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Chapter 3

Numerical Methods for Solving System of Generalised Abel
Integral Equations by Operational Matrices

3.1 Introduction

In this chapter we deal with study of linear as well as nonlinear system of
generalized Abel integral equations. We consider the system of integral
equations, namely

F (i, (0, (el | F (u, (£), 1, () dt

a11(x).[0 (x—1) +ap(x )'[ (t—x)" =) (3.1.1)
o o B (rz :t;(t))dt a1 (u((ﬁf;(r))df = £,(x)

where x,b€(0,1),a,,(x),i=1,2 and j=1,2 are continuous on[0,1], 7, and
f,are the forcing terms. Assuming F (u,(¢),u,(t)) = F(u,(t),u,(t)) and
F, (u,(t),u,(t)) = F,(u,(t),u,(t)) to be u,(t)and u,(t) respectively, we obtain the
well-known system of generalized Abel integral equations

Yung l%mw

a, (x )J )y +a,(x )f == f(x)
1)dt 1)dt (312)
@] ”1“) i (x >J‘“2( )) - ()

This system of generalized integral equations of Abel type was studied by
Lowengrub (1976) and Walton (1979). As stated in Walton (1979), certain
mixed boundary value problems arising in the classical theory of elasticity
reduce to the problem of determining functions u,and u,satisfying the above
Abel integral equations. Mandal et al. (1996) solved this problem analytically

for the special case b=1/2,q,,(x)=1, using the idea of fractional calculus.
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Recently Pandey and Mandal (2010) obtained a numerical solution of the
above system Eq. (3.1.2) using Bernstein polynomials of order 8. Singh et al.
(2010) constructed an operational matrix of integration using orthonormal
Bernstein polynomials and used it to propose a stable algorithm to solve Eq.
(3.1.2). They considered linear type Abel integral equations only but the
method proposed by Pandey and Mandal (2010) is less accurate when the

coefficients ¢, ;(x) are polynomial functions compared to the case when the

coefficients are constants. This along with the results obtained in Singh et al.
(2010) motivated us for the present work. Yousefi (2006) has provided
Legendre wavelet based method for solving Abel integral equations. In
Pandey et al. (2009) they have discussed analytical methods like homotopy
perturbation method (HPM), modified homotopy perturbation method
(MHPM), adomian decomposition method (ADM) and modified adomian
decomposition method (MADM) for solving Abel integral equations. Further,
Huang et al. (2008) discussed an approximate method for solving Abel
integral equation by approximating the unknown function using Taylor
series. Singh et al. (2008) constructed an operational matrix of integration
based on orthonormal Bernstein polynomials, and used it to propose an

algorithm for solving the Abel’s integral equation.

In chapter 2, we have already constructed the operational matrices for
fractional integration and differentation ( Theorems 2.3.1., 2.3.2. and 2.3.3.)
using the properties of Legendre’s scaling functions. In the continuation of
that, the present chapter 3 deals with the situation of nonlinearity in the
generalized form of Abel integral equations. Following the same basic facts
and properties about the Legendre’s scaling functions as discused in chapter
2, we have directly obtained the numerical algorithm for the solution of the

problem. We also establish the convergence of the approximate solutions to
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the true solution under certain mild condition followed by numerical

experiments, in sub sequent sections.
3.2 Numerical Algorithm
Type 1:

In type first we solve System of Generalized Abel’s integral equation which is

given by
%AM“”)?“ lxn“%)?m—ﬁ(>
, (3.2.1)
a, @ SO, o C O = o

where ()"(1) = (1)) and ()" (1) = (u, (1))’

Approximating various terms involved in the above integral by their

Legendre’s scaling function approximations as

()" ()=C(0), ) ()=C,"d(1), f()=F'¢(t) and f,(t)=F'd(r). (32.2)

Substituting Eq. (3.2.2) in Eq. (3.2.1), we get

%meT? AWC“TCFﬂ> (323)
%mmC@? ﬁwcﬂfﬂFﬂ) (324
From the Egs. (3.2.3) and (3.2.4), we have
Ccr = anF' Q" —a, K P’
b allaZZPQT _alzalePT (3 2 5)

CT_|: ale Q —a,F, P j|
=
a12a21P 0- azzanQ P
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where,

O ¢()Jﬂdt_pf¢(>jL’>)d Q¢<>jﬂdz—g¢<>

Hence, the approximate solutions of u,(f) and u,(f) for generalized Abel
integral Eq. (3.2.1) are obtained by putting the values of C,"and C,” from Eq.
(3.2.5) in Eq. (3.2.2).

Type 2:
In type second we solve the system of Generalized Abel’s integral equation
which is given by
< uy (t)u, (t)dt t)dt
s OO o o O
, (3.2.6)
t t)dt t)dt
0, (0 (“(2)_(t)) e

it u,(x)u,(x),(u,)" (x), f,(x) and f,(x) are approximated as
1, ()i, (x) = G p(x). (1) (x) = €,/ p(x), £,(x) = F () and £, (x) = F p(x) .(3.2.7)
Substituting Eq. (3.2.7) in Eq. (3.2.6), we get

C, ¢(z)dt 1 c ¢(t)dt

/(O R (= o), (3.2.8)
a, (s C(lz(gdt (¥ )JIC( ”i(?dt = BT (). (3.29)
Grouping the Egs. (3.2.8) and (3.2.9), we have
CIT{ a,F'0" —a,F'P’ }
PO =, OF (3:2.10)

CT_{ ale Q —a,F, P’ }
=
a12a21P 0- azzanQ P
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where,

I e ¢(>jﬂd —PT¢(>JL”)d Q¢<)Jﬂd 074 -

Hence, the approximate solutions of #(f) and u,(f) for generalized Abel
integral Eq. (3.2.6) are obtained by putting the values of C," and C, from Eq.
(3.2.10) in Eq. (3.2.7).

3.3 Convergence Analysis

Theorem 3.3.1. If the approximated sequences u/'(¢) and u}(t)converge

uniformly into u,(¢) and u,(¢) respectively on [0, 1]. Then u,(¢)and u,(¢) forms

a solutions for the system of equations

F(u, (t) uy ()t Fy (0, (0)dt

11.[0 t)h 12.[ (- ) = /(%) 651
x Fs(ul (t)=u2 @ydt o 5O @0),u,(0)dt -
a21.[0 (l‘—x)b 22J. (x —t) = f,(x)
Proof.
From the construction of approximate sequences, it is evident that
B (uy (t) wW)dt ok (u1 (t) uy (1))dt
[Io{ 11]0 —py +ay,], oy - filx )}dx)@ (x) =0, (3.3.2)

V,k=12,...,n.

Let VN = Span(¢17¢27“~7¢n) .

Then,
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ta,] Fy (' (1), uy (1))dt

X (t—X)b -

(J.é{al 1 .[(; h (uln ®, “;b(t))dl‘
(x—1)

f, (x)}dx) (x) = 0. (3.3.3)

For ¢ €V, . (By linearity property)
Let’s assume,

Ly =a, [ BUQEO 0 OG0 _
1\"1 >"2 11 0 (x—t)h 12 x (t—x)b

Si(x).

Then clearly L (u],u;) converges to L, (u,,u,) in L’-norm.
So, I Ly (u)',u) l.< K.

Let ¢ be a L’ -function. Then for each given & >0, there exists ¢, €V, such

that
lg—gyll<e.
So,
Jy 0 (0,3 (M) = [, (0,0 )00~y ()
* Jol Ly (uy (x),uy (X))(@y (x))dx
! (3.3.4)
- L L () (x),u; ())(@(x) — @y (x))dx + 0
= E L, (' (x), 145 (X)) (x) = By (x))dlx.
Now,

“01 L, (uy (x),u; (x))p(x)dx

Ly ()15 (X)) 1], ¢(x) =y D) 2
=Ke¢

lim jol L (! (x)ul (x)p(x)dx<Ke , for arbitrary &> 0.
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So, lim jOIL1 @ (x),u? (X)P(x)dx=0 .
Now, L (u,u}) uniformly converges to L (u,,u,)in L’ -norm.
So,
[[L,Gu.m,) ¢ dx=0,v g, (3.3.5)
Then we take ¢ =L (u,,u,).
S0,

1
jO Ll (UI,UZ)LI (Upuz)dx =0 (336)

=L u,u,)=0, ae.

Similarly we can show that

n o n xuntdt lu"tdz‘
Lz(ulauz):an_‘- (1) +azzj (1)

0 ) Ry — f,(x) uniformly converges to L,(u,,u,)

and L,(u,,u,)=0, ae.

3.4 Numerical Results

In this section, we discuss the implementation of our proposed
algorithm and investigate its accuracy and stability by applying it on test
functions with known analytical Abel inverse. For, it is always desirable to
test the behaviour of a numerical inversion method using simulated data, for
which the exact results are known and thus making the comparison possible,
between the results obtained through numerical inversion and the theoretical

data . We have chosen three profiles having various shapes for this purpose.

The following examples are solved with and without noise terms to

illustrate the efficiency and stability of our method. Note that in all examples
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to follow, the series given by Eq. (2.2.2, Chapter-2) is truncated at level m =06,

and hence the operational matrices in Eq. (2.3.1, Chapter-2) are of order7x7.
The accuracy of proposed algorithm is demonstrated by calculating the

parameters of absolute error Au, (1) and average deviation ¢”’also known as

root mean square error (RMS). They are calculated using the following

equations:

E (1) =l @)-a,0))s oy = Yl ), 0)F)

oA
= 2 ) =

where u, (tl-)is the approximate solution calculated at point 7, and u; (ti) is
the exact solution at the corresponding point, j=1,2. Note that o/,
henceforth, denoted by &7, (for computational convenience) is the discrete

1> -norm of the absolute error Aw, denoted by ||Au, |-

Note that calculation of &/, is performed by taking ~ =1000in Eq.
(3.4.1). In all the examples, the exact and noisy profiles are denoted by
f;(x)and 7 (x),respectively, where 77 (x),is obtained by adding a noise

S to f,(x),suchthat /7 (x,)= f,(x,)+56,,

where x, =ih,i=1,...,N, Nh=1and @, is uniform random variable

with values in [-1, 1] such that Max| ff — f]| <.

1<is<N

The following examples are solved with and without noise to illustrate
the efficiency and stability of our method by choosing two different values of

the noises &, as J, =0, 5, = o).

The absolute errors £, E and E,, j =1,2,3 are shown in all the three

examples for 7z = 4,5 and 6 respectively. Similarly in tables 4.1., 4.2. and 4.3.,
~53 ~
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we show the maximum absolute errors without noise and root mean square
. . . s
errors with noise s, j =1,2. The accuracy and stability of the propsed

method is establised by figures and tables.

Example 3.4.1. Consider the System of Generalized Abel’s integral Eq.
(3.2.1) take

a,(x)=1a,(x)=3,a,(x)=2,a,,(x) =1,b=%,a =2,c=3,

14

729x3 9 2
= +——(1-x)*(40+9x(5+ 6x +9x*
Si(x) 1540 440( x)*( x(5+6x+9x7))
14
_ —v)3 2
and  f,(x)= 72907 3 (=14 x)%(40+9x(5+ 6x +9x%)).

770 440

This has the exact solution u,(¢) =¢* , u,(t) =t.

Table 3.1.
(Maximum absolute errors (E1 and E2) and Root mean square

errors (,y,, and o) for example-3.4.1)

Maximum Maximum Root mean Root mean
absolute absolute square error | square error
error (E1) error (E2) ( Gloo) (Groo)

For u, (t) = t2 For uz(t) =t For n (t) _ tz For u, (t) =t
2.4379x107 | 1.6525x107 | 2.9640x10™" | 1.7141x107°
1.5531x107° | 1.6304x107% | 2.1723x10* | 1.2611x10°°
1.2575%x107° | 7.1092x107° | 1.9642x10™* | 5.4436x10~*
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Figure 3.1.1 Comparison of absolute errors at n

(1) -
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=4, 5 and 6 for the solution

Figure 3.1.2 Comparison of absolute errors at n=4, 5 and 6 for the

solutionu, (7).
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Example 3.4.2. Consider the System of Generalized Abel’s integral Eq.

1 1 1 1 1 3
(326) take all(X)=Z,GIZ(X)=§,6121()C)=7,6122(X)=5,b=7,ﬂ=5
6(16 —81|6
s o170, 8 ol b
X)= x3¥ +—(—A-x)"+ L x
A= fg 30 F
35 10
490 —-11 1 59
+——x.Hypergeometric , F;[—,—,—,x]),
597 Hpers 121[70770 D
6|16 6 81|16
and f(x):l 7?x?(—x)%)+l((_1)7 (—770(1—x)g—891x% 7017
g 4142 2 891 P
35 10
-11 1 59
—1470 ox «H etric, F,| —,—,—,x | |.
x «Hypergeom 5 1{70 =70 D

1
This has the exact solution u, (1) =t> , u,(t)=1".

Table 3.2.
(Maximum absolute errors (E1 and E2) and Root mean square

errors (0}, and o;y,,) for example-3.4.2)

Maximum Maximum Root mean Root mean
absolute absolute square error | square error
N | error E1l error E2 For (0-11000 ) (0-12000 ) for
1
foru(t)=t2 u. (t :t7 f t =l‘2 1
1 () or u,(7) Foru,(t) =17
4 |1.7635x107° | 4.6865x107" | 4.3546x10™* | 2.2101x1072
5 |1.3822x107° | 4.3701x107" | 2.7916x10™* | 1.8663x107
6 |1.0356x107 | 4.1196x10™" | 1.8883x10™* | 1.6386x107>
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absolute ermor

Figure 3.2.1 Comparison of absolute errors at n= 4, 5 and 6 for the

solutionu, (7).

abszolute ermor

Figure 3.2.2 Comparison absolute errors at n=4,5 and 6 for the solution

U (1) -
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3.5 Conclusions

We have constructed the fractional order operational matrices of
integration and differentiation for Legendre scaling functions and used them
to propose algorithm for numerical solution of system of generalized Abel
integral equations. The stability with respect to the data is stored and good
accuracy is obtained, even for small intervals and high noise levels in the
data. The choice of only seven orthonormal polynomial of degree 6 makes the

method very simple and easy to use.
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