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Chapter 4 : A FRAMEWORK FOR DYNAMIC 

BACKGROUND MODELING AND SHADOW 

SUPPRESSION 

Moving object segmentation is a challenging task due to the various real time practical 

problems, like small movements of non-static objects, tree branches and bushes blowing 

in the wind, waving trees, water surface,  boat wakes, weather issues (such as bright sun, 

fog, heavy rain), and moving object in rain fall. To deal with these issues, the following 

two different frameworks for dynamic background modelling and shadow suppression 

for moving object segmentation in complex wavelet domain are proposed and further 

discussed in sections 4.3.1 and 4.3.2: 

n Dynamic background modelling and shadow suppression using 

improved Gaussian mixture modeling and HSV (Hue, Saturation  and 

Value) color model in case of normal and noisy video 

n Dynamic background modelling and shadow suppression in case of 

normal video, noisy video but also in case of maritime video having 

highly dynamic background and poor contrast 

A  comparative  analysis  of the  proposed  methods  is  presented  both  qualitatively 

and  quantitatively with  other  standard  methods  available  in  the literature for publicly 

available datasets of videos in different maritime scenarios, with varying light and 

weather conditions. Experimental results indicate that the proposed method is 

performing better in comparison to other standard methods for all the test cases. 

4.1. Introduction 

The objective of moving object segmentation is to decompose a video into background 

and the moving foreground objects. Moving object segmentation is a basic step for many 

computer vision applications and it is very useful in robotics, video surveillance, video 
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indexing, traffic monitoring and the many other applications [23-24].  In the recent years, 

various traditional and recent approaches for moving object segmentation have been 

proposed [135]. Sobral and Vacavant [97] presented the experimental analysis of different 

traditional and recent moving object segmentation methods along with their practical 

performance evaluation in terms of memory requirements. Several problems arise while 

segmenting the moving object because of gradual variations of the lighting conditions in 

the scene; noises; due to poor quality image source; sudden changes in the light 

conditions; waves on the water surface; weather issues (such as bright sun, fog, heavy 

rain) which contribute to generate a highly dynamic background; gradual and sudden 

illumination changes; camera jitter, and shadows. To address the above mentioned 

problems, in this chapter two new methods for dynamic background modeling and 

shadow suppression in Daubechies complex wavelet transform have been proposed. 

First method handles, the small movements of non-static objects such as tree branches 

and bushes blowing in the wind, waving trees, shadow regions that are projected by 

foreground objects and detected as moving objects. In the first proposed method, we have 

improved the Gaussian mixture model and use mode value to find the variance of K-

Gaussian for dynamic background modeling. For shadow detection and removal, we have 

used saturation component from HSV model and Grey level model and ratio of standard 

deviation and mean in complex wavelet domain. Second method deals with highly 

dynamic background such as moving object in water surface,  boat wakes, and weather 

issues (such as bright sun, fog, heavy rain), moving object in rain fall, and maritime object 

detection in night. In the second proposed method, we have used frame difference, 

background registration, background difference, and background difference mask for 

dynamic background modeling. For shadow detection and removal, we exploit the high 

frequency sub-band in the complex wavelet domain. 
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The main contributions are as follows: 

 (1) Two new methods for dynamic background modeling and shadow suppression have 

been proposed namely: 

a) Dynamic background modelling and shadow suppression using 

improved Gaussian mixture modeling and HSV (Hue, saturation  and 

value) color model in case of normal and noisy video. 

b) Dynamic background modelling and shadow suppression in case of 

normal video, noisy video but also in case of maritime video having 

highly dynamic background and poor contrast. 

 

(2) Comparative study of the proposed method with other state-of -the-art algorithms on 

a set of challenging video sequences.  

(3) Analysis of the computational complexity and memory consumption of the proposed 

algorithm. 

The rest of the chapter is organized as follows: Section 4.2 presents the related works. 

Methods and models are given in Section 4.3. Experimental results and analysis are given 

in Sections 4.3.1.1 & 4.3.2.1. Finally conclusion of this work is given in Section 4.4. 

4.2. Related Works 

Detection and segmentation of moving objects are challenging scenario due to the 

practical problem of the observed scene such as waves on the water surface, weather 

issues (such as bright sun, fog, heavy rain) which contribute to generate a highly dynamic 

background, gradual and sudden illumination changes, camera jitter, and shadows. To 

take into account these problems, in the recent years, many approaches have been 

proposed [19, 95] and these approaches can be classified in two categories [92] namely 

non-recursive and recursive. 
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A non-recursive technique uses a sliding-window approach for background 

estimation. It stores a buffer of the previous L video frames, and estimates the background 

image based on the temporal variation of each pixel within the buffer. Kim et al. [33] 

proposed moving object segmentation method based on codebook where a codebook 

method is formed to represent significant states in the background using quantization and 

clustering [33]. It solves some of the above mentioned problems, such as sudden changes 

in illumination, but does not consider the problems of ghost regions or shadow detection. 

A more refined application of this algorithm was proposed by Kushwaha et al. [26] which 

is based on construction of basic background model where in the variance and covariance 

of pixels are computed to construct the model for scene background which is adaptive to 

the dynamically changing background. But when we used [26] in maritime video 

sequence, the segmented object is distorted. Bloisi et al. [136] proposed a method for 

maritime video surveillance which aims to imitate a highly dynamic background such as 

a water background, where the light and weather conditions change drastically. In this 

paper, the authors achieved the modeling of a highly dynamic background by creating a 

‘discretization’ of an unknown distribution. The major disadvantage of this method is that 

in case of sun reflection condition in water surface the segmented object is distorted and 

suffers the problem of shadow regions and the presence of ghosts objects. Non-recursive 

techniques need to buffer the frames and its computational complexity is high due to their 

non-recursive nature. 

The major feature of recursive techniques is that they do not maintain a buffer for 

background estimation. They recursively update either a single or multiple background 

model(s) based on each input frame. McFarlane and Schofield [27] have proposed an 

approximation median filter method for segmentation of multiple video objects. This 

technique has also been used in background modeling for urban traffic monitoring [104]. 



99 
 

This method needs many frames to learn the new background region revealed by an object 

that moves away after being stationary for a long time [95] but it is computationally cost 

effective. Stauffer et al. [29] have proposed a tracking method wherein motion 

segmentation was done using a mixture of Gaussians and on-line approximation to update 

the model. This model was considered promising since it showed good foreground object 

segmentation results for many outdoor sequences. However, weaker results were reported 

[29] for video sequences containing non-periodical background changes. This is the case 

for most of the marine sequences, which exhibit frequent background changes due to 

waves and water surface illumination, cloud shadows, and similar phenomena. To deal 

with the issue mentioned in [29], Sanderson [137] proposed a method suitable for object 

detection in maritime scenes based on anisotropic diffusion. This approach performs well 

for horizontal and vertical edges, but fails for object detection in other directions and also 

the time complexity of the method is high. Zivkovic and Heijden [32] proposed a moving 

object segmentation technique which is combination of temporal and spatial features. 

This approach automatically adapts the number of Gaussians being used to model a given 

pixel. However, when we applied the algorithm to marine sequences, the object 

boundaries were not particularly accurate, and the segmented frames contained too many 

noise-related and scattered pixels. Ivanov et al. [106] have proposed an improvement over 

the background subtraction method, which is faster than that proposed by [29] and is 

invariant to runtime change illuminations. But this method is adaptive to only the small 

and gradual changes in the background and in case of sudden changes it distorts. 

To address the above mentioned problems some wavelet domain analysis techniques have 

been developed recently using change detection for video surveillance [138-141, 121]. 

Gao et al. [138] proposed an algorithm for moving object segmentation based on wavelet. 

In this paper, the authors proposed to create a model which keeps a sample of intensity 
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values for each pixel in the image and uses this sample to estimate the Marr wavelet 

probability density function of the pixel intensity. But it suffers from the problem of 

distortion of moving segmented objects due to change in their speed. Jalal and Singh 

[139] refined the work of Gao et al. [138] using background modeling in the complex 

wavelet domain. In this method, a temporal median filter is used to generate an initial 

background model in a training stage and then foreground pixels are obtained by applying 

background subtraction scheme in the subsequent frames. The limitation of this method 

is that, it suffers from the problem of shadows and ghost objects. Mendizabal and Salgado 

[140] proposed a moving object segmentation method based on region-level in a wavelet 

multi-resolution framework. In this approach, characterization is made for each region 

independently as a mixture of K-Gaussian modes and approximation coefficients to model 

the regions which allow handling efficiently illumination changes. This method is 

adaptive to only the small and gradual changes in the background and in case of sudden 

changes segmented object distorts. Khare et al. [121] refined the work of Mendizabal and 

Salgado [140] using single change detection in the complex wavelet domain. In this 

approach, the author use change detection to obtain frame difference in the complex 

wavelet domain. In this paper, author suppresses the shadow problem, but in case of 

sudden light changes segmented object distorts. To concern these issues, Hsia et al. [120] 

proposed a Modified Directional Lifting-based 9/7 Discrete Wavelet Transform 

(MDLDWT) based approach, which is based on the coefficient of Lifting-based 9/7 

Discrete Wavelet Transform (LDWT). Its advantages are that they have a low critical 

path, fast computational speed and the LL3-band of the MDLDWT is employed solely to 

reduce the image transform computing cost and remove noise but it cannot handle large 

dynamic background changes. Here, LL3 band of the video frame belongs to 

approximation coefficients matrix obtained after MDLDWT up to the third level of 
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decomposition. To deal with the issues mentioned in [138-140], Khare et al. [141] 

proposed a moving object segmentation technique which is based on double change 

detection in the complex wavelet domain. The method proposed by Khare et al. [141] 

reduces the noise disturbance and speed change somehow. However, when we applied 

the algorithm [141] to marine sequences, the object boundaries were not particularly 

accurate, and the segmented frames contained too many noise and scattered pixels. 

All the above discussed methods suffer from the problem of either slow speed of moving 

object  or  abrupt  lighting  variation  changes  leading  to  shadow  and  ghost  like  

appearances.  To solve the problem of shadow detection many approaches are proposed 

in wavelet domain in the literatures [88, 142-143].  Shadows  are  mainly  of  two  types:  

self-shadow;  and  cast  shadow  [88].  Guan [142] proposed a shadow detection and 

removal algorithm, by using HSV color model in multi-scale wavelet domain and  the  

real  valued  wavelet  transform,  which  suffers  from  the  problem  of  shift sensitivity  

and  poor  edge  detection.  Khare et al.[143]  proposed  shadow  detection  and  removal  

method,  which  is  based  on  complex wavelet transform with standard deviation of 

wavelet coefficients as a threshold but in dynamic background it does not suppress the 

shadow problem more accurately. 

There are many general approaches to background modeling in dynamic environment but 

only few of them have been tested on water background. A water background is more 

difficult than other kinds of dynamic background since waves on the water surface do not 

belong to the foreground even though they involve motion. Also, sun reflections do not 

have the same behavior of a reflective surface. Therefore, after analyzing these 

approaches, we are able to conclude that there is a slim chance of finding an already 

available solution, which is complete, effective and real time simultaneously. Motivated 

by these facts, in this chapter, two new methods for dynamic background modeling and 
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shadow suppression in the complex wavelet domain are proposed. First method handles 

the small movements of non-static objects such as tree branches and bushes blowing in 

the wind, waving trees, shadow regions that are projected by foreground objects and are 

detected as moving objects. Second method deals with highly dynamic background such 

as moving object in water surface,  boat wakes, and weather issues (such as bright sun, 

fog, heavy rain), moving object in rain fall, and maritime object detection in night. 

4.3. Method and Models 

This section presents two different frameworks for dynamic background modelling and 

shadow suppression under rapidly changing illumination conditions for moving object 

segmentation in complex wavelet domain are proposed and further discussed in sections 

4.3.1 and 4.3.2 respectively.  First, we proposed a method based on improved Gaussian 

mixture modeling and HSV (Hue, saturation and value) color model in case of normal 

and noisy video and then extended the method based on frame difference, background 

registration, background difference, and background difference mask for maritime 

video having highly dynamic background and poor contrast. The two proposed methods 

are as follows 

n Dynamic background modelling and shadow suppression using 

improved Gaussian mixture modeling and HSV (Hue, saturation  and 

value) color model in case of normal and noisy video. 

n Dynamic background modelling and shadow suppression in case of 

normal video, noisy video but also in case of maritime video having 

highly dynamic background and poor contrast. 
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Dynamic Background Modelling and Shadow Suppression using

Improved Gaussian Mixture Modeling and HSV (Hue, saturation and 

value) Color Model 

The proposed dynamic background modelling and shadow suppression technique will 

have many advantages like elimination of shadows and ghosts, reduction of noise, high 

execution speed, adaptability to the dynamic background changes and lighting conditions. 

In the proposed approach, the above mentioned issues as indicated in [120, 121, 138-143] 

are addressed using dynamic background modeling step in complex wavelet domain.  In  

proposed approach, eight major steps are applied on the given video frames which 

include: wavelet de-composition of frame using complex wavelet transform;  use  of  

change  detection  on  detail  coefficients (LH,  HL,  HH);  use  of  improved Gaussian 

mixture based dynamic background  modeling  on approximate  co-efficient  (LL  sub-

band);cast shadow suppression; use of soft thresholding for noise removal;  strong  edge 

detection;  inverse  wavelet  transformation  for reconstruction;  and  finally  using  closing  

morphology operator. For dynamic background modeling, we have improved the 

Gaussian mixture model and used mode value to find the variance of K-Gaussian. For 

shadow detection and removal, we have computed difference between grey level 

components to detect moving object with shadow and adopt logical AND of wavelet 

coefficients of saturation component with grey level components to remove shadow from 

detected moving object with shadow.  All these steps are iteratively applied until the result 

does not surpass the set threshold value for object segmentation. Applying the change 

detection in Daubechies complex wavelet domain have following advantages (a) it is shift 

invariant and have a better directional selectivity as compared to real valued wavelet 

transforms [4] (b) it has perfect reconstruction property (c) it provides true phase 

information [4], while other complex wavelet transform does not provide true phase 
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information [4] (d) Daubechies complex wavelet transform has no redundancy [4]. The 

working of the proposed framework is given as follows and illustrated in Fig. 4.1 & 4.2: 

Step 1: Wavelet Decomposition of frames 

In the proposed approach, a 2-D Daubechies complex wavelet transform is applied on 

current frame and previous frame to get wavelet coefficients in four sub-bands: LL, LH, 

HL and HH. The generating Daubechies complex wavelet transform is described as 

follows: 

The basic equation of Multiresolution theory is the scaling equation [4] 

                               ( ) 2 (2 )
i

i
u a u if få= -                           (4.1) 

where '
i

a s are coefficients, and  ( )uf  is the scaling function. The '
i

a s can be real as well 

as complex valued. Daubechies’s wavelet bases {
,
( )

j k
ty } in one-dimension is defined 

using the above mentioned scaling function ( )uf and multi-resolution analysis of L2 ( ) 

[4]. The generating wavelet ( )ty is defined as: 

   
1

( ) 2 ( 1) (2 )n

n
t a t ny f

-
å= - -                       (4.2) 

where ( )ty  share same compact support [-L, L+1]. 

Any function f (t) can be decomposed into complex scaling function and mother wavelet 

as: 

                       
1max

, ,

( ) ( ) ( )
j

j jo

k k
k j jj k oo j k

f t C t d tf y
-

=
å å= +         (4.3) 

where, 
oj is a given low resolution level,  {

jo
kC } is called approximation coefficient and  

{
j

kd } is  known as detail coefficient. 

Step 2: Application of change detection method on wavelet co-efficients 

In step 2, a simple change detection based method is applied on detail wavelet coefficients 

i.e. on sub-bands: LH, HL, and HH. Let 
, ( , )( { , , })n dWf i j d LH HL HH= and 
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1, ( , )( { , , })n dWf i j d LH HL HH- = are the wavelet coefficients at location (i, j) of the 

current and previous frames respectively. Instead of a prior assignment of a fixed 

threshold ,Vth d  to each frame difference, this method uses the fast Euler number 

computation technique [126] to automatically determine ,Vth d  from the video frame. The 

stable Euler number technique is one of the most effective algorithms for determining 

thresholds for change differences. However, its high computational complexity has 

always precluded its employment in real-time applications. A fast Euler number 

computation method was proposed [126] to overcome the high computational complexity 

of the stable Euler number method.  

The fast Euler numbers algorithm calculates the Euler number for every possible 

threshold with a single raster of the frame difference image using following equation:   

                                         
1 3

1
( ) [( ( ) ( ) 2 ( ))]

4
d

E i q i q i q i= - -                                        (4.4) 

where 1q ,  3q , and dq is the quads (quad is a  2*2 masks of bit cells) contained in the 

given image.  

The output of the algorithm is an array of Euler numbers: one of each threshold value. 

The Zero crossings find out the optimal threshold. Detailed algorithms for the fast Euler 

number computation method can be found in [126]. 

The wavelet domain frame difference , ( , )WDn d i j for respective sub-bands for every 

pixel location (i, j) which belongs to the co-ordinate of frame is computed as follows: 

 

1 ( , ) ( , )
, 1, ,( , ),

0
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otherwise
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î þ

                (4.5) 
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Step 3: Background Model Creation using LL sub-band 

In the dynamic background modeling, the most prevalent background is the continuous 

variations of lighting condition. To model such phenomenon, Gaussian Mixture Models 

(GMM) is useful due to their inherent properties [29] and this model may perform betterif 

parameters associated with it are computed carefully. Therefore, in this method an 

improved GMM based model is used to models the pixel distributions of background. To 

improve the performance and robustness of the original GMM model here we propose to 

use the statistical mode value in place of mean value to find the probability distribution 

function (PDF) of K- Gaussian distribution. 

This small change of way of computing mean value is more robust towards noise, gradual 

and sudden illumination change in complex wavelet domain using LL sub-band. This 

PDF is used to update the background pixel by considering the likelihood of observing a 

particular intensity for a pixel. If the pixels are normally distributed, then only the mode 

and variance are needed to maintain the background model. When the PDF is multimodal, 

then mode, variance and weights of K-Gaussian distribution are needed to maintain the 

background model. 

The working of improved mixture of Gaussian is given as follows: 

In improved Gaussian mixture model each background pixel is modeled independently 

by PDF of K- Gaussian distribution where each Gaussian represents the intensity 

distribution of one the different environment e.g. gradual and sudden illumination 

changes, camera jitter, shadows, and observed by the pixels to construct a dynamic 

background. Let the kth Gaussian mixture of PDF is represented by its mean kF , median

kD , variance 2
kx , standard deviation kx and its weight in the mixture be denoted by kQ .  
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Figure 4.1: Block Diagram of the Proposed Method 
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Figure 4.2: Sub-block Diagram of the proposed approach 
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In the first step of dynamic background modeling, we denote an entire image sequence 

up to the nth frame by 
, 1 , 2 ,

( , ,....... )
n n LL n LL n LLn

Wf Wf WfW = ,where

{0,1,2... 1} {0,1,2... 1}
,

p q
k LLk

f G - * -Î , and G NÍ ; with p and q representing the number of 

rows and columns of
,k LL

k
f respectively. Then, we find frame difference mask 

, 3( , )n LLWD i j of the LL image which is obtained by taking the difference between 

coefficients in two LL sub-bands as follows: 

                  , 3
, 2 1, 1

( , ) ( , ) ( , )n LL
n LL n LL

WD i j Wf i j Wf i j
-

= -                                     (4.6) 

In the second step of dynamic background modeling, the system starts with an empty set 

of models and for every new observation , 3( , )n LL i jWD , we check the condition such that

, 3( , ) 2 ( , )n LL i j i jWD x< , where x  is the standard deviation of K-Gaussian 

distribution. If such a condition is true then its associated parameters of PDF are updated 

as follows: 

                                                            ( , )
( , )

i j
i j

ab =
Q

                                                      (4.7) 

where a  is the learning rate. Here, 10 different sequences are considered over 800 frames 

for each of the sequences is recorded. This resulted in 50 samples of size 800 each. The 

test statistic was calculated for each of the samples and the value of a  is set to 0.01 and 

( , )i jQ is the weight of K-Gaussian distributions. The mean of K-Gaussians is computed 

as follows: 

                                   
, 2

( , ) (1 ) ( , ) ( , )
n LL

i j i j Wf i jb bF = - *F + *                          (4.8) 

where ( , )i jF is the mean of K-Gaussian distribution and 
, 2

( , )
n LL

Wf i j  is the sub-band of 

complex wavelet transform. After finding out the mean of Kth distribution, the mode value 

is calculated instead of mean using following equation [144]: 
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, 2

( , ) 3 ( ( , )) 2 ( , )
n LL

i j Wf i j i jd = *D - *F                                       (4.9) 

where ( , )i jd is mode of K-Gaussian distribution and D  is the median value. 

In the next step, the variance of K-Gaussian distribution using mode value is calculated 

as follows: 

          
2 2 2

, 2
( , ) (1 ) ( , ) ( , )*( ( , ) ( , ))

n LL
i j i j i j Wf i j i jx b x b d= - * - -                                  (4.10)             

 

where
2( , )i jx is the variance of K-Gaussian distribution and 

, 2
( , )

n LL
Wf i j  is the sub-

band of complex wavelet. 

The weight of the Gaussians is computed as follows: 

                                                ( , ) (1 ) ( , )i j i ja aQ = - *Q +                                                (4.11)                           

If given condition is not true i.e. , 3( , ) 2 ( , )n LLWD i j i jx<  then the weights of 

the remaining Gaussians of PDF are updated as 

                                                       ( , ) (1 ) ( , )i j i jaQ = - *Q                                                (4.12)                                       

In the last step of dynamic background modeling, the background frames are updated 

using weight of the K- Gaussian distributed (which is obtained by Eq. 4.12) and mode 

value (which is obtained by Eq. 4.9). The updated pixels in the background frame is 

obtained as follows.  

                   
, 1 , 1

( , ) ( , ) ( , ) ( , )
n LL n LL

Wf i j Wf i j i j i jd= + *Q                                                 (4.13) 

where 
, 1

( , )
n LL

Wf i j  is the updated background frame. 

Step 4: Shadow detection and removal 

For detection & removal of shadow, in the proposed work we have used HSV color model 

for detection of pixels which have been changed due to moving objects and moving 

shadow. Since Hue and value component of HSV changes quite dramatically depending 

on the strength of shadow, therefore we have used only saturation component of each 
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frame for processing (See Fig. 4.1). In the proposed approach, we have computed the 

difference between grey level components of LL sub-band frame to detect moving object 

with shadow and adopt logical AND of wavelet coefficients of saturation component with 

grey level components to remove shadow from detected moving object with shadow. Let 

, 3( , )n LL
E

WD i j
D  is difference between grey level componentsDEof LL sub-band frame and 

, 3( , )n LL
H

WD i j
D  is difference between saturation components DH of LL sub-band frame. 

, 3( , )n LL
E

WD i j
D  and  , 3( , )n LL

H
WD i j

D  are calculated as follows: 

                   , 3
, 2 1, 1

( , ) ( , ) ( , )n LL
n LL n LLE E

WD i j Wf i j Wf i j
-D D

= -                                               (4.14) 

                  , 3
, 2 1, 1

( , ) ( , ) ( , )n LL
n LL n LLH H

WD i j Wf i j Wf i j
-D D

= -                                                (4.15) 

The proposed condition for detection of foreground object with shadow at each pixel        

(i, j) is given as follows: 

, 3

( , )
, 3

( , )1

0

n LL
E

i j
n LL

E

WD

WD

i jif

otherwise

x
D

D

ì üæ ö³ç ÷ï ïDè øN=í ý
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                                       (4. 16)                     

where D  is the mean of absolute wavelet coefficients which represents average 

luminance  of  the  object  in  wavelet  domain  and  x   is  the  standard  deviation  of  the  

luminance  of  the object plus its surround in wavelet domain and 
( , )

, 3
i j

n LL
E

WD

x

D

æ ö
ç ÷Dè ø

is the 

relative deviation and  is  defined  as  ratio  of  standard  deviation  (x )  to  the  mean  (D )in  

wavelet  domain. 

The  proposed  condition  for  detection  of  foreground  object  without  shadow  at  each  

pixel  (i,j)  is given as follows: 
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              (4.17) 

where ( , )
, 3

i j
n LL

E
WD

D
 is difference between grey level components of LL sub-band frame 

(which is given in Eq. 4.14), ( , )
, 3

i j
n LL

H
WD

D
is difference between saturation 

components of LL sub-band frame(which is given in Eq. 4.15) and
( , )

, 3
i j
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E

WD

x

D
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, 3
( , )

n LL H

i jWD

x

D

æ ö
ç ÷Dè ø is the relative standard deviation of  ( , )

, 3
i j

n LL
E

WD
D

 and ( , )
, 3

i j
n LL

H
WD

D

respectively.  

 

The proposed algorithm for shadow detection and removal are as follows: 

1. Perform complex wavelet de-composition transform on saturation component of 

HSV model and Grey level model of reference frame and current frame. 

2. Take absolute difference of LL wavelet co-efficient of both saturation component 

from HSV model and Grey level model (which is taken from in Eq. 4.14 & 4.15) 

in complex wavelet domain. 

3. Compute relative standard deviation of ( , )
, 3

i j
n LL

E
WD

D
and ( , )

, 3
i j

n LL
H

WD
D

i.e. 

( , )
, 3

i j
n LL

E
WD

x

D

æ ö
ç ÷Dè ø

and 
( , )

, 3
i j

n LL
H

WD

x

D

æ ö
ç ÷Dè ø

. 

4. Check  condition  for  shadow  detection  (detection  of  foreground  object  with  

shadow)  using Eq. (4.16). 
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5. Check  condition  for  shadow  removal  (detection  of  foreground  object  without  

shadow)  using Eq. (4.17). 

The detected moving object after applying shadow removal condition has some noise 

regions because of irregular object motion and noise. Also, the boundary region may not 

be very smooth. 

Step 5: Noise removal using wavelet based soft thresholding 

After applying change detection based method and background modeling, the obtained 

result may have noise. This step deals with the noise reduction from the data obtained in 

step 4. In presence of noise, the equation is expressed as: 

                          *
, ( , , , )

, ( , , , )
( , ) ( , )n d LL LH HL HH

n d LL LH HL HH
WD WDi j i j h= =

= +                                 (4.18) 

where 
*

, ( , , , )
( , )

n d LL LH HL HH
WD i j

= is frame difference without noise, , ( , , , )( , )n d LL LH HL HHWD i j=   

is the original frame difference with noise, and h  is the additive noise. The wavelet 

domain soft thresholding T is applied on wavelet coefficients for noise reduction. The 

value of soft thresholding parameter T for de-noising is computed as [127]       

                                                  
1

1

2 j
T

y
w

x-

æ ö
= ç ÷

è ø
                                                                        (4.19)                                                                         

where  j is wavelet decomposition level  and
   
y ,  x and w

 
are standard deviation, 

absolute
 
mean and absolute median of wavelet coefficients of a sub-band. 

Step 6: Strong edges detection in wavelet domain 

Canny edge detection method is one of the most useful and popular edge detection 

methods, because of its low error rate well localized edge points and single edge detection 

response [128]. Here, the canny edge detection operator is applied on  

*
, ( , , , )

( , )
n d LL LH HL HH

WD i j
=

  to detect the edges of significant difference pixels in all sub-

bands as follows: 
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*

, ( , , , ) , ( , , , )
( , ) ( ( , ))

n d LL LH HL HH n d LL LH HL HH
DE i j canny WD i j

= =
=                                (4.20) 

where 
, ( , , , )

( , )
n d LL LH HL HH

DE i j
=  

is an edge map of 
*

, ( , , , )
( , )

n d LL LH HL HH
WD i j

=  
 

Step 7: Application of inverse Daubechies complex wavelet transform 

After finding edge map 
, ( , , , )

( , )
n d LL LH HL HH

DE i j
=  in wavelet domain from step 6, inverse 

wavelet transform is applied to get moving object edges in spatial domain i.e. E
n . 

Step 8:  Application of closing morphological operation to sub-band 

As a result of step 7, the obtained segmented object may include a number of disconnected 

edges due to non-ideal segmentation of moving object edges. Extractions of object using 

these disconnected edges may lead to inaccurate object segmentation.  Therefore,  some 

morphological  operation  is  needed  for  post-processing  of  object  edge  map  to  

generate  connected edges.  Here, a binary closing morphological operation is used [128] 

which gives ( )nM E  i.e. the set of connected edge. In this step, the final segmented output 

is obtained. 

4.3.1.1. Experiments and Result 

Dataset Description 

For experimentation purpose, we have taken four datasets namely  Pets Dataset [129], 

Visor datasets [130-132], Caviar Dataset [133], CVCR Dataset [134] as discussed in 

chapter 3 (in section 3.4.1). 

Qualitative Analysis 

The  proposed  method  for  segmentation  of  moving  object  has  been  applied  on  a  

number  of  video  clips datasets as discussed in chapter 3 (in section 3.4.1) [129-134].  

For the segmentation of the video object by various methods, the numbers of frames taken 

into consideration at a time include 125, 150, 175 and 200. Here, in this section, the 
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qualitative & quantitative analysis of the proposed method & other methods in 

consideration are presented. 

(A) Experiment-1 

Here in this experiment, we have taken one step video sequence from the Pets data sets 

[129]. From Fig. 4.3, one can conclude that the segmentation result obtained by the 

proposed method has better segments in full and partial occlusions between human beings 

in outdoor environments (see frame nos. 125-200). From the obtained result of other 

methods are suffering the problem of shadow but the proposed method is able to suppress 

the shadow problem (see frame 125 - 200). The proposed method handles all these critical 

condition and segments the result properly (see frame 125 - 200).  

 

Figure 4.3: Segmentation results for People video sequence corresponding to (a) Frame 

125 (b) frame 150, (c) frame 175, (d) frame 200 (i) original frame, and the segmented 

frame obtained by various methods such as: (ii) the proposed method, (iii) Kim et al. [33], 

(iv) Hsia et al. [120] and (v) Khare et al. [121] (vi) Khare et al. [141]. 
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(B) Experiment-2 

Here in this experiment, we have taken Intelligent Room video sequence from the Visor 

dataset [130]. From Fig. 4.4,  it  is  observed  that  better  shape  of  moving  object  with  

least  noise  in segmented  frame  is  obtained  by  using  the  proposed  method  as  

compared  to  segmented frame obtained by the other methods [33, 120, 121, 141]. From 

Fig. 4.4, it is also clear that method used in [33, 120, 121, 141] (see frame 125-200 (iv-

vii) results in comparable shape structure as compared to the proposed method but is poor 

in noise removal. 

 

Figure 4.4: Segmentation results for Intelligent Room video sequence corresponding to 

(a) Frame 125 (b) frame 150, (c) frame 175, (d) frame 200 (i) original frame, and the 

segmented frame obtained by various methods such as: (ii) the proposed method, (iii) 

Kim et al. [33], (iv) Hsia et al. [120] and (v) Khare et al. [121] (vi) Khare et al. [141]. 
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(C) Experiment-3 

Here in this experiment, we have taken One Step video sequence from the Caviar dataset 

[133]. In the Fig. 4.5, while comparing the segmentation results of the proposed method 

to other methods, one can easily observe the segmented frames obtained using proposed 

method are more accurate (see frame no. 125, 150, 175, and 200). The proposed technique 

handles the problem of ghosts and shadows unlike segmented frame obtained by the 

method used by [33, 120, 121, 141] (see frame 125-200 (iii-vi)).  

 

Figure 4.5: Segmentation results for One Step video sequence corresponding to (a) Frame 

125 (b) frame 150, (c) frame 175, (d) frame 200 (i) original frame, and the segmented 

frame obtained by various methods such as: (ii) the proposed method, (iii) Kim et al. [33], 

(iv) Hsia et al. [120] and (v) Khare et al. [121] (vi) Khare et al. [141]. 
 

 

 



118 
 

(D) Experiment-4 

Here in this experiment, we have taken Camera2_070605 video sequence from the visor 

dataset [131]. In the Fig. 4.6, it is clear that proposed method work properly in noisy 

environment and poor lighting condition. This video is performed at particular angle, it 

also seems that other methods [33, 120, 121, 141] have not properly segmented the object; 

some portion of objects distorts (see frame no. 125, 150, 175, 200 (iii-vi)) but the 

proposed method properly segment the whole object. From obtained result, it is also clear 

that most of the method suffer the problem of shadow region (see frame no. 125, 150, 

175, 200 (iii, v, vi)) but proposed method suppress the shadow problem (see frame no. 

125, 150, 175, 200 (ii)). 

 

Figure 4.6: Segmentation results for Camera2_070605 video sequence corresponding to 

(a) Frame 125 (b) frame 150, (c) frame 175, (d) frame 200 (i) original frame, and the 

segmented frame obtained by various methods such as: (ii) the proposed method, (iii) 

Kim et al. [33], (iv) Hsia et al. [120] and (v) Khare et al. [121] (vi) Khare et al. [141]. 
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(E) Experiment-5 

Here in this experiment, we have taken highwayI_raw video sequence from the visor 

dataset [132]. In these video sequence cars shadows are present (see frame 125-150). In 

the Fig. 4.7, it is clear that proposed method easily handle the problem of shadow (see 

frame 125-200 (i)) but other method [33, 120, 121, 141] suffer from the problem of 

shadows [see frame 125-200 (ii-viii)]. Due to fast moving speed of car the segmented 

result obtained by Khare et al. [121, 141] method is distorted (see frame 125-200 (vi)) 

but in this condition proposed method work properly. 

 

Figure 4.7: Segmentation results for highwayI_raw video sequence corresponding to (a) 

Frame 125 (b) frame 150, (c) frame 175, (d) frame 200 (i) original frame, and the 

segmented frame obtained by various methods such as: (ii) the proposed method, (iii) 

Kim et al. [33], (iv) Hsia et al. [120] and (v) Khare et al. [121] (vi) Khare et al. [141]. 
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(F) Experiment-6 

Here in this experiment, we have taken 4917-5_70 video sequence from the CVCR 

dataset [134]. This is the most critical data set because the video was shooted much more 

height and in highly crowded environment and also in this video full occlusions, shadow 

and noise are present. From the Fig. 4.8, it is clear that proposed method work properly 

in crowded environment (see frame 125-200 (ii)) but other methods [33, 120, 121, 141] 

suffer from the noise, shadow and ghost problem (see frame 125-200 (iii-viii))  

 

Figure 4.8: Segmentation results for 4917-5_70 video sequence corresponding to (a) 

Frame 125 (b) frame 150, (c) frame 175, (d) frame 200 (i) original frame, and the 

segmented frame obtained by various methods such as: (ii) the proposed method, (iii) 

Kim et al. [33], (iv) Hsia et al. [120] and (v) Khare et al. [121] (vi) Khare et al. [141]. 
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Quantitative Analysis 

 

It  can  be  observed  from  the  qualitative results presented in section 4.3.1.1 that  none  

of  the  previously proposed segmentation  algorithms  give  accurate segmentation  result  

as  compared  to  proposed approach.  It  is  also  very  difficult  to  compare  the 

segmentation  results  visually  because  human  visual  system  can  identify  and  

understand  scenes  with different  connected  objects  effortlessly.  Therefore, quantitative 

performance metrics together with visual results are more appropriate. In this section of 

the chapter, the performances of the proposed method have been compared quantitatively 

with other state-of-the-art methods [33, 120, 121, 141]. For quantitative analysis, the 

various performance metrics considered include relative foreground area 

measure(RFAM) [84],  relative position based measure (RPM) [84],  normalized cross 

correlation (NCC) [85],  peak signal-to-noise ratio (PSNR) [87] and misclassification 

penalty (MP) [84], normalized absolute error (NAE) [86], pixel classification based 

measure (PCM) [84], shadow detection rate (SDR) [88], shadow discrimination rate [88], 

execution time and memory consumption as discussed in chapter 2 (in section 2.5).  

Performance Analysis 

 

Tables  4.1-4.7 presents  the  values  of  RFAM, MP, RPM, NCC, NAE, PSNR, and PCM 

for  the  proposed method  and  other  methods [33, 120, 121, 141] for  six  video  

sequences [129-134].  From  Tables  4.1-4.7, one  can  conclude  that  the  proposed  

method  is associated to high value of RFAM, RPM, NCC,  PSNR, PCM ; and low value 

of  MP & NAE (see the result in table 4.1-4.7 in bold), in most of the frames in comparison 

to other method in consider [33, 120, 121, 141] for all dataset [129-134].  

From Tables 4.8 and 4.9, it can be inferred that in cases of 4917-5_70 video sequence, 

HighwayI_raw video sequence, Camera2_070605 video sequence, One Step video 

sequence, and People video sequence the proposed method is found to be better than all 
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other methods [33, 120, 121, 141]  in terms of shadow detection rate and shadow 

discrimination rate, and it can also be observed that the proposed method is found to be 

better than other methods [33, 120, 121, 141] in terms of shadow detection rate and 

shadow discrimination rate for six video sequence.  Tables 4.8 and 4.9, we can say that 

the proposed method performs well for both indoor and outdoor types of video sequences 

[129-134]. 

In Table 4.10, average computation time (second/frame) and memory consumption 

for different methods for a video of frame size 480 x 272 with 100 frames [133] are 

shown. From the Table 4.10, it can be observed that the proposed method using complex 

wavelet transform is faster than [120, 121] , takes approximately same time as comparison 

to the method proposed by Khare et al. [141] and more time as compared to the method 

proposed by Kim et al. [33]. Also from the Table 4.10, the proposed method consumes 

only 4.38 megabytes of RAM which is the least in comparison with the other methods 

discussed [33, 120, 121, 141]. Therefore, it can be concluded that the time required for 

the execution of the proposed method is average to other methods and consumes less 

amount of the system memory. 

Therefore, after observing values of various quantitative measures, it can be 

concluded that the proposed method using Daubechies complex wavelet transform gives 

better results as compared to other methods. 
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Table 4.1: Values of Relative foreground area measure (RFAM) 

 

 

 

 

 

 

 

 

 

 

 

 

 

A-People Video Sequences [129] 

Frame No. Proposed 

by Khare 

et al. [141] 

Proposed 

by Kim et 

al. [33] 

Proposed 

by Hsia et 

al. [120] 

Proposed 

by Khare 

et al. [121] 

Proposed 

Method 

125 0.9456 0.4914 0.5870 0.7126 0.9459 

150 0.9565 0.4665 0.6491 0.6005 0.9725 

175 0.9643 0.5719 0.7457 0.6190 0.9949 

200 0.9651 0.5084 0.6206 0.7508 0.9797 

B-Camera2_070605 Video Sequence [131] 

125 0.9253 0.8631 0.9514 0.8757 0.9786 

150 0.9435 0.9316 0.8087 0.8184 0.9469 

175 0.9056 0.9365 0.7920 0.8500 0.9888 

200 0.9645 0.8274 0.8949 0.8261 0.9995 

C-One Step Video Sequence [133] 

125 0.9371 0.7535 0.8651 0.8293 0.9956 

150 0.9567 0.7583 0.7607 0.8612 0.9814 

175 0.9839 0.7866 0.8249 0.7893 0.9247 

200 0.9752 0.7914 0.8199 0.8752 0.9685 

D-Intelligent room Video Sequence [130] 

125 0.8540 0.5215 0.8961 0.6415 0.9517 

150 0.9154 0.3084 0.7992 0.6320 0.8936 

175 0.9048 0.4833 0.6747 0.5326 0.8956 

200 0.8947 0.3492 0.7583 0.6739 0.9110 

E-Car Video Sequence [132] 

125 0.8892 0.4708 0.7433 0.8302 0.9148 

150 0.8358 0.4925 0.8287 0.8768 0.9307 

175 0.8426 0.4674 0.7645 0.7423 0.8787 

200 0.8672 0.4733 0.7213 0.7521 0.9027 

F-Crowd Video Sequence [134] 

125 0.9239 0.6514 0.8396 0.6581 0.9186 

150 0.9037 0.5445 0.8089 0.6064 0.9795 

175 0.9152 0.5629 0.8762 0.6183 0.9483 

200 0.9325 0.6103 0.8114 0.6835 0.9886 
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Table 4.2: Values of Misclassification Penalty (MP) 

 

 

A-People Video Sequences [129] 

Frame No. Proposed 

by Khare 

et al. [141] 

Proposed 

by Kim et 

al. [33] 

Proposed 

by Hsia et 

al. [120] 

Proposed 

by Khare 

et al. [121] 

Proposed 

Method 

125 0.0452 0.0069 0.0060 0.0011 1.5893e-004 

150 0.0360 0.0040 0.0030 1.4639e-

003 

1.6412e-005 

175 0.0394 0.0067 0.0020 8.4168e-

003 

4.0949e-005 

200 0.0673 0.0189 0.0095 1.3720e-

004 

8.8613e-005 

B-Camera2_070605 Video Sequence [131] 

125 0.0039 0.0035 2.0025e-

004 

4.3669e-

004 

1.0918e-004 

150 0.0050 1.4146e-

004 

0.0032 0.0010 1.4768e-004 

175 0.0086 3.6778e-

004 

0.0034 5.4249e-

004 

3.4264e-005 

200 0.0054 0.0013 0.0066 2.2011e-

004 

3.0940e-005 

C-One Step Video Sequence [133] 

125 0.0027 0.0502 0.0069 0.0275 1.3841e-004 

150 0.03 0.0846 0.0034 0.0043 0 

175 0.0071 0.0581 0.0094 0.0046 1.8262e-004 

200 0.0400 0.0988 0.0078 0.0400 4.7875e-004 

D-Intelligent room Video Sequence [130] 

125 0.0061 0.0064 0.0031 0.0035 0.0016 

150 0.0028 0.0052 6.0313e-

004 

8.4038e-

004 

2.0028e-004 

175 0.0068 0.0107 5.0712e-

005 

1.6023e-

004 

0 

200 0.0021 0.0097 2.0408e-

004 

0.0024 1.9837e-004 

E-Car Video Sequence [132] 

125 0.0094 0.0242 0.0975 0.0463 9.8308e-004 

150 0.0086 0.0307 0.0136 0.0498 0.0025 

175 0.0011 0.0217 0.0285 0.0444 6.3444e-004 

200 0.0092 0.0894 0.0204 0.0424 0.0029 

F-Crowd Video Sequence [134] 

125 0.0086 0.0021 0.0698 0.3256 0.0399 

150 0.0595 0.0201 0.0970 0.3195 0.0083 

175 0.0483 0.0085 0.0296 0.4456 0.0066 

200 0.045 0.0120 0.0178 0.1864 0.0060 
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Table 4.3: Values of Relative position based measure (RPM) 

 

 

 

 

 

 

 

 

 

 

 

 

 

A-People Video Sequences [129] 

Frame No. Proposed 

by Khare 

et al. [141] 

Proposed 

by Kim et 

al. [33] 

Proposed 

by Hsia et 

al. [120] 

Proposed 

by Khare 

et al. [121] 

Proposed 

Method 

125 0.8903 0.9537 0.7840 0.9268 0.9561 

150 0.8707 0.8440 0.8616 0.8602 0.9867 

175 0.8746 0.8328 0.8053 0.8842 0.9824 

200 0.8877 0.8775 0.7890 0.9789 0.9815 

B-Camera2_070605 Video Sequence [131] 

125 0.7585 0.9525 0.9800 0.9125 0.9906 

150 0.8475 0.9900 0.9490 0.9576 0.9816 

175 0.7688 0.9775 0.9495 0.9107 0.9950 

200 0.8817 0.9754 0.9359 0.9690 0.9951 

C-One Step Video Sequence [133] 

125 0.9087 0.7854 0.9244 0.9002 0.9939 

150 0.8992 0.7802 0.9411 0.9667 1 

175 0.9767 0.8277 0.9269 0.9904 0.9919 

200 0.9105 0.8004 0.9299 0.9705 0.9900 

D-Intelligent room Video Sequence [130] 

125 0.9489 0.8608 0.9403 0.9515 0.9752 

150 0.9817 0.8503 0.9459 0.9395 0.9737 

175 0.9295 0.8864 0.9876 0.9735 1 

200 0.9319 0.8521 0.9652 0.9245 0.9826 

E-Car Video Sequence [132] 

125 0.8877 0.8773 0.8910 0.7437 0.9922 

150 0.8817 0.8549 0.8804 0.6589 0.9960 

175 0.9616 0.9521 0.9471 0.6896 0.9845 

200 0.9686 0.8325 0.8670 0.7230 0.9544 

F-Crowd Video Sequence [134] 

125 0.8707 0.9894 0.9149 0.7202 0.9401 

150 0.8475 0.9659 0.9145 0.7447 0.9596 

175 0.8968 0.9475 0.9451 0.7647 0.9534 

200 0.9124 0.9484 0.9594 0.7474 0.9623 
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Table 4.4: Values of Normalized cross correlation (NCC) 

 

 

 

 

 

 

 

 

 

 

 

 

A-People Video Sequences [129] 

Frame No. Proposed 

by Khare 

et al. [141] 

Proposed 

by Kim et 

al. [33] 

Proposed 

by Hsia et 

al. [120] 

Proposed 

by Khare 

et al. [121] 

Proposed 

Method 

125 0.9206 0.7598 0.8739 0.7505 0.9804 

150 0.9672 0.7371 0.7991 0.7785 0.9830 

175 0.9803 0.7692 0.8980 0.7799 0.9551 

200 0.9655 0.7890 0.7379 0.7121 0.9407 

B-Camera2_070605 Video Sequence [131] 

125 0.9163 0.7980 0.7215 0.7799 0.9472 

150 0.9069 0.7621 0.7411 0.7070 0.9242 

175 0.9013 0.7034 0.7446 0.7030 0.9303 

200 0.9224 0.7245 0.7053 0.7091 0.9174 

C-One Step Video Sequence [133] 

125 0.9257 0.8162 0.8407 0.7755 0.9767 

150 0.9273 0.8435 0.8928 0.7298 0.9723 

175 0.9011 0.8762 0.8847 0.7594 1 

200 0.9444 0.8029 0.8093 0.7726 0.9661 

D-Intelligent room Video Sequence [130] 

125 0.8369 0.7477 0.7769 0.7154 0.8676 

150 0.8178 0.7928 0.7672 0.7182 0.8621 

175 0.8733 0.7033 0.7475 0.7529 0.8295 

200 0.8455 0.7038 0.7368 0.7302 0.9176 

E-Car Video Sequence [132] 

125 0.8206 0.7631 0.7543 0.6263 1 

150 0.8672 0.7174 0.7374 0.6394 0.9998 

175 0.8803 0.7590 0.7364 0.6830 0.9628 

200 0.8655 0.7215 0.7583 0.6596 0.9544 

F-Crowd Video Sequence [134] 

125 0.7314 0.6496 0.6128 0.5027 0.8760 

150 0.7673 0.6029 0.6093 0.5217 0.8983 

175 0.7412 0.6837 0.6944 0.5133 0.8982 

200 0.7673 0.6865 0.6578 0.5126 0.9013 
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Table 4.5: Values of Peak Signal-to-Noise Ratio (PSNR) 

 

 

 

 

 

 

 

 

 

 

 

 

A-People Video Sequences [129] 

Frame No. Proposed 

by Khare 

et al. [141] 

Proposed 

by Kim et 

al. [33] 

Proposed 

by Hsia et 

al. [120] 

Proposed 

by Khare 

et al. [121] 

Proposed 

Method 

125 67.2287 62.2629 66.8536 69.6700 76.8092 

150 59.6538 62.2629 66.0358 67.2586 77.7967 

175 63.9703 62.2500 67.8870 67.0565 75.9444 

200 67.5842 62.3044 64.4048 68.5922 72.4405 

B-Camera2_070605 Video Sequence [131] 

125 67.1911 62.0224 64.5609 63.2390 73.8846 

150 64.7191 66.7869 68.0527 67.8788 73.4895 

175 63.7259 64.8574 68.3232 66.8596 71.8194 

200 68.5521 64.4200 66.4702 65.9246 71.1882 

C-One Step Video Sequence [133] 

125 65.1845 61.2879 68.6556 64.5716 75.9043 

150 64.6888 61.0113 67.9695 68.3547 74.3613 

175 63.3983 61.1819 66.5266 67.5512 73.8112 

200 69.0326 61.7630 67.3078 68.4575 73.2359 

D-Intelligent room Video Sequence [130] 

125 65.2835 65.1092 73.2923 72.7520 75.5231 

150 64.4941 66.5547 75.3112 74.3599 77.7936 

175 63.7211 67.9265 71.4456 71.7210 76.8141 

200 70.5598 63.9785 73.3295 73.9095 80.5499 

E-Car Video Sequence [132] 

125 66.5151 55.0504 54.8410 55.636 69.0886 

150 64.947 54.9127 55.6995 54.1830 68.3215 

175 63.9195 55.4390 56.2767 54.1909 65.7199 

200 67.4324 54.5799 56.1901 54.5214 68.1365 

F-Crowd Video Sequence [134] 

125 65.997 63.1445 62.6475 58.887 69.3576 

150 64.9319 62.2401 62.344 57.1533 68.2658 

175 63.4649 61.5444 61.4541 56.6778 68.5928 

200 67.7056 61.7444 62.1407 57.0360 67.9130 
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Table 4.6: Values of Normalized absolute error (NAE) 

 

 

 

 

 

 

 

 

 

 

 

 

A-People Video Sequences [129] 

Frame No. Proposed 

by Khare 

et al. [141] 

Proposed 

by Kim et 

al. [33] 

Proposed 

by Hsia et 

al. [120] 

Proposed 

by Khare 

et al. [121] 

Proposed 

Method 

125 0.8734 0.6239 0.5522 0.4978 0.0962 

150 0.7253 0.6559 0.5463 0.6141 0.0631 

175 0.7138 0.6925 0.5441 0.6588 0.0851 

200 0.7944 0.6732 0.4399 0.5109 0.2106 

B-Camera2_070605 Video Sequence [131] 

125 0.7797 0.7751 0.3107 0.5836 0.0831 

150 0.7697 0.7781 0.3572 0.3718 0.1022 

175 0.7808 0.7510 0.3381 0.4736 0.1512 

200 0.7818 0.7953 0.4960 0.5624 0.1674 

C-One Step Video Sequence [133] 

125 0.5238 0.4856 0.2724 0.3975 0.0513 

150 0.3963 0.6223 0.3268 0.2991 0.0750 

175 0.4752 0.5092 0.4408 0.3482 0.0824 

200 0.3655 0.5289 0.3997 0.3655 0.1021 

D-Intelligent room Video Sequence [130] 

125 0.8011 0.3988 0.3645 0.3029 0.2181 

150 0.8683 0.2158 0.3217 0.2914 0.1816 

175 0.906 0.2197 0.5869 0.3750 0.1705 

200 0.9129 0.3276 0.4444 0.2929 0.0843 

E-Car Video Sequence [132] 

125 0.6567 0.3876 0.5055 0.6860 0.0942 

150 0.6252 0.4452 0.4726 0.7462 0.0750 

175 0.623 0.4875 0.3266 0.7827 0.1394 

200 0.641 0.4619 0.6993 0.7953 0.1085 

F-Crowd Video Sequence [134] 

125 0.3108 0.7742 0.8681 0.7635 0.1705 

150 0.2088 0.8175 0.7981 0.7374 0.1827 

175 0.2129 0.8542 0.8721 0.7194 0.1535 

200 0.241 0.8321 0.7595 0.7604 0.1866 
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Table 4.7: Values of Pixel Classification Based Measure (PCM) 

 

 

 

 

 

 

 

 

 

 

 

A-People Video Sequences [129] 

Frame No. Proposed 

by Khare 

et al. [141] 

Proposed 

by Kim et 

al. [33] 

Proposed 

by Hsia et 

al. [120] 

Proposed 

by Khare 

et al. [121] 

Proposed 

Method 

125 0.9081 0.6731 0.8076 0.8454 0.8904 

150 0.8852 0.6998 0.7610 0.7790 0.8491 

175 0.8578 0.7186 0.7443 0.7598 0.8304 

200 0.8595 0.6780 0.7640 0.8127 0.8304 

B-Camera2_070605 Video Sequence [131] 

125 0.8148 0.8377 0.8125 0.8076 0.7960 

150 0.7879 0.8284 0.8419 0.8180 0.8464 

175 0.8066 0.8294 0.8462 0.8230 0.8435 

200 0.8093 0.8375 0.8177 0.7960 0.8371 

C-One Step Video Sequence [133] 

125 0.9578 0.6709 0.5762 0.6810 0.7711 

150 0.9483 0.6803 0.5646 0.7645 0.7852 

175 0.9262 0.6797 0.6817 0.7462 0.7814 

200 0.9449 0.6583 0.5317 0.9449 0.7923 

D-Intelligent room Video Sequence [130] 

125 0.9569 0.7716 0.9015 0.7810 0.9460 

150 0.967 0.7271 0.9155 0.7645 0.9631 

175 0.9561 0.8343 0.9041 0.7462 0.9573 

200 0.9468 0.7441 0.9315 0.7583 0.9582 

E-Car Video Sequence [132] 

125 0.7848 0.7707 0.7245 0.7490 0.8375 

150 0.8218 0.7316 0.7859 0.7911 0.8822 

175 0.8368 0.7371 0.7354 0.7363 0.8922 

200 0.8251 0.7333 0.7747 0.7494 0.8644 

F-Crowd Video Sequence [134] 

125 0.8595 0.8451 0.7755 0.9106 0.9608 

150 0.8093 0.8392 0.7718 0.8490 0.9247 

175 0.9468 0.8332 0.7546 0.8322 0.9139 

200 0.8251 0.8372 0.7490 0.8470 0.9199 
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Table 4.8: Shadow detection rate   for representative video sequences 

 

Table 4.9: Shadow discrimination rate for representative video sequences 

 
 

Table 4.10: Computational Time and Consumption Memory for One step video sequence [133] 

 
 

c

z

A-People Video Sequences [129] 

Proposed by 

Khare et al. 

[141] 

Proposed by 

Kim et al. [33] 

Proposed by 

Hsia et al. 

[120] 

Proposed by 

Khare et al. 

[121] 

Proposed 

Method 

84.71 83.25 82.67 85.46 95.35 

B-Camera2_070605 Video Sequence [131] 

84.65 78.83 86.65 86.52 93.14 

C-One Step Video Sequence [133] 

85.91 80.18 88.62 86.87 98.27 

D-Intelligent room Video Sequence [130] 

85.68 80.82 86.59 87.73 96.48 

E-Car Video Sequence [132] 

86.47 81.39 88.54 87.72 97.43 

F-Crowd Video Sequence [134] 

72.12 70.56 74.83 74.57 91.27 

A-People Video Sequences [129] 

Proposed by 

Khare et al. 

[141] 

Proposed by 

Kim et al. [33] 

Proposed by 

Hsia et al. 

[120] 

Proposed by 

Khare et al. 

[121] 

Proposed 

Method 

86.34 78.81 86.56 87.16 97.15 

B-Camera2_070605 Video Sequence [131] 

84.29 76.97 85.73 85.69 96.37 

C-One Step Video Sequence [133] 

83.93 77.28 87.24 86.21 97.82 

D-Intelligent room Video Sequence [130] 

82.67 79.59 86.55 84.17 96.63 

E-Car Video Sequence [132] 

85.48 77.28 87.47 87.27 98.37 

F-Crowd Video Sequence [134] 

74.12 68.86 76.32 75.29 92.54 

S.no. Methods Computational 

Time 

(in second/frame) 

Memory 

Consumptio

n (MB) 

1 Proposed by Khare et al. [121] 1.682 7.65 

2 Method Proposed by Kim et al. [33] 0.722 22.92 

3 Method Proposed by Hsia et al. [120] 1.912 8.64 

4 Method Proposed by Khare et al. [141] 1.753 7.08 

5 The Proposed Method 1.486 4.38 
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Dynamic Background Modelling and Shadow Suppression in 

Case of Dynamic Water Background 

In this section, a fast and robust moving object segmentation method on a water surface 

for maritime surveillance using dynamic background modeling and shadow suppression 

(DBMSS) is proposed in the complex wavelet domain which is capable of addressing 

most of the real time practical problem. These problems include the waves on the water 

surface, boat wakes, and weather issues (such as bright sun, fog, heavy rain) which 

contribute to generate a highly dynamic background, gradual and sudden illumination 

changes, noise, camera jitter, shadows, and sun reflections that can provoke false 

detections. In the proposed approach (DBMSS), the above mentioned issues are addressed 

using dynamic background modeling and shadow detection step in the complex wavelet 

domain. After applying complex wavelet transform on a video frame, it is decomposed 

into four parts. The first part is known as approximation coefficients matrix LL (Low- 

Low) and other three parts are known as details coefficients matrices LH (Low-High), HL 

(High-Low), and HH (High-High) i.e. horizontal, vertical, and diagonal, respectively. 

 Seven major steps are applied on the given video frames which include: wavelet de-

composition of frame using complex wavelet transform;  use  of  change  detection  on  

detail  coefficients (LH,  HL,  HH);  use  of  dynamic background  modeling  on 

approximate  co-efficient  (LL  sub-band); use of soft thresholding for noise removal; cast 

shadow suppression; inverse  wavelet  transformation  for reconstruction;  and  finally  

using  closing  morphology operator. For dynamic background modeling, we have used 

frame difference, background registration, background difference, and background 

difference mask in the complex wavelet domain. For shadow detection and suppression 

problem in water surface, we exploit the high frequency sub-band in the complex wavelet 

domain.  All these steps are iteratively applied until the result does not surpass the set 
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threshold value for object segmentation. Applying the change detection in Daubechies 

complex wavelet domain has following advantages (a) it is shift invariant and have a 

better directional selectivity as compared to real valued wavelet transforms [4]; (b) it has 

perfect reconstruction property [4]; (c) it provides true phase information [4]; contrary to 

other complex wavelet transforms [4]; (d) Daubechies complex wavelet transform has no 

redundancy [4]. The working of the proposed (DBMSS) framework is illustrated in Figs. 

4.9 & 4.10:  

Step 1: Wavelet Decomposition of frames 

In the proposed approach, a 2-D Daubechies complex wavelet transform is applied on the 

current frame and the previous frame to get wavelet coefficients in four sub-bands: LL, 

LH, HL and HH. The generating Daubechies complex wavelet transform is described as 

follows: 

The basic equation of multiresolution theory is the scaling equation [4] 

                       ( ) 2 (2 )
i

i
u a u if få= -                                        (4.21) 

where '
i

a s are coefficients, and  ( )uf  is the scaling function. The '
i

a s can be real as well 

as complex valued. Daubechies’s wavelet bases {
,
( )

j k
ty } in one-dimension is defined 

using the above mentioned scaling function ( )uf and multi-resolution analysis of L2 ( ) 

[4]. The generating wavelet ( )ty is defined as: 

                   1( ) 2 ( 1) (2 )n

nt a t ny f-= - -å                                                    (4.22)  

where ( )ty  share same compact support [-L, L+1]. 

Any function f (t) can be decomposed into complex scaling function and mother wavelet 

as: 

1max

, ,

( ) ( ) ( )
j

j jo
k k

k j jj k oo j k

f t C t d tf y
-

=
= +å å                                        (4.23) 
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where, 
oj  is a given at low resolution level,  { jo

k
C } is called approximation coefficient 

and  {
j

kd } is  known as detail coefficient. 

Step 2: Application of change detection method on wavelet coefficients 

In step 2, a change detection based method is applied on detail wavelet coefficients i.e. 

on sub bands: LH, HL, and HH. Let 
,

( , )( { , , })
n d

Wf i j d LH HL HH= and

1,
( , )( { , , })

n d
Wf i j d LH HL HH

-
= be the wavelet coefficients at location (i, j) of the 

current frame and previous frame. Instead of assigning a fixed a priori threshold 
,

V
th d

 

to each frame difference, this method uses the fast Euler number computation technique 

[126] to automatically determine
,

V
th d

 from the video frame. The stable Euler number 

technique is one of the most effective algorithms for determining thresholds for change 

differences. However, its high computational complexity has always precluded its 

employment in real-time applications. A fast Euler number computation method was 

proposed in [126] to overcome the high computational complexity of the stable Euler 

number method.  

The fast Euler numbers algorithm calculates the Euler number for every possible 

threshold with a single raster of the frame difference image using following equation:   

           1 3

1
( ) [( ( ) ( ) 2 ( ))]

4
dE i q i q i q i= - -                                                                           (4.24) 

where 1q ,  3q , and dq is the quads (quad is a  2*2 masks of bit cells) contained in the 

given image.  

The output of the algorithm is an array of Euler numbers: one of each threshold value. 

The Zero crossings find out the optimal threshold. Detailed algorithms for the fast Euler 

number computation method can be found in [126]. 
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Apply Background Modeling 

on LL sub-band 

M (DEn) 

WDn,d=(LL) 

           

    …………………………………………………………………  

           

           

Frame I2 Frame In Frame I1 

Wavelet Decomposition of image frames using Daubechies complex wavelet transform 

Soft-thresholding for LH’, HL’, and HH’ sub-band by 

Daubechies complex wavelet transforms 

Inverse Daubechies complex wavelet transforms and merges the sub-band 

Morphological operations with binary closing operation 

Apply change detection for LH, HL, and HH band with threshold 

Vth,d 

WD*n,d=(LH, HL, HH) 

Soft-thresholding for LL’ sub-band by 

Daubechies complex wavelet transforms 

Find Moving Object edges in Video Sequences 

WDn,d=(LH, HL, HH) 

WD*n,d=(LL)

LL1       LH1       HL1         HH1 LL2       LH2       HL2       HH2 LLn LHn    HLn      HHn 

Apply Shadow Detection and Removal Method  

SD’n,d=(LL)
 SD’n,d=(LH, HL, HH) 

                                                                           …………………… Segmented Frame I1 Segmented Frame I2 Segmented Frame In 

Segmented Objects 

Figure 4.9: Block Diagram of the DBMSS 
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The wavelet domain frame differences , ( , )n dWD i j for respective sub-bands are computed 

as: 

for every pixel location (i, j) in the co-ordinate of frame 

, 1, ,
,

1 ( , ) ( , )
( , )

0

n d n d th d
n dWD

if Wf i j Wf i j V
i j

otherwise

-
ì ü- >ï ï

=í ý
ï ïî þ

               (4.25) 

Step 3: Proposed background modeling using LL sub-band
 

Here in step 3, we have applied background modeling on water background surface. For 

dynamic background modeling, we have used frame difference, background registration, 

background difference, and background difference mask in the complex wavelet domain 

using LL sub-band. The background modeling step is divided into five major phases. The 

first phase calculates the frame difference mask , ( , )n LL i jWD of the LL image which is 

obtained by thresholding the difference between coefficients in two LL sub-bands as 

follows: 

, 1, ,

,

, 1, ,

1 ( , ) ( , )
( , )

0, ( , ) ( , )

n LL n LL th WD

n LL

n LL n LL th WD

WD

if Wf i j Wf i j V
i j

if Wf i j Wf i j V

-

-

ì ü- ³ï ï
=í ý

- <ï ïî þ

            (4.26) 
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Updation 

Background 

Subtraction 

 

False Foreground 

Removal 

Figure 4.10: Sub-block Diagram of the DBMSS 
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,th WD
V  is a threshold determined automatically from the video frame by the fast Euler 

number computation method as explained in [126].

The second phase of dynamic background modeling maintains an up-to-date background 

buffer as well as background registration mask indicating whether the water background 

information of a pixel is available or not. According to the frame difference mask of the 

past several frames, water background pixels that are not moving for a long time are 

considered as reliable background and registered in the background buffer. The 

background registration process uses the following two equations: 

                ,

,

( , ) 1 ( , ) 0
( , )

0 ( , ) 1

n LL
n

n

n LL

WD

WD

S i j if i j
S i j

if i j

+ =ì ü
=í ý

=î þ
                                (4.27) 

             
,

( , ) ( , )
( , )

( , )

n LL n f

n

n f

Wf i j if S i j N
i j

Undefined if S i j N
m

³ì üï ï
=í ý

<ï ïî þ
                                 (4.28)

 

where ( , )
n

S i j is a stationary index and ( , )
n

i jm is the background buffer value of a pixel 

with position (i, j) in the nth frame. The initial values of ( , )
n

S i j  and ( , )
n

i jm are set to 

0 and
,

( , )
n LL

Wf i j , respectively. If a pixel is masked as stationary for 
fN  successive 

frames (i.e., if the accumulated value in registration stationary index exceeds
fN ), then 

that pixel is classified as part of the background region. Here experimentally set the value 

of  
fN  is 30. According to our experiments, 

fN  may be set at a larger value for fast 

moving object.  

In the third phase of background modeling, a registered background buffer pixel is 

updated using the following equation. 

                if                               , ( , ) ( , ) 2 ( , ) (4.29)n LL n nWf i j i j i jm s- <  

         then                                
1 ,

2 2 2

1 ,

( , ) ( , ) (1 ) ( , )
(4.30)

( , ) ( , ) (1 )( ( , ) ( , ))

n n n LL

n n n LL n

i j i j Wf i j

i j i j Wf i j i j

m cm c

s cs c m

-

-

= + -ìï
í

= + - -ïî
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where ( , )
n

i js is the standard deviation of a pixel with position (i, j) in the nth frame and 

c  is the predefined constant and we considered four different maritime sequences, and 

recorded 10 different ocean pixel observations over 800 frames for each of the sequences. 

This resulted in 50 samples of size 800 each.  The test statistic was calculated for each of 

the samples and the value of c  is set to 0.7 

In the fourth phase of background modeling, we find the background difference mask 

with the help of background difference, which distinguishes moving objects from the 

background, and its operation are shown as follows: 

, ,( , ) ( , ) ( , ) (4.31)n LL n LL nBD i j Wf i j i jm= -  

, ,

,

, ,

1, ( , )
( , ) (4.32)

0, ( , )

n LL th WD

n LL

n LL th WD

BD i j V
BDM i j

BD i j V

³ìï
=í

<ïî
 

where 
,

( , )
n LL

BD i j  is the background difference and 
,

( , )
n LL

BDM i j  is the background 

difference mask of a pixel with position (i, j) in the nth frame. The threshold value ,th WD
V  

is also automatically determined by the fast Euler number computation method [126]. 

In the fifth phase of background modeling, a background model is constructed on water 

surface using the frame difference, background registration, background difference, and 

background difference mask. 

Step 4: Noise removal using wavelet based soft thresholding 

After applying change detection based method and background modeling, the obtained 

result may have noise. This step deals with the noise reduction from the data obtained in 

steps 2 and 3. In presence of noise, the equation is expressed as: 

              *
, ( , , , )

, ( , , , )
( , ) ( , )n d LL LH HL HH

n d LL LH HL HH
WD WDi j i j h= =

= +                                 (4.33)
 

where *
, ( , , , )

( , )
n d LL LH HL HH

i jWD
=

is frame difference without noise, , ( , , , )( , )n d LL LH HL HH i jWD = is the 

original frame difference with noise, and h  is the additive noise. T is applied on wavelet 
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coefficients for noise reduction. The value of soft thresholding parameter T for de-noising 

is computed as [127] 

                                                       
1

1

2 j
T

y
w

x-

æ ö
= ç ÷

è ø
                                     (4.34) 

where j is wavelet decomposition level and
 
y , x andw

 
are standard deviation, absolute 

mean and absolute median of wavelet coefficients of a sub-band.
 

Step 5: Shadow detection and removal 

Daubechies complex wavelet transform provides significant amount of structural 

information along the edges and are useful for the shadow detection and suppression 

tasks. We have observed the fact that, compared to the moving object having large 

discontinuities at edge locations, the shadow regions are relatively smooth and have less 

variation in the chromacity. Therefore, shadow region contains a less high frequency 

information. This suggests that analysis of high frequency coefficients may prove useful 

in detecting shadows. Therefore, in shadow detection and removal step high frequency 

wavelet coefficients are analyzed in the complex wavelet domain to detect and suppress 

the cast shadow. The basic property of complex wavelet transform used here is that 

wavelet transform provides the local regularity of functions and singularities of an image 

f(x, y) represent its edges. So edges can be detected effectively by the local maxima of the 

wavelet transform modulus [145]. The edge map of any sub-band can be computed by 

using thresholding. For example the edge map of LH sub-band can be computed as 

follows: 

          1 ( , ) ( , )
( , )

0

L

HL

H

if WD F Th
SD

Otherwise

h

h

a b a b
a b

³ì üï ï
=í ý
ï ïî þ

                                (4.35) 

where ( , )Th a b  is a threshold determined automatically from the video frame by the 

fast Euler number computation method as explained in [126]. 

In a similar way, we can compute the edge maps for HL and HH sub-band. 
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Shadow regions are relatively smooth; therefore the edges of the shadow are normally 

suppressed in high frequency coefficients and are evident only in one of the directional 

coefficients [145]. So, in the next step horizontal and vertical projection vectors in high 

frequency sub bands (directional coefficients) are analyzed to extract the actual object 

region measurements.  

 

Figure 4.11: Wavelet decomposition of image from Venice-3 video sequence [146] (a) 

Approximation coefficients (b) Horizontal coefficients (c) Vertical coefficients (d) 

Diagonal coefficients (e) Candidate test region and shadow. 

 
 

The shadow detection and removal method consists of the following steps: 

(A) Compute the Edge Test Regions (ETR) by applying mask operation in directional 

coefficients using ‘Candidate Test Region’ using Eq. 4.35 

                       ( , ) ( , ) ( , )H L

ER H obj sha
mask

SD WD F
h

a b a b a b+= *                                               (4.36) 

                      ( , ) ( , ) ( , )V L

ER V obj sha
mask

SD WD F
h

a b a b a b+= *                                                 

(4.37) 

                     ( , ) ( , ) ( , )D L

ER D obj sha
mask

SD WD F
h

a b a b a b+= *                                                   (4.38) 

where ( , )L

HWD
h

a b , ( , )L

VWD
h

a b , and ( , )L

DWD
h

a b represent the high frequency coefficients in 

horizontal, vertical and diagonal direction respectively at Lth level. The superscript H, V 

and D represent the Horizontal, Vertical and Diagonal directional sub-band respectively. 

(B) Compute the vertical and horizontal projection vectors from each direction edge 

region.  

                 
1

{ ( , ),............., ( , )}
mH

H H H

ER i ER i nH
i

v SD SDa b a bå=                                 (4.39) 

Shadow 

Shadow Shadow 

d a b c e 

Candidate Test 

Region 

Shadow Region 
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1

{ ( , ),............., ( , )}
nH

H H H

ER j ER mH j
i

h SD SDa b a bå=                             (4.40) 

                   
1

{ ( , ),............., ( , )}
mV

V H H

ER i ER i nV
i

v SD SDa b a bå=                             (4.41) 

                  
1

{ ( , ),............., ( , )}
nV

v V V

ER j ER mV j
i

h SD SDa b a bå=                             (4.42) 

               
1

{ ( , ),............., ( , )}
mD

D D D

ER i ER i nD
i

v SD SDa b a bå=                                  (4.43) 

               
1

{ ( , ),............., ( , )}
nD

D D D

ER j ER mD j
i

h SD SDa b a bå=                              (4.44)
 

 where mH, nH, mV, nV, mD and nD are the number of pixels along the horizontal, 

vertical and diagonal directions. 

(C) Now using the following equations we can find the best fit measurements of object 

region (without shadow). 

           min{max( ),max( ),max( )}x H V D

obj
W h h h=                                           (4.45) 

          min{max( ),max( ),max( )}y H V D

obj
W v v v=                                           (4.46) 

The proposed shadow suppression technique is only applied to foreground pixels rather 

than the entire image, thus saving significant processing time. 

Step 6: Application of inverse Daubechies complex wavelet transform 

After shadow detection and removal in wavelet domain from step 5, inverse wavelet 

transform is applied to get moving object edges in spatial domain i.e. E
n .

 

Step 7:  Application of closing morphological operation to sub-band 

As a result of step 6, the obtained segmented object may include a number of disconnected 

edges due to non-ideal segmentation of moving object edges. Extractions of object using 

these disconnected edges may lead to inaccurate object segmentation.  Therefore,  some 

morphological  operation  is  needed  for  post-processing  of  object  edge  map  to  

generate  connected edges.  Here, a binary closing morphological operation is used [128] 
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which gives ( )nM E  i.e. the set of connected edges. In this step, the final segmented output 

is obtained. 

 

Algorithm of the proposed (DBMSS) method is given below: 

Algorithm: 

Input: Sequence of image frames; Output: Segmented Sequence of image frames 

1. Load the Sequence of image frames. 

2. Apply Wavelet Decomposition of image frames using Daubechies complex wavelet 

transform   and find out LL, LH, HL and HH sub-band. 

3. Apply change detection on detail wavelet coefficients i.e. on sub-bands: LH, HL, and 

HH with threshold Vth,d (Eq. (4.25)).  

4. Apply Background Modeling using LL sub-band to update the background pixels 

(Eq. (4.26-4.32)). 

5. Apply Soft-thresholding on LL, LH, HL, and HH sub-band to remove the noise (Eq. 

(4.33)). 

6. Apply Shadow Detection and Removal using high frequency sub-band (Eq. (4.35-

4.46)). 

7. Apply inverse Daubechies complex wavelet transform to get moving object edges in 

spatial domain. 

8. Apply closing morphological operation to generate connected edges. 

9. The segmented image sequences are obtained. 

 

4.3.2.1. Experimental Results and Analysis  

The  proposed  method (DBMSS)  for  dynamic background modelling and shadow 

suppression  has  been  applied  on  a  number  of  video  clips dataset [146] discussed 

below. 
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Material and Methods 

For experimentation purpose of Maritime Detection and Tracking, four datasets namely 

Reflections-1_2video sequence [146], Venice-3 video sequence [146], Venice-7 video 

sequence [146] and Ir-2 video sequence were taken [146]. The brief descriptions of each 

datasets are given as follows: 

Reflections-1_2video sequence [146] 

Reflections-1_2video sequence contains 961 frames of frame size 704 x 576. This video 

sequence is captured in the presence of sun reflection water and suffering from the 

presence of noise. 

Venice-3 video sequence [146] 

Venice-3 video sequence dataset contains 8476 frames of frame size 480 x 320. In this 

video sequence boat shadows are present and it is also suffering from the problem of 

noise. 

Venice-7 video sequence [146] 

Venice-7 video sequence dataset contains 6754 frames of frame size 480 x 320.  In this 

video sequence water wakes and multiple direction shadows are present and it’s also 

suffering from the problem of noise. 

Ir-2 video sequence [146] 

Ir-2 video sequence contains 1053 frames size 704 x 576. This video is captured in night 

mode environment using night vision camera with camera jittering conditions and it’s 

also suffering from the problem of noise. 

A summary of descriptions of above datasets are also given in Table 4.11. 

Qualitative Analysis 

 

This section presents the qualitative analysis of the proposed method with other methods. 

For qualitative analysis of the video object by various methods, four video sequences as 
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given in Table 4.11 and as discussed in sub-section 4.3.2.1 were taken. For 

experimentation purposes, whole video sequences for each of the four test cases were 

examined and the visual results for two frames viz. 125 and 150 are provided.  

Experiment-1 

For this experiment, the Reflections-1_2 video sequence [146] from the MAR data sets 

have been taken, which are actually captured in the presence of some reflection and 

suffering from the presence of noise. From Fig.4.12, one can conclude that the 

segmentation result obtained by the proposed method has better segments in sun 

reflection water. From the obtained results in Fig. 4.12, it can be observed that the other 

methods [121, 136] suffers from the problems of object distortion, false acceptance of 

sun reflection, shadow and noise problem but the proposed method (DBMSS) is able to 

suppress these problems (see frame 125 – 150 (ii)). From Fig. 4.12, one can conclude 

that Hsia et al. [120] method depends on the fast motion of objects, so it is not segmenting 

the frame properly (see frame125 – 150 (v)).The proposed method(DBMSS)  handles all 

these critical condition and segments the result properly. 

 
                                   (i)                                (ii)                          (iii)                                      (iv)                            (v) 

(a)Frame 125 

 
                      (i)                          (ii)                                   (iii)                                (iv)                             (v)                      

(b)Frame 150 
 

Figure 4.12: Segmentation results for high-view video sequence corresponding to (a) 

Frame 125, (b) frame 150 (i) original frame, and the segmented frame obtained by four 

methods such as: (ii) DBMSS, (iii) Bloisi et al.[136], (iv) Khare et al.[121],  and (v) 

Hsia et al.[120]. 
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Table 4.11: Description of Datasets Used for Experimentation 

Video  

Sequence 

Information with respect to Object Information with respect  to 

Scene 

Information with 

respect to  Shadow 

Object  

Type 

Object  

Size 

Scene 

Type 

Details of 

frames and  

Objects 

Noise 

Level 

Complexit

y 

Shadow  

Size 

Shadow  

Strength 

Shadow  

Directio

n 

 

Reflections-

1_2video 

sequence [146] 

 

Boat/Sh

ip 

 

Small 

 

Outdoor 

No. of 

frames= 

961 

Size of 

frames=704 x 

576 

No. of objects 

in a frame=2 

 

High 

Presence 

of sun 

reflection 

 

Medium 

 

Weak 

 

Multiple 

 

 

Venice-3 video 

sequence [146] 

 

Boat 

 

Large 

 

Outdoor 

No. of 

frames= 

8476 

Size of 

frames=480 x 

320 

No. of objects 

in a frame=1 

 

Low 

 

Cast 

shadow 

 

Large 

 

Strong 

 

Multiple 

 

 

Venice-7 video 

sequence [146] 

 

Boat 

 

Large 

 

Outdoor 

No. of 

frames= 

6754 

Size of 

frames=480 x 

320 

No. of objects 

in a frame=5 

 

Low 

 

Wakes  

 

Large 

 

Weak 

 

Multiple 

 

Ir-2 video 

sequence [146] 

 

Ship 

 

Large 

 

Outdoor 

No. of 

frames= 

1053 

Size of 

frames=704 x 

576 

No. of objects 

in a frame=1 

 

Low 

 

Captured 

by night 

vision 

camera in 

night (i.e. 

mire 

noisy) 

 

Medium 

 

Weak 

 

Multiple 
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Experiment-2 

Here, we have taken venice-3 video sequence [146] from the MAR data sets. In these 

video sequence boat shadows are present (see frame 125-150 (i)) and it’s also suffering 

from the problem of noise. From Fig. 4.13, one can conclude that the segmentation result 

obtained by the proposed method (DBMSS) has better segments in shadow conditions. 

From the obtained results, it can be observed that the other methods [120, 121, 136] suffer 

from the problems of cast shadow, object distortion and noise (see frame 125 – 150 (iii-

v)) but the proposed method (DBMSS) is able to suppress these problem 

 

                               (i)                                  (ii)                           (iii)                          (iv)                       (v)   

(a)Frame 125 

 

                         (i)                                    (ii)                   (iii)                             (iv)                          (v)   

(b)Frame 150 

Figure 4.13: Segmentation results for venice-3 video sequence corresponding to (a) 

Frame 125, (b) frame 150 (i) original frame, and the segmented frame obtained by four 

methods such as: (ii) DBMSS, (iii) Bloisi et al.[136], (iv) Khare et al.[121],  and (v) Hsia 

et al.[120]. 
 

Experiment-3 

Now, the venice-7 video sequence [146] has been taken from the MAR data sets. In these 

video sequence water wakes and multiple direction shadows are present (see frame 125-

150 (i)) and it is also suffering from the problem of noise. From the Fig. 4.14, it is clear 

that proposed method (DBMSS) works properly in water wakes and multiple direction 

shadows environment but other methods [120, 121, 136] suffer from the noise, shadow, 

ghost and dynamic background problems (see frame 125-150 (iii-v)). 
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                                        (i)                             (ii)                                     (iii)                                  (iv)                        (v) 

(a)Frame 125 

 

                                            (i)                             (ii)                                  (iii)                              (iv)                           (v) 

(b)Frame 150 
Figure 4.14: Segmentation results for venice-7 video sequence corresponding to(a) Frame 

125, (b) frame 150 (i) original frame, and the segmented frame obtained by four methods 

such as: (ii) DBMSS, (iii) Bloisi et al.[136], (iv) Khare et al.[121],  and (v) Hsia et al.[120]. 
 

 

Experiment-4 

 

Finally, the Ir-2 video sequence [146] has been taken from the MAR data sets and used 

for this experiment. This video is captured in night mode environment using night vision 

camera with camera jittering conditions and it is also suffering from the problem of noise. 

From the obtained results in Fig. 4.15, it can be observed that the other methods [121, 

136] suffers from the problems of object distortion, shadow, and noise problem but the 

proposed method (DBMSS) is able to suppress these problems (see frame 125 – 150 (ii)). 

From Fig. 4.15, one can conclude that Hsia et al. [120] method depends on the fast motion 

of object, so it is not segmenting the frame properly (see frame125 – 150 (v)). The 

proposed method (DBMSS) handles all these critical conditions and segments the result 

properly (see frame 125 – 150 (ii)). From Fig. 4.15, it is deduced that the segmentation 

result obtained by the proposed method (DBMSS) has better segments in night mode 

condition. 
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                                          (i)                             (ii)                                    (iii)                                (iv)                        (v) 

(a)Frame 125 
 

 

                                          (i)                             (ii)                                   (iii)                                  (iv)                           (v) 

(b)Frame 150 
 

Figure 4.15: Segmentation results for Ir-2 video sequence corresponding to (a) Frame 

125, (b) frame 150 (i) original frame, and the segmented frame obtained by four 

methods such as: (ii) DBMSS, (iii) Bloisi et al.[136], (iv) Khare et al.[121],  and (v) 

Hsia et al.[120]. 
 

 

Quantitative Analysis 

In this section of the chapter, the performances of the proposed method (DBMSS) have 

been compared quantitatively with other state-of-the-art methods [120, 121, 136] in terms 

of various performance measures: Relative foreground area measure (RFAM) [84], and 

Misclassification penalty (MP) [84], Relative position measure (RPM) [84], Normalized 

Cross Correlation (NCC) [85], Peak signal-to-noise ratio (PSNR) [87], Pixel 

classification based measure (PCM) [84], Normalized absolute error (NAE) [86], shadow 

detection rate (SDR) [88], Shadow discrimination rate [88], Precision (PR) [89], Recall 

(RE) [89], F-Measure [89], Execution time and Memory consumption. 

For experimentation purposes, four video sequences as given in Table 4.11 and as 

discussed in sub-section 4.2.4 were taken in to consideration. For large video sequences, 

the video frames were tested at the interval of 100 frames and for small video sequences, 

the video frames were tested at the interval of 15 frames. The first video sequence 

Reflections-1_2video sequence [146] consists of 961 frames and total of 63 frames were 

tested for at the interval of 15 frames from frame no. 1 to 961 frames. The second video 
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sequence Venice-3 video sequence [146] consists of 8476 frames and total of 84 frames 

were tested for at the interval of 100 frames from frame no. 1 to 8476 frames. The third 

video sequence Venice-7 video sequence [146] consists of 6754 frames and total of 67 

frames were tested for at the interval of 100 frames from frame no. 1 to 6754 frames. The 

fourth video sequence Ir-2 video sequence [146] consists of 1053 frames and total of 70 

frames were tested for at the interval of 15 frames from frame no. 1 to 1053 frames. 

  All experimentations were performed on a machine with Intel 2.53GHz 

core i3 processor with 4 GB RAM using Matlab 13b software. Tables 4.12 present the 

values of RFAM, MP, RPM, NCC, PSNR, PCM, NAE, shadow detection rate, Shadow 

discrimination rate, PR, RE, F-Measure, Execution time and Memory consumption for  

the  proposed method  and  other  methods  [120, 121, 136]  for  four  video  sequences 

[146].  

Performance Analysis 

Table 4.12 shows the average value of RFAM, RPM, NCC, PSNR, PCM, MP, NAE, 

shadow detection rate, shadow discrimination rate, precision, recall and F-measure for 

the whole video sequence for each test cases at for each frame taken at the interval of 15, 

100, 100, 15 respectively. From  Tables  4.12, one  can  conclude  that  the  proposed  

method (DBMSS)  is associated with a high average value of RFAM, RPM, NCC,  PSNR, 

PCM, Precision, Recall, F-Measure ; and low value of  MP and NAE (see the result in 

table 4.12 in bold) in comparison to other methods [120, 121, 136] for all datasets [146]. 

 From  Table  4.12,  it  can  be  inferred  that  in  cases  of  Reflections-1_2 video 

sequence [146], Venice-3 video sequence [146], Venice-7 video sequence [146], and Ir-

2 video sequence [146] the  proposed  method (DBMSS)  is  found  to  be  better  than  all  

other methods [120, 121, 136] in terms of shadow detection rate and shadow 

discrimination rate.  
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In Table 4.13, average computation time (second/frame) and memory 

consumption for different methods for Venice-7 video sequence [146] of frame size       

480 x 320 with 6754 frames are shown. From the Table 4.13, it can be observed that the 

proposed method (DBMSS) using complex wavelet transform is faster than the method 

reported in [120, 136]. The proposed method (DBMSS) takes approximately same time 

as the Khare et al. [121] but the performance of the proposed method in terms of other 

parameters is better in comparison to other methods.  

Also from the Table 4.13, it is observed that the proposed method (DBMSS) 

consumes only 6.18 megabytes of RAM, which is the least in comparison with the 

memory requirements of other methods [120, 121, 136]. 

Therefore, after observing the values of twelve quantitative measures, it can be 

concluded that the proposed method using complex wavelet transform give better results 

as compared to other methods and also takes less processing time and memory in 

comparison to others. 

4.4. Conclusions 

Two new methods for dynamic background modeling and shadow suppression in 

Daubechies complex wavelet transform have been presented. The first method handles the 

small movements of non-static objects such as tree branches and bushes blowing in the 

wind, waving trees, shadow regions that are projected by foreground objects and are 

detected as moving objects. In the first proposed method, we have improved the Gaussian 

mixture model and used mode value to find the variance of K-Gaussian for dynamic 

background modeling. For shadow detection and removal we have used saturation 

component from HSV model and Grey level model and ratio of standard deviation and 

mean in complex wavelet domain. The second method deals with highly dynamic 

background such as moving object in water surface,  boat wakes, and weather issues (such 
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as bright sun, fog, heavy rain), moving object in rain fall, and maritime object detection 

in night. In the second proposed method, we have used frame difference, background 

registration, background difference, and background difference mask for dynamic 

background modeling. For shadow detection and removal, we exploit the high frequency 

sub-band in the complex wavelet domain. Finally, it was concluded that the two proposed 

methods in Daubechies complex wavelet transform performs better visually as well as 

quantitatively, in comparison to other state-of-the-art methods and has been tested for 

different types of videos.  

Table 4.12: Average Performance of different methods for all video frames of each 

dataset 

 

Datasets 

 

Methods 

 

Average Performance for  Over All Video Frames Of Each Dataset 

RFA

M 

MP RP

M 

NC

C 

PSN

R 

PC

M 

NAE Shadow 

Discrimi

nation 

Rate 
z

 

Shado

w 

Detecti

on 

Rate c  

Precis

ion 

Recall F-

measu

re 

Reflectio

ns-1_2 

video 

sequence 

[146](961 

frames) 

Bloisi et al. 

[136] 

0.7350

85 

0.0055

22 

0.70

0788 

0.63

547 

68.47

045 

0.82

4735 

0.088

643 
79.22795 

76.3215

9 

0.8002

83 

0.7429

24 

0.7701

32 

Hsia et 

al.[120] 

0.1581

6 

0.1741

61 

0.19

7895 

0.17

2981 

37.29

577 

0.45

3747 

0.941

489 
30.79981 

30.6682 

0.5162

7 

0.4145

9 

0.4582

7 

Khare et 

al.[121] 

0.6426

94 

0.0734

21 

0.58

6334 

0.59

558 

64.35

813 

0.72

7871 

0.257

711 
74.68252 

71.7389

8 

0.7199

46 

0.6591

77 

0.6877

69 

 

DBMSS 

0.8912

42 

0.0027

21 

0.89

2746 

0.90

8262 

75.28

204 

0.91

6858 

0.040

55 
91.46176 

93.2610

1 

0.9273

18 

0.9423

16 

0.9345

96 

Venice-3 

video 

sequence 

[146](847

6 frames) 

 

Bloisi et al. 

[136] 

0.7434

91 

0.0137

42 

0.69

7718 

0.76

1546 

68.19

047 

0.80

7248 

0.088

792 
78.8588 

75.1456 

0.7968

02 

0.7416

05 

0.7679

48 

Hsia et 

al.[120] 

0.3630

67 

0.8697

56 

0.19

5995 

0.44

6572 

37.21

795 

0.45

9936 

0.693

226 
30.22631 

29.9818 

0.5216

7 

0.4055

1 

0.4545

1 

Khare et 

al.[121] 

0.7170

77 

0.0175

82 

0.59

7819 

0.64

5534 

64.13

214 

0.71

3382 

0.252

687 
74.74371 

71.6646

9 

0.7210

24 

0.6601

01 

0.6888

93 

 

DBMSS 

 

0.9021

02 

0.0035

33 

0.88

9889 

0.90

2847 

75.34

242 

0.91

0781 

0.039

875 
90.48646 93.0366

7 

0.9217

32 

0.9420

2 

0.9315

96 

Venice-7 

video 

sequence 

Bloisi et al. 

[136] 

0.7321

55 

0.0111

33 

0.71

1606 

0.68

833 

68.49

647 

0.81

2584 

0.088

548 
78.67723 

75.7052

9 

0.8004

99 

0.7460

35 

0.7719

03 

Hsia et 

al.[120] 

0.2678

67 

0.1685

18 

0.19

6681 

0.34

2247 

37.43

86 

0.46

5583 

0.699

671 
30.31893 

30.0337 

0.5246

6 

0.4259

3 

0.4687

4 

Khare et 

al.[121] 

0.7278

95 

0.0211

51 

0.58

5823 

0.45

52 

64.01

594 

0.71

6882 

0.269

222 
74.31774 

71.6634

8 

0.7168

21 

0.6525

21 

0.6827

92 
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Table 4.13: Computational Time and Consumption Memory for Venice-7 Video 

Sequence [146] 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[146](675

4 frames) 

 

DBMSS 

 

0.9054

82 

0.0068

11 

0.89

0771 

0.90

47 

75.77

964 

0.91

5672 

0.039

835 
90.70287 93.0105

3 

0.9278

77 

0.9404

65 

0.9339

05 

Ir-2 

video 

sequence 

[146](105

3 frames) 

Bloisi et al. 

[136] 

0.7367

68 

0.0150

63 

0.69

9871 

0.54

5711 

47.74

326 

0.81

8705 

0.088

919 
78.45618 

75.7826

4 

0.8023

99 

0.7440

46 

0.7717

19 

Hsia et 

al.[120] 

0.1835

03 

0.2402

42 

0.19

829 

0.27

3953 

25.93

171 

0.35

0929 

0.694

22 
29.28651 

29.7168 

0.5114

3 

0.4113

6 

0.4541

6 

Khare et 

al.[121] 

0.6775

64 

0.0406

41 

0.59

1698 

0.46

7109 

42.74

249 

0.71

9074 

0.261

881 
74.20675 

71.8106

2 

0.7150

3 

0.6605

58 

0.6863

27 

 

DBMSS 

0.9196

87 

0.0086

38 

0.90

1842 

0.73

8976 

71.97

8 

0.91

1328 

0.039

458 
90.93223 

93.5795

2 

0.9225

9 

0.9401

75 

0.9311

11 

Methods Computational Time 

(in second/frame) 

Memory Consumption 

(MB) 

Bloisi et al. [136] 3.945 22.75 

Hsia et al.[120] 1.867 11.75 

Khare et al.[121] 1.427 8.36 

DBMSS 1.312 6.18 
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