
Applied Mathematical Modelling 35 (2011) 3970–3979
Contents lists available at ScienceDirect

Applied Mathematical Modelling

journal homepage: www.elsevier .com/locate /apm
Solution of the nonlinear fractional diffusion equation with absorbent
term and external force

S. Das ⇑, K. Vishal, P.K. Gupta
Department of Applied Mathematics, Institute of Technology, Banaras Hindu University, Varanasi 221 005, India
a r t i c l e i n f o

Article history:
Received 21 August 2010
Received in revised form 31 January 2011
Accepted 2 February 2011
Available online 20 February 2011

Keywords:
Nonlinear partial differential equation
Fractional diffusion equation
Absorbent term
Caputo derivative
Fractional Brownian motion
0307-904X/$ - see front matter � 2011 Elsevier Inc
doi:10.1016/j.apm.2011.02.003

⇑ Corresponding author. Tel.: +91 9451141269.
E-mail address: subir_das08@hotmail.com (S. Da
a b s t r a c t

The article presents the approximate analytical solutions of general nonlinear diffusion
equation with fractional time derivative in the presence of an absorbent term and a linear
external force obtained with the help of powerful mathematical tool like Homotopy Pertur-
bation Method. By using initial value, the approximate analytical solutions of the equation
are derived. The fractional derivatives are described in the Caputo sense. Numerical results
for different particular cases are presented graphically. The anomalous behavior of nonlin-
ear diffusivity in the presence or absence of external force and reaction term are calculated
numerically and presented graphically.
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1. Introduction

In this article, a sincere attempt has been taken to solve the nonlinear fractional diffusion equation with external force
and reaction term as
@auðx; tÞ
@ta

¼ @

@x
ðuðx; tÞÞn @uðx; tÞ

@x

� �
� @

@x
ðFðxÞuðx; tÞÞ �

Z t

0
aðt � nÞuðx; nÞdn; 0 < a � 1; x > 0; t > 0; ð1Þ
with the initial condition
uðx;0Þ ¼ x; ð2Þ
where F(x) is an external force, a(t) is a time-dependent absorbent term which may be related to a reaction diffusion process.
The diffusion equation have been widely studied due to its various applications in science and engineering but the study
assumes a different dimension when it is nonlinear and also if in the classical diffusion equation the time derivative is re-
placed by a fractional derivative of order a(0 < a 6 1). Nonlinearity is suitable subject which predicts a large extent as a de-
tailed knowledge of the corresponding equations. A complete and extensive study of nonlinear PDE which can be related to
the selection mechanics is indispensible. Nonlinear diffusion equations are important class of parabolic equations appear in
many physical problems like phase transition in mechanical, electrical and electronic engineering, biochemistry and dynam-
ics of biological sciences and in many methods for image processing and computer vision. The problems become challenging
and difficult when singularity appears in it. The fractional differential equations have gained much attention recently due to
the fact that fractional order system response ultimately converges to the integer order system response. An important
. All rights reserved.
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outcome of these evolution equations is that it generates fractional Brownian motion which is a generalization of Brownian
motion. The above type of anomalous diffusion is a ubiquitous phenomenon in nature and appears in different branches of
science and engineering. Eq. (1) represents a model of fractional plasma diffusion for n = �1/2, thermal limit approximation
of Carle man’s model of the Boltzmann equation for n = �1, diffusive in higher polymer systems for n = �2, isothermal per-
colations of perfect gas through a micro-porous medium for n = 1 and process of melting and evaporation of metals for n = 2
(Wazwaz [1]). As one of the particular cases, Eq. (1) can also be related to the Fractional Schrodinger equation or fractional
quantum mechanics (FQM), which is fractional differential equation in accordance with modern technology. FQM (Laskin
[2]) is obtained by expanding the Feynman path integral over Brownian like quantum mechanical paths to the Levy like
quantum mechanical paths, a generalization of quantum mechanics.

Most of the nonlinear problems do not have a precise analytical solution; especially it is hard to get it for the fractional
nonlinear equations. So these types of equations should be solved by approximate analytical methods. Schot et al. [3] have
given an approximate solution of the Eq. (1) for the linear case i.e., for n = 0 in terms of Fox H-function. Zahran [4] has offered
a closed form solution in Fox H-function of the generalized linear fractional reaction-diffusion equation subjected to an
external linear force field, one that is used to describe the transport processes in disorder systems.

The diffusion equations have been widely studied due to their various applications in Physics and Engineering, but the
study related to diffusion equations with nonlinear terms and fractional time derivatives are few in numbers (Bologna
et al. [5], Lenzi et al. [6] etc.). Lenzi et al. [7] presented some classes of solutions of a general nonlinear fractional diffusion
equation with absorbations. The similar study was made by Assis et al. [8]. A generalized diffusion equation which contains
spatial fractional derivatives and nonlinear terms can be found in Silva et al. [9] and Lenzi et al. [10]. Das [11] has used
Variational Iteration Method to find the analytical solution of a fractional diffusion equation of order a(0 < a 6 1) only in
the presence of external force. Later, Das and Gupta [12] have solved linear diffusion equation with fractional time derivative
in presence of external force and a reaction term by using Homotopy perturbation method (HPM). But to the best of authors’
knowledge the nonlinear time fractional diffusion equation in the presence of the same type of external force and reaction
term has not yet been solved by any researcher.

It is very difficult to get the exact analytical solutions of fractional order problems especially for nonlinear cases. The
authors have made a sincere effort to solve the above specified model taken the full advantage of powerful and efficient
mathematical tool HPM. The HPM is the new approach for finding the approximate analytical solution of linear and nonlin-
ear problems. The method was first proposed by He ([13–15]) and was successfully applied to solve nonlinear wave equation
by He ([16–19]), fractional Lotka–Volterra equation by Das and Gupta [20], boundary value problems by He [21], fractional
predator prey model by Das et al. [22], linear fractional Schrodinger equation by Das et al. [23] and fractional logistic equa-
tion by Das et al. [24] etc. The basic difference of this method from the other perturbation techniques is that it does not re-
quire small parameters in the equation which overcomes the limitations of traditional perturbation techniques. He [25]
applied the method successfully to solve a duffing equation with high order of nonlinearity. The result shows that its first
order of approximation is valid uniformly for very large parameter with accuracy better than the perturbation solutions.
He [14] claimed that the approximations obtained by this method are valid not only for small parameters but for very large
parameters. Also in the study of Monami and Odibat [26], it is seen that HPM is very effective, convenient, supplies quan-
titavely reliable results. The main advantage of the HPM is that it reduces both nonlinear differential equation and fractional
nonlinear differential equation to a series of ordinary differential equations, which are easy to solve for any order of approx-
imations, as and when required. In 2008, Odibat and Momani [27] presented a modification of HPM and the algorithm is
applied to solve the quadratic Riccati differential equation of fractional order. In their earlier article [28], they successfully
applied the method to solve the nonlinear time fractional advection equation and nonlinear time fractional hyperbolic equa-
tion and made a statement that HPM is a universal one by which various kinds of nonlinear equation can easily be solved.
Wang [29] has made a sincere effort to find the approximate solution of the nonlinear fractional order KdV-Burgers equation
with time and space fractional derivatives with high accuracy.

In this article, the Homotopy Perturbation Method is used to solve the nonlinear fractional diffusion Eq. (1). Using the
initial condition, the approximate analytical expressions of u(x, t) for different fractional Brownian motions and also for stan-
dard motion are obtained. The effects of external force and absorbent term in the solution are obtained numerically for dif-
ferent particular cases, which are depicted graphically. The elegance of this article can be attributed to the simplistic
approach in seeking the approximate analytical solution of the problem and also in the demonstration of the effect of damp-
ing for the stability of the nonlinear system of fractional order in presence of reaction term.

2. Basic ideas of fractional calculus

In this section, we give some definitions and properties of the fractional calculus [30] which are used further in this paper.

Definition 1. A real function f(t), t > 0, is said to be in the space Cl;l 2 R, if there exists a real number p > l, such that
f(t) = tpf1(t), where f1(t) e C(0,1), and it is said to be in the space Cn

l if and only if f(n) e Cl, n e N.
Definition 2. The Riemann–Liouville fractional integral operator Jat
� �

of order a P 0, of a function f e Cl, l P �1, is defined
as
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Jat f ðtÞ ¼ 1
CðaÞ

Z t

0
ðt � nÞa�1f ðnÞdn; a > 0; t > 0; ð3Þ

J0
t f ðtÞ ¼ f ðtÞ:
where C(a) is the well-known gamma function. Some of the properties of the operator Jat , which we will need here, are as
follows:For f e Cl, l P �1, a, b P 0 and c P �1
(1) Jat Jbt f ðtÞ ¼ Jaþb
t f ðtÞ.

(2) Jat Jbt f ðtÞ ¼ Jbt Jat f ðtÞ.
(3) Jat tc ¼ Cðcþ1Þ

Cðaþcþ1Þ t
aþc.
Definition 3. The fractional derivative Da
t

� �
of f(t), in the Caputo sense is defined as
Da
t f ðtÞ ¼ 1

Cðn� aÞ

Z t

0
ðt � nÞn�a�1f ðnÞðnÞdn; ð4Þ
for n� 1 < a < n;n 2 N; t > 0; f 2 Cn
�1.

The following are two basic properties of the Caputo fractional derivative [31]:

(1) Let f 2 Cn
�1;n 2 N, then Da

t f ;0 � a � n is well defined and Da
t f 2 C�1:

(2) Let n� 1 � a � n;n 2 N and f 2 Cn
l;l � �1. Then
Jat Da
t

� �
f ðtÞ ¼ f ðtÞ �

Xn�1

k¼0

f ðkÞð0þÞ t
k

k!
: ð5Þ
3. Basic idea of homotopy perturbation method

To illustrate the basic ideas of this method, we consider the following non-linear functional equation
AðuÞ � f ðxÞ ¼ 0; x 2 X; ð6Þ
with the following boundary conditions

Bðu; @u=@nÞ ¼ 0; x 2 C; ð7Þ
where A is a general functional operator, B a boundary operator, f(x) is a known analytical function and C is the boundary of
the domain X. The operator A can be decomposed into two operators L and N, where L is linear, and N is nonlinear operator.
Eq. (6) can be, therefore, written as follows
LðuÞ þ NðuÞ � f ðxÞ ¼ 0: ð8Þ
Using the homotopy technique [13–19], we construct a homotopy vðx; pÞ : X� ½0;1� ! R, which satisfies
Hðv ;pÞ � ð1� pÞ½LðvÞ � Lðu0Þ� þ p½AðvÞ � f ðxÞ� ¼ 0; ð9Þ

or
Hðv ;pÞ � LðvÞ � Lðu0Þ þ pLðu0Þ þ p½NðvÞ � f ðxÞ� ¼ 0; ð10Þ
where p e [0, 1] is an embedding parameter, u0 is an initial approximation for the solution of Eq. (6), which satisfies the
boundary conditions. Obviously, from Eqs. (9) and (10) we will have
Hðv ;0Þ � LðvÞ � Lðu0Þ ¼ 0; ð11Þ
and
Hðv ;1Þ � AðvÞ � f ðxÞ ¼ 0; ð12Þ
the changing values of p from zero to unity is just that of v(x,p) from u0(x) to u(x). In topology, this is called deformation, and
also, L(v) � L(u0), A(v) � f(x) are called homotopic.

According to HPM, the embedding parameter p(0 6 p 6 1) is used as a ‘‘small parameter’’, and the solution of Eqs. (9) and
(10) are written as a power series in p
v ¼ v0 þ pv1 þ p2v2 þ � � � : ð13Þ
Setting p = 1 results in the approximation to the solution of Eq. (6)
uðxÞ ¼ lim
p!1

v ¼ v0 þ v1 þ v2 þ � � � : ð14Þ
Finally, we approximate the analytical solution u(x) by truncated series
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uðxÞ ¼ lim
N!1

UNðxÞ; ð15Þ
where UNðxÞ ¼
PN�1

m¼0vmðxÞ, N P 1 .
The above series solutions generally converge very rapidly.

4. Solution of the problem by HPM

Eq. (1) can be written in the operator form as
Da
t uðx; tÞ ¼ Dxððuðx; tÞÞnDxuðx; tÞÞ � DxðFðxÞuðx; tÞÞ �

Z t

0
aðt � nÞuðx; nÞdn; ð16Þ
where Da
t � @a

@ta, Dx � @
@x .

Using the homotopy technique, we construct a homotopy vðx; t; pÞ : X� ½0;1� ! R, which satisfies
imate solutions for Case I.

x uHPM uExact (for standard motion)

a = 1/3 a = 1/2 a = 2/3 a = 1

0.25 0.25000 0.25000 0.25000 0.25000 0.25000
0.50 0.50000 0.50000 0.50000 0.50000 0.50000
0.75 0.75000 0.75000 0.75000 0.75000 0.75000
1.00 1.00000 1.00000 1.00000 1.00000 1.00000
0.25 0.95546 0.81419 0.68960 0.50000 0.50000
0.50 1.20546 1.06419 0.93960 0.75000 0.75000
0.75 1.45546 1.31419 1.18960 1.00000 1.00000
1.00 1.70546 1.56419 1.43960 1.25000 1.25000
0.25 1.13882 1.04788 0.94783 0.75000 0.75000
0.50 1.38882 1.29788 1.19783 1.00000 1.00000
0.75 1.63882 1.54788 1.44783 1.25000 1.25000
1.00 1.88882 1.79788 1.69783 1.50000 1.50000
0.25 1.26745 1.22721 1.16441 1.00000 1.00000
0.50 1.51745 1.47721 1.41441 1.25000 1.25000
0.75 1.76745 1.72721 1.66441 1.50000 1.50000
1.00 2.01745 1.97721 1.91441 1.75000 1.75000
0.25 1.36985 1.37838 1.35773 1.25000 1.25000
0.50 1.61985 1.62838 1.60773 1.50000 1.50000
0.75 1.86985 1.87838 1.85773 1.75000 1.75000
1.00 2.11985 2.12838 2.10773 2.00000 2.00000

imate solutions for Case II.

x uHPM uExact (for standard motion)

a = 1/3 a = 1/2 a = 2/3 a = 1

0.25 0.25000 0.25000 0.250000 0.250000 0.250000
0.50 0.50000 0.50000 0.500000 0.500000 0.500000
0.75 0.75000 0.75000 0.750000 0.750000 0.750000
1.00 1.00000 1.00000 1.000000 1.000000 1.000000
0.25 7.38567 1.22319 0.443121 0.279547 0.279508
0.50 14.7713 2.44638 0.886242 0.559094 0.559017
0.75 22.1570 3.66957 1.329360 0.838641 0.838525
1.00 29.5427 4.89276 1.772480 1.118190 1.118030
0.25 16.9059 3.26391 0.861900 0.322750 0.322749
0.50 33.8118 6.52782 1.723900 0.645500 0.645497
0.75 50.7177 9.79173 2.585700 0.968250 0.968246
1.00 67.6236 13.0556 3.447610 1.291000 1.290990
0.25 27.8713 6.37155 1.621180 0.389547 0.395285
0.50 55.7425 12.7431 3.242360 0.779094 0.790569
0.75 83.6138 19.1147 4.863540 1.168640 1.185850
1.00 111.485 25.4862 6.48472 1.558190 1.581140
0.25 39.9364 10.5297 2.80473 0.534000 0.559020
0.50 79.8728 21.0595 5.60945 1.098800 1.118030
0.75 119.809 31.5892 8.41418 1.658200 1.677050
1.00 159.746 42.1189 11.2189 2.217600 2.236070
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Fig. 1. (a) Plot of u(x, t) vs. t for different values of a at n = 2, x = 1, a = 0 and k = 0. (b) Plot of u(x, t) vs. t for different values of a at n = 2, x = 1, a = 0 and k = 1.
(c) Plot of u(x, t) vs. t for different values of a at n = 2, x = 1, a = 1 and k = 1. (d) Plot of u(x, t) vs. t for different values of a at n = 2, x = 1, a = 1 and k = 0.
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Hðv ;pÞ � ð1� pÞDa
t ðvÞ � Da

t ðu0Þ� þ p Da
t v � DxðvnDxvÞ þ DxðFðxÞvÞ þ

Z t

0
aðt � nÞvdn

� �
;

Applying the idea of Caputo derivative Da
t ðu0Þ ¼ J1�a

t Dtðu0Þ ¼ 0 [Jat is the Reimann–Liovillue operator], we get
Da
t v ¼ p DxðvnDxvÞ � DxðFðxÞvÞ �

Z t

0
aðt � nÞvðx; nÞdn

� �
; ð17Þ
where the homotopy parameter p is considered to be small 0 6 p 6 1. Now applying the classical perturbation technique, Eq.
(7) can be expressed as a power series of p as
vðx; tÞ ¼ v0ðx; tÞ þ pv1ðx; tÞ þ p2v2ðx; tÞ þ p3v3ðx; tÞ þ � � � ; ð18Þ
When p ? 1, Eq. (18) becomes the approximate solution of Eq. (16). Substituting Eq. (18) into Eq. (17) and equating the terms
with identical powers of p, we obtain the following set of linear differential equations:
p0 : Da
t v0 ¼ 0; ð19Þ

p1 : Da
t v1 ¼ Dxðvn

0Dxv0Þ � DxðFðxÞv0Þ �
Z t

0
aðt � nÞv0ðx; nÞdn; ð20Þ

p2 : Da
t v2 ¼ Dxðvn

0Dxv1 þ nvn�1
0 v1Dxv0Þ � DxðFðxÞv1Þ �

Z t

0
aðt � nÞv1ðx; nÞdn; ð21Þ

p3 : Da
t v3 ¼ Dxðvn

0Dxv2 þ nvn�1
0 v1Dxv1 þ nC2vn�2

0 v2
1Dxv0 þ nvn�1

0 v2Dxv0Þ � DxðFðxÞv1Þ �
Z t

0
aðt � nÞv2ðx; nÞdn; ð22Þ
and so on.
Now considering aðtÞ ¼ a tb�1

CðbÞ (0 < b 6 1), F(x) = �kx and applying the operator Jat (the inverse of Caputo operator Da
t ) on the

both sides of Eqs. (19)–(22), we obtain
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v0ðx; tÞ ¼ x;

v1ðx; tÞ ¼ ð2kxþ nxn�1Þ ta

Cðaþ 1Þ � ax
taþb

Cðaþ bþ 1Þ ;

v2ðx; tÞ ¼ 4k2xþ knð3nþ 2Þxn�1 þ 2nðn� 1Þð2n� 1Þx2n�3
h i t2a

Cð2aþ 1Þ

� a 4kxþ nðnþ 2Þxn�1� � t2aþb

Cð2aþ bþ 1Þ þ a2x
t2aþ2b

Cð2aþ 2bþ 1Þ ;

v3ðx; tÞ ¼ 8k3xþ k2nð3n2 þ 6nþ 4Þxn�1 þ 10kn2ðn� 1Þð2n� 1Þx2n�3 þ 6nðn� 1Þ2ð2n� 1Þð3n� 4Þx3n�5
h

þn2

2
f4k2ðnþ 1Þxn�1 þ 8kðn� 1Þð2n� 1Þx2n�3 þ 3nðn� 1Þð3n� 4Þx3n�5g Cð2aþ 1Þ

ðCðaþ 1ÞÞ2

#

� t3a

Cð3aþ 1Þ � a 12k2xþ knðn2 þ 9nþ 6Þxn�1 þ 2nðn� 1Þð2n� 1Þðnþ 3Þx2n�3 þ 2n2fkðnþ 1Þxn�1
h

þðn� 1Þð2n� 1Þx2n�3g Cð2aþ bþ 1Þ
Cðaþ 1ÞCðaþ bþ 1Þ

#
t3aþb

Cð3aþ bþ 1Þ

þ a2 6kxþ nð2nþ 3Þxn�1 þ n2ðnþ 1Þ
2

xn�1 Cð2aþ 2bþ 1Þ
ðCðaþ bþ 1ÞÞ2

" #
t3aþ2b

Cð3aþ 2bþ 1Þ � a3x
t3aþ3b

Cð3aþ 3bþ 1Þ ; ð23Þ
Proceeding in this manner, the rest of the components vm(x, t), m > 3 can be completely obtained and the series solutions are
thus entirely determined.

Finally, we approximate the analytical solution u(x, t) by truncated series
uðx; tÞ ¼ lim
N!1

WNðx; tÞ; ð24Þ
where WNðx; tÞ ¼
PN�1

m¼0vmðx; tÞ, N P 1
3/1=α

2/1=α

3/2=α

1=α

1=α

3/2=α

2/1=α

3/1=α

3/1=α

2/1=α

3/2=α

1=α

3/1=α
2/1=α
3/2=α

1=α

t

tt

t

u (x,t)

u (x,t)

u (x,t)

u (x,t)

a b

dc

(a) Plot of u(x, t) vs. t for different values of a at n = 1, x = 1, a = 0 and k = 0. (b) Plot of u(x, t) vs. t for different values of a at n = 1, x = 1, a = 0 and k = 1.
of u(x, t) vs. t for different values of a at n = 1, x = 1, a = 1 and k = 1. (d) Plot of u(x, t) vs. t for different values of a at n = 1, x = 1, a = 1 and k = 0.
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The above series solutions generally converge very rapidly. A classical approach of convergence of this type of series is
already presented by Abbaoui and Cherruault [32].
5. Particular cases

In this section, we are considering some cases of Eq. (1) to demonstrate the reliability of the method HPM and its wider
applicability for solving linear and nonlinear diffusion equations of fractional order.

Case I: Consider n = 1, k = 0, a = 0 i.e., the nonlinear time-fractional diffusion equation in absence of both external force
and reaction term
Fig. 3.
k = 1. (c
k = 0.
@auðx; tÞ
@ta

¼ @

@x
uðx; tÞ @uðx; tÞ

@x

� �
: ð25Þ
The approximate results of the solutions of Eq. (25) obtained for different a for various values of x and t using HPM is pre-
sented in Table 1. The exact solution of u(x, t) for a = 1 is u(x, t) = x + t .

Case II: Consider n = 2, k = 0, a = 0 i.e., the slow diffusion equation with fractional time derivative
@auðx; tÞ
@ta

¼ @

@x
ðuðx; tÞÞ2 @uðx; tÞ

@x

� �
: ð26Þ
Table 2 exhibits the approximate solutions of Eq. (26) obtained for different a with variations in x and t. The value a = 1 is
the only case for which we know the exact solution of Eq. (26) as uðx; tÞ ¼ xffiffiffiffiffiffiffiffi

1�4t
p .

Case III: Consider n = 0, k = 1, a = 1 the Eq. (1) reduces to the following linear fractional diffusion equation in presence of
external force and reaction term
@auðx; tÞ
@ta

¼ @
2uðx; tÞ
@x2 þ @

@x
ðxuðx; tÞÞ �

Z t

0
aðt � nÞuðx; nÞdn; ð27Þ
whose solution is
2/1=α

3/2=α

1=α

3/2=α

1=α

2/1=α

3/2=α

1=α

3/2=α

1=α
t

tt

t

3/1=α 2/1=α 3/1=α

3/1=α
3/1=α 2/1=α

u (x,t) u (x,t)

u (x,t)u (x,t)

a b

dc

(a) Plot of u(x, t) vs. t for different values of a at n = �1, x = 1, a = 0 and k = 0. (b) Plot of u(x, t) vs. t for different values of a at n = �1, x = 1, a = 0 and
) Plot of u(x, t) vs. t for different values of a at n = �1, x = 1, a = 1 and k = 1. (d) Plot of u(x, t) vs. t for different values of a at n = �1, x = 1, a = 1 and



Fig. 4.
k = 1. (c
k = 0.
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whose solution is
uðx; tÞ ¼ x 1þ 2tb

Cðbþ 1Þ þ
3t2b

Cð2bþ 1Þ þ
4t3b

Cð3bþ 1Þ þ � � �
� �

¼ x
X1
r¼0

ðr þ 1Þtrb

Cðrbþ 1Þ ¼ xEbðK2tbÞ; Kr
2 ¼ r þ 1;
where EbðtÞ ¼
P1

r¼0
tr

Cðraþ1Þ ða > 0Þ is the Mittag–Leffler function of first kind.
The result is in complete agreement with the result of Das and Gupta [12].
6. Numerical results and discussion

In this section, numerical results of the probability density function u(x, t) for different fractional Brownian motions
a ¼ 1

3 ;
1
2 ;

2
3 and also for standard motion a = 1 are calculated at n = 2, 1, �1, �2 for specific cases. The variation of u(x, t)

w.r.to t at x = 1 considering b = a are depicted through Figs. 1–4. The corresponding results of u(x, t) w.r.to x and t are de-
picted through Fig. 5 for four different cases with a ¼ 1

2 ; b ¼ 1
3 at n = 2. During numerical computation only fourth order term

of the series solution is considered. The accuracy of the result can be improved by introducing more terms of the approxi-
mate solution.

It is seen from the Fig. 1(a) that u(x, t) increases with the increase in t for all a. However, it is found to decrease with the
increase in a. When there exists only external force (i.e., a = 0, k = 1) which is graphically described by Fig. 1(b), it is seen that
the magnitude of u(x, t) rapidly increases. But if in addition, there exists the absorbent term (i.e., a = 1, k = 1) then it is seen
from Fig. 1(c) that magnitude of u(x, t) decreases. Fig. 1(d) which graphically describes the effect of absorbent term only (i.e.,
a = 1, k = 0) clearly reveals that the nonlinear diffusion process becomes stable. All the figures of Fig. 1(a)–(d) are calculated
for n = 2.

For n = 1, which is represented by Fig. 2, it is seen the magnitude of u(x, t) decreases than the previous one in all the con-
sidered cases. Here the system becomes much stable in presence of only reaction term.

It is observed from Fig. 3 which represents n = �1 that the magnitude becomes higher in the presence of external force
and the reaction term has negligible effect in comparison to n = 1 and n = 2. For n = �2, Fig. 4 depicts that the external force
has a tremendous effect on the given model.
2/1=α

3/2=α

1=α

t

tt

t

1=α

3/2=α

2/1=α

3/1=α

1=α

3/2=α

2/1=α

3/1=α

3/1=α

2/1=α

3/2=α

1=α

3/1=α

u (x,t) u (x,t)

u (x,t)u (x,t)

a b

dc

(a) Plot of u(x, t) vs. t for different values of a at n = �2, x = 1, a = 0 and k = 0. (b) Plot of u(x, t) vs. t for different values of a at n = �2, x = 1, a = 0 and
) Plot of u(x, t) vs. t for different values of a at n = �2, x = 1, a = 1 and k = 1. (d) Plot of u(x, t) vs. t for different values of a at n = �2, x = 1, a = 1 and



Fig. 5. (a) Plot of u(x, t) w.r.to x and t at n = 2, a = 1/2 for a = 0 and k = 0. (b) Plot of u(x, t) w.r.to x and t at n = 2, a = 1/2 for a = 0 and k = 1. (c) Plot of u(x, t)
w.r.to x and t at n = 2, a = 1/2 for a = 1 and k = 1. (d) Plot of u(x, t) w.r.to x and t at n = 2, a = 1/2 for a = 1 and k = 0.
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It is also seen from the 3-D figures which are described through Fig. 5 that the variations of u(x, t) are linear with x but it
becomes exponential with t for different particular cases as stated in the caption of the figures.

Therefore, for positive integral power of n, the absorbent term plays an important role for damping the system even in
presence of external force. But for negative power of n, the presence of external force has causes the system unstable which
cannot be retrieved even by adding the absorbent term into the system.

Tables 1 and 2, which show the approximate and exact values for Cases I and II, clearly exhibit that even four order terms
of the approximation of the solutions are sufficient to get good approximation to the exact solution. It is evident that the
accuracy can further be enhanced by computing few more terms of the approximate solutions.

7. Conclusions

Another important study of this article is to show the effect of reaction term on the nonlinear fractional diffusion equa-
tion. Here the presence of external force increases the rate of diffusion in the considered nonlinear system for positive inte-
gral value of n. But the rate becomes slower in the presence of reaction term. Again in the absence of the external force, the
reaction term helps the diffusivity of the system much slower which indicates that the reaction term controls the system
stability. Therefore, the dynamic response and stability margin are improved in the presence of absorbent term which pro-
vides damping force.

But for negative integral value of n, the rate of diffusion becomes higher which cannot be controlled even in presence of
absorbent term. Therefore it can be concluded that the damping term has lesser effect for controlling the system for n < 0 but
its effect increases for n P 0.
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