LIST OF FIGURES

Figure 2.1: Block diagram for video surveillance system
Figure 2.2: Rotation invariance property of Daubechies complex wavelet transform 18
Figure 3.1: Block Diagram of the Proposed Method
Figure 3.2: Sub-block Diagram of the proposed approach
Figure 3.3: Block Diagram of the Background Modeling in LL sub-band
Figure 3.4: Segmentation results for People video sequence
Figure 3.5: Segmentation results for Intelligent Room video sequence
Figure 3.6: Segmentation results for One Step video sequence
Figure 3.7: Segmentation results for Camera2_070605 video sequence
Figure 3.8: Segmentation results for highwayI_raw video sequence
Figure 3.9: Segmentation results for 4917-5_70 video sequence
Figure 3.10: (a-f) RFAM variations with respect to frame no
Figure 3.11: (a-f) MP variations with respect to frame no
Figure 3.12: (a-f) RPM variations with respect to frame no
Figure 3.13: (a-f) NCC variations with respect to frame no
Figure 3.14: (a-f) PSNR variations with respect to frame no
Figure 3.15: (a-f) NAE variations with respect to frame no
Figure 3.16: (a-f) PCM variations with respect to frame no
Figure 4.1: Block Diagram of the Proposed Method
Figure 4.2: Sub-block Diagram of the proposed approach
Figure 4.3: Segmentation results for People video sequence. 115

Figure 4.4: Segmentation results for Intelligent Room video sequence.	.116
Figure 4.5: Segmentation results for One Step video sequence.	117
Figure 4.6: Segmentation results for Camera2_070605 video sequence	.118
Figure 4.7: Segmentation results for highwayI_raw video sequence	.119
Figure 4.8: Segmentation results for 4917-5_70 video sequence	.120
Figure 4.9: Block Diagram of the DBMSS	.134
Figure 4.10: Sub-block Diagram of the DBMSS	135
Figure 4.11: Wavelet decomposition of image from Venice-3 video sequence	139
Figure 4.12: Segmentation results for high-view video sequence.	.143
Figure 4.13: Segmentation results for venice-3 video sequence	.145
Figure 4.14: Segmentation results for venice-7 video sequence	.146
Figure 4.15: Segmentation results for Ir-2 video sequence.	147
Figure 5.1: Object silhouette motion history in a video frame	158
Figure 5.2: Block diagram of the proposed method	159
Figure 5.3: The spatio-temporal MHI based template formation.	165
Figure 5.4: MHIs of different activities by the proposed method	165
Figure 5.5: Recognition of Activities in our own database.	170
Figure 5.6: Recognition of Activities in KTH database	175
Figure 5.7: Recognition of Activities in i3DPost multi-view dataset	178
Figure 5.8: Recognition of Activities with MSR action recognition database	182
Figure 5.9: Recognition of Activities in VideoWeb Multi-view dataset	186
Figure 5.10: Recognition of Activities in WVU multi-view human action recognition dataset	on 189

Figure 6.1: The block diagram of the proposed human activity recognition system 198
Figure 6.2: Sequence of key poses of walking activity in some selected frames 203
Figure 6.3: Activity boundary definitions
Figure 6.4: Circularly symmetric neighbor sets for different (<i>P</i> , <i>R</i>)
Figure 6.5: Recognition of activities in our own database
Figure 6.6: Recognition of Activities in VideoWeb Multi-view dataset
Figure 6.7: Recognition of Activities in i3DPost multi-view dataset
Figure 6.8: Recognition of Activities in WVU multi-view human action recognition dataset
Figure 6.9: Recognition of Activities with MSR action recognition database
Figure 6.10: Recognition of Multiple Activities in i3DPost multi-view dataset 229