides to the eye.
(b) Plot of χmax

L
versus L on ln

scale. χmax
L

is the maximum
value of χL taken from part (a)
of the figure

for different system sizes with desorption rate k = 0. Plots for all system sizes display the
typically expected behavior in the coexistence region. That is, a positive maximum of the
cumulant with adjacent negative deep minima and tending to zero as one moves away from
the transition. The negative deep minima on either side correspond to the beginning and
the end of the coexistence region. The maximum of uL defines the L-dependent transition
point. For systems with k = 0, at all sizes considered, the maximum values of the cumulants
umax

L are at or tend to the value 0.66 ∼ 2/3 (Figs. 4a and 4b). Figure 4b gives a magnified
view of the regions around umax

L . These results are in agreement with the earlier studies by
Tome et al. [21] and recently Machado et al. [11] on the ZGB-k model for k < kc . These
authors reported that analogous to the equilibrium Ising model [40] results, uL → 2/3 for
k < kc and uL → 0 for k > kc . It must be mentioned that for all system sizes the PCO values
at which umax

L and χmax
L values occur are the same, thus uniquely identifying the finite size

first-order transition or coexistence value.
The finite-size scaling theory of equilibrium first-order phase transitions implies that the

shift in the position of the transition in a finite system of linear size L with periodic boundary
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Fig. 4 (a) The fourth-order
cumulant uL versus PCO for
systems of different sizes
(k = 0). (b) Magnified view of
the same plot showing region
near umax

L
. The lines joining the

data points are guides to the eye.
The errors are of the order of 1%
for the highest values of uL.
(c) The finite size coexistence
P c

CO(L) value versus 1/L2 for
systems at k = 0. The intercept of
the weighted least-squares linear
fit yields the estimated P c

CO at
L → ∞
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conditions is inversely proportional to the system volume, Ld [41, 42] (here the dimension
d = 2). Although there is no analogous scaling theory for the non-equilibrium systems,
however, phase transition studies on ZGB based models have successfully used the same
scaling relation [11] as for equilibrium cases.

P c
CO(k,L) − P c

CO(k) ∝ L−2 (7)

Here P c
CO(k) is the transition value of the CO adsorption rate PCO in the infinite-

L limit. In Fig. 4c, we plot the finite size P c
CO(L) for k = 0 versus L−2 for L =

60,80,100,120,150,180,200 and 230. As one observes the points fit a straight line very
well. The correlation coefficient of the linear least squares fit is > 0.999. The intercept gives
the value of P c

CO(k = 0) as 0.5250(6). This value is close to the first-order transition point
0.5256 of the regular ZGB model [5]. We note that Albano [28] had suggested the value
PCO = 0.5235 ± 0.0005 as the transition point.

To understand the effect of desorption on this discontinuous transition, we now present
results for systems with k > 0. Figures 5a and 5b show the order parameter probability dis-
tribution for systems with sizes L = 60 and 180 respectively at different desorption rates. In
each figure order-parameter distributions are shown for three different PCO values in narrow
transition region. The PCO value in the middle is the finite size coexistence or transition val-
ues (denoted as P c

CO(L)) value at which umax
L and χmax

L values are observed for the system.
For systems with L = 60 and k = 0.01, besides the clear bimodal distribution, there is also
broadening between the reactive and the partially poisoned sides. This broadening charac-
teristic of the distribution increases significantly for k = 0.02 and more so for k = 0.03.
Finally, for k = 0.04, a broadened distribution peak moves from the reactive side to the par-
tially poisoned side as PCO is increased (Fig. 5a). That is a unimodal distribution sweeps
across smoothly from the reactive side to the partially poisoned side. In Fig. 5b we consider
the effect of desorption rate on much larger systems (L = 180). Here, in contrast to the
observations made for L = 60, the broadening of the order parameter distribution is much
lesser. However, the peak broadening still occurs and becomes significant for k ≥ 0.03. At
the (L = 180) transition P c

CO value, despite the broadening we are able to approximately
make out predominantly bimodal nature of the distribution. Here, even at k = 0.04, it is a
broadened bimodal type distribution. Clearly the nature of the transition changes with the
system size.

Figures 6a and 6b now focus only on the distribution at the finite size coexistence point
P c

CO(L) for systems at different desorption rates. Figures are given for two system sizes.
For both system sizes, we observe increase in desorption rate make probability distribution
peaks more broadened. Thus, in Fig. 6a (L = 120) at k = 0.04 the bimodal distribution
becomes very much broadened making it difficult to distinguish between the two peaks.
On considering a given large enough system size (L = 230), we find the transition retains
the bimodal distribution character (Fig. 6b) even at high desorption rates (k = 0.04). Till
k = 0.03, significant broadening is only manifested for the reactive side order-parameter
peak. For k = 0.04 the partially poisoned side order-parameter peak broadening also be-
comes significant. We conclude that for larger system sizes, the order-parameter peak broad-
ening increases with desorption rate, while retaining the essential bimodal character. This
suggests that the first-order transition becomes weaker with increase in desorption rate. Fig-
ure 6c describes the effect of system size on the order parameter probability distribution at
k = 0.03. As the system size increases the bimodal nature of the distribution is more clearly
manifested.

To have a more quantitative perspective of the effect of system size on the phase transition
we perform extensive finite size scaling analysis over sizes L = 60,80,100,120,150,180,
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Fig. 5 Order parameter probability distributions (θ̄CO) at PCO values in the narrow coexistence region for
system of a given size at different desorption rates (k > 0). (a) L = 60 and (b) L = 180

200,230. Figures 7a and 7b show ln(χmax
L ) against ln(L) plots at different desorption rates.

For k = 0.01, the slope obtained is 2.07, which decreases to a value closer to 2 when we ex-
clude the L = 60 data point from the linear fit. On further increasing k to 0.02, a good linear
fit is obtained only after excluding the sizes L = 60 and 80. And when k = 0.03, the linear
fit shifts to only the last four data points, that is L > 120. As seen from Figs. 7a and 7b, the
slopes obtained even with this limited set of data points greatly exceed the first order tran-
sition requirement d = 2. However, for k = 0.04 the slope for the linear fit over data points
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Fig. 5 (Continued)

(for systems with L > 120) finally decreases to a value less than 2. Therefore, with increase
in desorption rates, the range of system sizes over which linear fit can be obtained shifts to
larger sizes and also such linear fits have anomalous slope values. For a given desorption
rate, evidently the transition behavior changes with increase in system sizes, which is in
agreement with Fig. 6c. With desorption rate, the deviation from the ideally expected d = 2
value for a first-order transition also increases. As mentioned earlier, the broadening of the
order-parameter probability distribution occurs for k = 0.04 even for larger system sizes
and this seems to be the reason for decrease in slope of the respective ln(χmax

L ) against ln(L)

plot to a value much lesser than the expected one. The finite size scaling of the systems with
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Fig. 6 A comparison of order-parameter (θCO) probability distributions for systems subjected to increasing
desorption rates. (a) L = 120 and (b) L = 230. The distributions are for the finite size coexistence P c

CO
value at which umax

L
and χmax

L
are obtained. (c) Order-parameter (θCO) probability distributions at P c

CO for
different system sizes at k = 0.03
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Fig. 6 (Continued)

k > 0 reinforces our earlier inference that the first-order transition becomes weaker with
increase in desorption rate.

Now in a typical Ising universality class model like the ZGB-k system one observes the
bimodal distribution at k < kc becoming unimodal at k > kc . The boundary between the
bimodal to unimodal distribution defines kc(L) [11, 21]. As is clear from the observations,
in the present study we fail to observe any such change over. The transition remains first-
order and only weakens at higher desorption rates. The present model is therefore unlike the
ZGB-k model and does not belong to the Ising universality class.

It must be mentioned that in Ref. [21], the critical point kc in the ZGB-k model was esti-
mated by both the histogram method as well as by value of the fourth order cumulant. The kc

values thus obtained were found to be in agreement. These authors found that umax
L = 0.61 at

kc as expected for the two dimensional Ising universality class. Machado et al. [11] later re-
peated the cumulant studies for larger system sizes and also did extensive finite size scaling
analysis to confirm the results in Ref. [21]. As has been already mentioned, in the present
case there is only first-order transition which gets weaker with desorption. The second-order
critical point, if it exists, may be located from the common intersection point of different sys-
tem size umax

L against k plots. Figure 8 shows umax
L against k plots with respect to different

system sizes for the present model with oscillatory kinetics due to surface reconstruction.
We observe (Fig. 8) there is no common intersection point of the plots of different sizes. The
decrease in umax

L values with k is therefore due to the broadening of peaks in the bimodal
order-parameter probability distribution at the coexistence value.

Here it is pertinent to mention that recent investigations have revealed the fully frustrated
cubic lattice Ising spin model also displays a weak first-order phase transition [43]. These
authors also used the histogram technique to arrive at this result. In the present model, the
stronger coupling of the local reaction dynamics with the global surface reconstruction with
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Fig. 7 Plots of χmax
L

versus L

on ln scale, (a) for systems with
k = 0.01 and 0.02, (b) for
systems with k = 0.03 and 0.04

increase in desorption rate may be the reason for the weakening of the first-order transition
behavior.

4 Conclusions

A modified ZGB model including oscillatory kinetics due to adsorbate-induced reversible
transitions in the structure of the catalyst has been considered. Extensive kinetic Monte Carlo
simulations have been carried out to study the phase transition in this model. The modified
ZGB model shows the first-order phase transition when there is no desorption. This has
been concluded from finite size scaling numerical analysis. On increasing the desorption
rate (for larger system sizes) the order-parameter probability distribution broadens but the
bimodal character of the distribution is preserved. This suggests that the phase transition
remains first-order and only becomes weaker with increase in desorption rates. For a given
desorption rate the strength of first-order phase transition increases with size. Due to this the
finite size scaling analysis gives anomalous results for systems at k > 0.01.
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Fig. 8 Fourth order cumulant umax
L

versus k plots for different system sizes
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