Chapter 3 : IMPROVED APPROXIMATE MEDIAN FILTER BASED METHOD FOR MOVING OBJECT SEGMENTATION

In recent past, many moving object segmentation methods under varying lighting changes have been proposed in literature and each of them has their own benefits and limitations. The various methods available in literature for moving object segmentation may be broadly classified into four categories i.e. moving object segmentation methods based on (i) motion information (ii) motion and spatial information (iii) learning, and (iv) change detection. The objective of this chapter is two-fold i.e. firstly, this chapter presents a comprehensive comparative study of various classical as well as state-of-the art methods for moving object segmentation under varying illumination conditions under each of the above mentioned four categories and secondly, this chapter presents an improved approximation filter based method in complex wavelet domain and its comparison with other methods under four categories mentioned as above. The proposed approach consist of seven steps applied on given video frames which include: wavelet decomposition of frames using Daubechies complex wavelet transform; use of improved approximate median filter on detail co-efficient (LH, HL, HH); use of background modeling on approximate co-efficient (LL sub-band); soft thresholding for noise removal; strong edge detection; inverse wavelet transformation for reconstruction; and finally using closing morphology operator. The qualitative and quantitative comparative study of the various methods under four categories as well as the proposed method is presented for six different datasets. The merits, demerits, and efficacy of each of the methods under consideration have been examined. The extensive experimental comparative analysis on six different challenging benchmark data sets demonstrate that proposed method is

performing better to other state-of-the-art moving object segmentation methods and is well capable of dealing with various limitations of existing methods.

3.1. Introduction

Moving object detection is a crucial part of automatic video surveillance systems and it is useful in robotics, object detection and recognition, indoor/outdoor object classification and many other applications [23, 24]. To design the moving object segmentation algorithm for intelligent video surveillance systems, several major challenges have to be concerned. Toyama et al. [25] have identified the following challenges in moving object segmentation such as (i) lighting changes, shadows and reflections (ii) dynamic backgrounds such as waterfalls or waving trees (iii) Motionless foreground (iv) small movements of non-static objects such as tree branches and bushes blowing in the wind (v) noise image, due to a poor quality image source (vi) movements of objects in the background that leave parts of it different from the background model (ghost regions in the image) (vii) multiple objects moving in the scene both for long and short periods (viii) shadow regions that are projected by foreground objects and are detected as moving objects. Out of all these issues, changing illumination conditions remain a major problem for moving object segmentation in real-life problems. To take into account these problems, many approaches for automatically adapting background model to dynamic scene variations are proposed [90, 91] and these approaches can be classified into two categories [92] such as non-recursive and recursive. A non-recursive approach uses a sliding-window for background estimation. It stores a buffer of the previous L video frames, and estimates the background image based on the temporal variation of each pixel within the buffer. This causes non-recursive approach to have higher memory requirements than recursive techniques. Recursive approach maintains a single

background model that is updated with each new video frame. These approaches are generally computationally efficient and have minimal memory requirements.

The major contributions of this chapter include: (1) comparative study of various standard moving object segmentation methods which is classified into four categories i.e. moving object segmentation methods based on (i) motion information (ii) motion and spatial information (iii) learning (iv) and change detection (2) proposed an improved approximation filter based approach for moving object segmentation in complex wavelet domain (3) and presented the comparative study of the proposed method with other state-of -the-art algorithms on a set of challenging video sequences (4) analysis of the sensitivity of the most influencing parameters [84-87], and a discussion of their effects. (5) and analysis of the computational complexity and memory consumption of the proposed algorithm.

Rest of the chapter is organized as follows: Section 3.2 presents the Review of moving object segmentation methods. Section 3.3 presents the proposed method. Experimental results are given in Section 3.4. Finally, conclusion of the work is given in Section 3.5.

3.2. Review of Moving Object Segmentation Methods

Different kinds of methods exist to solve the problem of moving object segmentation. Good but incomplete reviews on moving object segmentation methods can be found in [93, 94]. As per available literatures moving object segmentation techniques can be broadly classified into four categories [95, 96, 97] namely (i) segmentation of moving object based on motion-information [33-34, 96, 98-103], (ii) segmentation of moving object based on motion and spatial information [27-28, 31-32, 104-109], (iii) segmentation of moving object based on learning [26-30, 110-115], and (iv) segmentation of moving object based on change detection [16, 35, 36-37, 116-125]. A review of some

of the classical and state-of-the-art methods under each of the categories is presented in following subsections.

3.2.1. Moving Object Segmentation Methods Based on Motion-Information

The first category of moving object segmentation methods are based on motioninformation which depends on motion estimation of moving objects. Some of the prominent methods available in literature are the works due to Bradski [98], Kim et al. [33], Liu et al. [34], Xiaoyan et al. [96], Mahmoodi [99] and Meier and Ngan [100]. Bradski [98] proposed a motion segmentation method using time motion history image (TMHI) for representing motion which is used to segment and measure the motions induced by the object in a video scene. The limitation of the method is that, it can only extract the moving objects but not the static one. A more refined application of this algorithm was proposed by Kim et al. [33] which is based on codebook approach where a codebook is formed to represent significant states in the background using quantization and clustering [33]. It solves some of the above mentioned problems existing in [98], such as sudden changes in illumination, but does not consider the problems of ghost regions or shadow detection. To deal with the issues mentioned in [33], Liu et al. [34] have proposed a moving object segmentation method which is based on cumulated difference, object motion and adaptive thresholding. Xiaoyan et al. [96] have proposed a video object segmentation technique on the basis of adaptive change. This method is not able to remove noise from the video frames. Mahmoodi [99] has proposed a shape based active contour method for video segmentation which is based on a piecewise constant approximation of the Mumford shah functional model. This method is slow beacause it is based on level set framework. Due to lack of spatial information of objects, these algorithms suffer from unwarranted ghost objects, shadows, changing background,

clutter, occlusion, and varying lighting conditions. Meier and Ngan [100] have proposed a moving object segmentation which is based on Hausdorff distance. In this method, a background model is created which automatically adapts slowly and rapidly changing parts and matched against subsequent frames using the Hausdorff distance. The limitation of this method is that the boundaries of the extracted objects are not always accurate. In addition to above mentioned methods, in literature some other approaches [101-103] in the same domain have been proposed but they also suffer from most of the same problems mentioned as above.

Therefore the important features of the methods under the category moving object segmentation methods based on motion-information can be summarized as follows:

- The motion information based moving object segmentation methods [33-34, 96, 98-103] are fast and usually easy to implement.
- Motion information based moving object segmentation methods handle well the background changes but are not robust to sudden illumination changes.
- Furthermore, they are likely to fail if the contrast between the moving objects and the background is low.

3.2.2. Moving Object Segmentation Methods Based on Motion and Spatial Information

The second category of moving object segmentation methods are based on both motion and spatial information. The segmentation of moving objects based on motion and spatial information provide more stable object boundary extraction. Some of the prominent works under this domain are the works due to Mei *et al.* [28], Mcfarlane and Schofield [27], Remagnino *et al.* [104], Wren *et al.* [31], Zivkovic [32], Reza *et al.* [105], and Ivanov *et al.* [106]. In paper [28], Mei *et al.* proposed an automatic segmentation method for moving objects based on the spatial-temporal information of video. In this method, the author utilizes the spatial-temporal information. Spatial segmentation is applied to divide each image into connected areas to find precise object boundaries of moving objects. The limitation of this method is that the boundaries of the extracted objects are not always accurate enough to locate them in different scenes. Mcfarlane and Schofield [27] have proposed an approximation median filter method for segmentation of multiple video objects. This technique has also been used in background modeling for urban traffic monitoring [104]. The major disadvantage of this method is that it needs many frames to learn the new background region revealed by an object that moves away after being stationary for a long time [92] but this method is computationally efficient. Wren et al. [31] have proposed Running Gaussian Average model for moving object segmentation. This model is based on Gaussian probability density function (pdf) where a running average and standard deviation are maintained for each color channel. The drawback of this method lies in its complex nature which makes its processing slow because of the computational overhead involved in updating the mixture models. To deal with the issues mentioned in [31], Zivkovic [32] have proposed a moving object segmentation technique which is combination of temporal and spatial features. This approach automatically adapts the number of Gaussians being used to model for a given pixel. Reza et al. [105] have proposed a moving object segmentation technique, combining temporal and spatial features. This approach takes into account a current frame, ten preceding frames and ten next consecutive frames to segment the moving object. The method detects moving objects independent of their size and speed but there is no provision for reduction of blur and noise from frames, which may lead to inaccurate object segmentation. Ivanov et al. [106] have proposed an improvement over background subtraction method, which is faster than that proposed by [105] and is invariant to runtime change illuminations. In addition to above mentioned methods there are many other works

reported in literature [107-109] under this second category but most of them suffers from the similar types of limitations associated with above mentioned methods.

Therefore the important features of the methods under the category moving object segmentation methods based on motion- and spatial information can be summarized as follows:

- The motion and spatial information based moving object segmentation methods [27-28, 31-32, 104-109] needs many frames to learn the new background region revealed by an object that moves away after being stationary for a long time [92].
- Motion and spatial information based moving object segmentation methods is adaptive to only the small and gradual changes in the background and in case of sudden changes it distorts.
- Computational complexity of spatial information based moving object segmentation methods is also very low.

3.2.3. Moving Object Segmentation Methods Based on Learning

The Third category of moving object segmentation methods are based on learning which depends on some predefined learning patterns. Some of the prominent methods available in literature are the works due to Oliver *et al.* [110], Cucchiara *et al.* [111], Kushwaha *et al.* [26], Kato *et al.* [112], Ellis *et al.* [30], and Stauffer *et al.* [29]. Oliver *et al.* [110] proposed a moving object segmentation method which is based on spatial correlations. In this method, author constructs the background using principal component analysis. But it's suffered the problem of noise and blur. To deal the issue mention in [110], Cucchiara *et al.* [111] have proposed a moving object segmentation technique which is based on medoid filtering that can lead to color background estimation. The medoid filtering is capable of saving boundaries and existing edges in the frame without any blurring. But the computational complexity to construct the background is high. A more refined

application of this algorithm proposed by Kushwaha et al. [26] which is based on construction of basic background model where in the variance and covariance of pixels are computed to construct the model for scene background which is adaptive to the dynamically changing background. The method described in [26] has the capability to relearn the background to adapt background changes. Kato et al. [112] have proposed a segmentation method for monitoring of traffic video based on Hidden Markov Model (HMM). In this method, each pixel or region is classified into three categories: shadow, foreground and background. This method comprises of two phases: learning phase and segmentation phase. Ellis et al. [30] have proposed online segmentation of moving objects in video using online learning. In this approach, motion segmentation is done using semi-supervised appearance learning task wherein supervising labels are autonomously generated by a motion segmentation algorithm but the computational complexity of this algorithm is very high. Stauffer et al. [29] have proposed a tracking method wherein motion segmentation was done using mixture of Gaussians and on-line approximation to update the model. This model has some disadvantages such as background having fast variations cannot be accurately modeled with just a few Gaussians (usually 3 to 5), causing problems for sensitive detection. In addition to above mentioned methods, in literature various other approaches [113-115] in the same domain have been proposed but they also suffer from most of the same problems mentioned as above.

Therefore the important features of the methods under the category moving object segmentation methods based on learning information can be summarized as follows:

• Learning based moving object segmentation methods [26, 29-30, 110-112, 113-115] are adaptive to the dynamically changing background.

- Computational complexity of learning based moving object segmentation methods is very high.
- Learning based moving object segmentation methods suffer the problem of shadow regions and the presence of ghosts like appearances.

3.2.4. Moving Object Segmentation Methods Based on Change Detection

The fourth category of moving object segmentation methods are based on change detection which depends on frame difference of two or more frames. Some of the prominent methods available in literature are the works due to Kim et al. [116], Chien et al. [117], Kim and Hwang [118], Shih et al. [119], Huang et al. [16, 35], Baradarani [36, 37, Hsia et al. [120], Khare et al. [121]. Kim et al. [116] proposed moving object segmentation and automatic object tracking approach for video sequences. In this approach, intra-frame and inter-frame segmentation modules are used for segmentation and tracking. The intra-frame segmentation incorporates the user interaction in defining a high level semantic object of interest to be segmented and detects precise object boundary. The inter-frame segmentation involves boundary and region tracking to capture temporal coherence of moving objects with accurate object boundary information. The drawback of this method is that user-interaction is required for separating moving objects from the background in video sequences. To deal with the issues mentioned in [116], Chien et al. [117] proposed moving object segmentation algorithm using background registration method. The background registration method is used to construct reliable background information from the video sequence. In this approach, a morphological gradient operation is used to filter out the shadow. The major disadvantage of this method is that it adapts only static background and suffers from the problem of ghost objects. Kim and Hwang [118] derive an edge map using change detection method

and after removing edge points which belong to the previous frame, the remaining edge map is used to extract the video object plane. This method suffers from the problem of object distortion. To solve this problem, Shih et al. [119] used change detection method in three adjacent frames which easily handles the new appearance of the moving object. Huang et al. [16, 35] proposed an algorithm for moving object segmentation to solve the double-edge problem in the spatial domain using a change detection method with different thresholds in four wavelet sub-bands. Baradarani [36, 37] refined the work of Huang et al. [16, 35] using dual tree complex filter bank in wavelet domain. These methods [36, 37] suffer from the problem of noise disturbances and distortion of moving segmented objects due to change in speed of objects. To concern these issues, Hsia et al. [120] proposed a Modified Directional Lifting-based 9 /7 Discrete Wavelet Transform (MDLDWT) based approach, which is based on the coefficient of Lifting-based 9/7 Discrete Wavelet Transform (LDWT). Its advantages of low critical path, fast computational speed and the LL3-band of the MDLDWT is employed solely to reduce the image transform computing cost and remove noise but it cannot handle large dynamic background changes. Khare et al. [121] refine the work of Baradarani [36, 37] and Huang et al. [16, 35] using Daubechies complex wavelet. The method proposed by Khare et al. [121] reduces the noise disturbance and speed change, but it suffers from the problem of dynamic background changes and shadow detection and due to this segmenting coherence occurs [122]. In addition to above mentioned methods, in literature various other approaches [123-125] in the same domain have been proposed but they also suffer from most of the same problems mentioned as above.

Therefore the important features of the methods under the category moving object segmentation methods based on change detection [16, 35, 36-37, 116-125] can be summarized as follows:

- Change detection based moving object segmentation methods [16, 35, 36-37, 116-125] are adaptive to detect only "significant" changes while rejecting "unimportant" ones.
- Change detection based moving object segmentation methods [16, 35, 36-37, 116-125] handle noise disturbance and speed change very well.
- Change detection based moving object segmentation methods [16, 35, 36-37, 116-125] suffer from the problem of either slow speed of moving object or abrupt lighting variation changes.
- The other limitations include shadow regions, detection of only moving objects, and the presence of ghosts like appearances.

Table 3.1 presents the summary of various moving object segmentation methods under above mentioned four categories. The brief description of methods, their advantages, limitations, and conclusions of each category are highlighted. For comparative analysis purposes, only few prominent and latest methods in each category are considered which are performing better in their peer groups as reported in literature and demonstrated in results and analysis section.

Categories	Methods	Brief	Advantages	Limitations	Conclusions
of Methods		Description			
	Bradski	Use time	Computationally	Extracts only	Motion
	[98]	motion history	Fast	the moving	information
		image (TMHI)		objects but	based methods
		for representing		unable to extract	are fast and
		motion		the static one	usually easy to
Category I	Kim et	Use	Handle gradual	Have problems	implement.
(Methods	al.[33]	quantization	illumination	of ghost regions,	They handle
based on		and clustering	changes and	shadow	well the
motion-		[13] for	computationally	detection and	background
information)		creating a	Fast	noise	changes but are
		codebook			not robust to
	Liu <i>et al</i> .	Use cumulated	Handle ghost	Problem to	sudden
	[34]	difference,	and noise	handle	illumination
		object motion	problem	sudden	changes.
		and adaptive		illumination	Furthermore,
		thresholding		changes and	they are likely
				shadow	to fail if the
	Xiaoyan et	Use adaptive	Easily handle	Have problems	contrast
	al. [96]	change	complex	of ghost regions	between the
		detection,	background and	and shadow	moving objects
		Canny edge	noise problem		and the

Table 3.1: Summary of various moving object segmentation methods

		and improved			background is
		active contour			low.
		to obtain the			
		segmented			
		object			
	Mahmoodi	Use shape	Easily handles	Computationally	
	[99]	based active	the shadow	slow due to use	
		contour and	problem	of level set	
		Mumford shah		framework	
		functional			
		model			
	Meier and	Use Hausdorff	Automatically	The boundaries	
	Ngan [100]	distance for	adapts with the	of the extracted	
		background	changing	objects are not	
		modelling	background	always accurate.	
	Mei et al.	Use spatial-	Easily handle	Boundaries of	Motion &
	[28]	temporal	gradual	the extracted	spatial
Category II		information	illumination	objects are not	information
(Methods			changes and	always accurate	based methods
based on			shadow problem	enough to locate	need many
motion and				them in different	frames to
spatial –				scenes	learn the new
information)	Mcfarlane	Use frame	Computationally	It needs many	background
	<i>et al.</i> [27]	differencing	fast and handles	frames to learn	region revealed
		and	noise	the new	by an object
1	1	1	1	1	1

	Background		background	that moves
	modeling step		region revealed	away after
			by an object that	being
			moves away	stationary for a
			after being	long time [6]
			stationary for a	i.e. it is
			long time	adaptive to
				only the small
Wren <i>et al</i> .	Use running	Handle gradual	Complex nature	and gradual
[31]	Gaussian	and sudden	which makes its	changes in the
	average model	illumination	processing slow	background
	and Gaussian	changes	because of the	in case of
	probability		computational	sudden changes
	density		overhead	it distorts and
	function		involved in	also the
			updating the	computational
			mixture models.	complexity of
Zivkovic	Use number of	Easily handle	Computationally	these
[32]	Gaussians to	gradual and	slow and also	algorithms are
	create a model	sudden	suffers from the	low.
	for a given	illumination	problem of	
	pixel.	changes	ghost and	
			shadow	
Reza <i>et al</i> .	Use current	Easily handle	Computationally	
[105]	frame, ten	lighting	slow and have	
	1	1	1	

		preceding	changes,	problem to	
		frames and ten	shadows and	handle sudden	
		next	reflections	illumination	
		consecutive		changes	
		frames to			
		segment the			
		moving object			
	Ivanov et	Use color	Computationally	Problem to	
	al. [106]	intensity values	Fast and also	handle gradual	
		at	handle noise,	and sudden	
		corresponding	shadow problem	illumination	
		pixels		changes and	
				ghost problem	
	Oliver <i>et al</i> .	Use spatial	Easily handle	Computationally	Learning based
Category III	[110]	correlations	gradual	slow and	methods
based on		and principal	illumination	Problem of	are adaptive
patterns)		component	changes and	noise and blur	to the
		analysis to	shadow problem		dynamically
		construct the			changing
		background			background
	Cucchiara	Use medoid	Easily handle	Computational	but the
	<i>et al.</i> [111]	filtering to	gradual	complexity to	computational
		construct the	variations of the	construct the	complexity of
		background	lighting	background is	these algorithm
				high	is very high

h the of gions
of egions
gions
of
e
es.

			conditions in the	problem of	
			scene	noise and ghost	
				object	
	Kato <i>et al</i> .	Use Hidden	Easily handle	Computational	
	[112]	Markov Model	gradual and	complexity to	
		(HMM) to	sudden	construct the	
		segment and	variations of the	background is	
		learn the object	lighting	high	
			conditions in the		
			scene and also		
			solve the		
			problem of		
			shadow, noise		
	Kim <i>et al</i> .	intra-frame and	It detects	User-interaction	Change
Category IV	[116]	inter-frame	accurate object	is required for	detection based
based on		segmentation	boundaries	separating	methods can
detection)		modules are		moving objects	handle
		used for objects		from the	appearance of
		segmentation		background in	new objects in
		and tracking		video	the scene. But
				sequences.	they suffer
	Chien et al.	Background	Easily handles	1. it adapts only	from the
	[117]	registration is	object shadow	static	problem of
		used to	and noise	background	either slow
		construct			speed of

	reliable		2. it suffers with	moving object
	background		the problem of	or abrupt
	information		ghost objects	lighting
	from the video			variation
	sequence			changes.
Kim and	Use single	Easily handles	Problem to	
Hwang	change	the noise	handle new	
[118]	detection		appearance of	
			object in the	
			scene	
Shih <i>et al</i> .	Use double	Easily handles	Problem to	
[119]	change	new appearance	handle gradual	
	detection	of object in the	and sudden	
		scene	illumination	
			changes due to	
			this object is	
			distorted and	
			also suffers	
			from noise and	
			ghost object	
			appearance	
Huang <i>et</i>	Use single &	Easily handle	Problem to	
al. [16, 35]	double change	new appearance	handle gradual	
	detection in	of object in the	and sudden	
	wavelet domain	scene &	illumination	

		computationally	changes due to	
		fast	this object is	
			distorted also	
			suffers noise	
			and ghost object	
			problem	
Baradarani	Use change	Easily handle	Suffer from the	
[36, 37]	detection in	new appearance	problem of	
	dual tree	of object in the	noise	
	complex	scene and	disturbances and	
	wavelet domain	computationally	distortion of	
		fast	moving	
			segmented	
			objects due to	
			change in speed	
			of objects	
Hsia <i>et al</i> .	Use modified	Reduce the	Problem to	
[120]	directional	image transform	handle gradual	
	lifting-based 9	computing cost,	and sudden	
	/7 discrete	remove noise,	illumination	
	wavelet	and	changes and due	
	transform	computationally	to this the object	
	(MDLDWT)	fast	is distorted	
Khare <i>et al.</i>	Use single	Reduces the	Suffers from the	
[121]	change	noise	problem of	

	detection in	disturbance and	dynamic	
	Daubechies	speed change	background	
	complex		changes and	
	wavelet domain		shadow	
			detection and	
			due to this	
			segmenting	
			coherence	
			occurs	
1				

After presenting the literature review of various moving object segmentation methods, discussed as above under each of the four categories, it is observed that the approximate median filter based method under second category i.e. a method based on motion and spatial information is better in comparison to methods presented in other categories also validated through experimental results and analysis presented in Section 3.4. The approximate median filter contains two steps to segment the object: (i) frame differencing of two consecutive frames and (ii) background modeling step. The brief working of approximation median filter based method for moving object segmentation is given as follows [27, 104]:-

Step I: Frame Differencing:

For background subtraction the frame difference $FD_n(i,j)$ is obtained by taken the absolute difference two consecutive frames (n-1) & n. This process can be written as follows:-

For every pixel location (i, j) ϵ *the co-ordinate of frame*

$$FD_n(i, j) = |f_n(i, j) - f_{n-1}(i, j)|$$

$$If FD_n(i, j) < V_{thr}$$

$$FD_n(i, j) = 0$$

Step II: Background Modeling:

In background modeling step, if the corresponding pixel in the current frame $f_n(i, j)$ is greater in value of previous frame $f_{n-1}(i, j)$ then previous frame is incremented by one otherwise previous frame is decreased by one. This process can be written as follows:-

$$If (f_{n}(i,j) > f_{n-1}(i,j))$$

then $f_{n-1}(i,j) = f_{n-1}(i,j) + 1$
otherwise $f_{n-1}(i,j) = f_{n-1}(i,j) - 1$

Here, $f_n(i, j)$ is the value of (i, j)th pixel of nth frame and $f_{n-1}(i, j)$ is the value of (i, j)th pixel of (n-1)th frame, V_{thr} is a threshold value and $_{FD_n}(i, j)$ is the frames difference.

The main limitation of approximate median filter based method is that it does not adapt to the dynamic changes in background due to its weak background modeling steps. Due to this it suffers from the problems of (i) ghost like appearances in moving segmented object, (ii) slow adaptation toward a large change in background, and (iii) requirement of many frames to learn the new background region revealed by an object that moves away after being stationary for a long time.

Motivated by these facts, in this chapter, we have improved the background modeling step of traditional approximate median filter based method [27, 104] using different major changes such as background registration, background differencing, and background difference mask in complex wavelet domain. These major changes adapt the dynamic background changes and solve the above mentioned three problems in traditional approximate median filter. The effectiveness of the proposed method over traditional approximate median filter is validated through experimental result and analysis presented in section 3.4.

The main advantage of performing the above mentioned tasks in the complex wavelet domain is that the complex wavelet transform has better noise resilience nature as the lower frequency sub-band of the wavelet transform has the capability of a low-pass filter. The other advantage is that the high frequency sub-bands of complex wavelet transform represent the edge information that provide a strong cue to handle shadow. The proposed method is well capable of dealing with the problems of noise, ghost like appearances, distortion of objects due to the speed of moving objects, dynamic background scenes, varying illumination conditions, shadows, and computational complexity as demonstrated and reported in this chapter for several challenging test video sequences.

3.3. An Improved Approximation Median Filter Based Approach in Complex Wavelet Domain: The Proposed Method

In this chapter, an efficient approach for moving object segmentation under varying illumination conditions is proposed. The proposed method is the modified and extended version of traditional approximation median filter based method for moving object segmentation [27, 104] in complex wavelet domain as discussed in section 3.2. The proposed method consists of following seven steps as follows and also illustrated in Fig.

3.1:

- (i) Complex wavelet decomposition of sequence of frames.
- (ii) Application of approximate median filter on the wavelet coefficients.
- (iii) Application of background modeling.
- (iv) Application of soft thresholding for noise removal.
- (v) Application of canny edge detector to detect strong edges.
- (vi) Application of inverse Daubechies complex wavelet transform.
- (vii) Finally the application of closing morphological operators.

All above steps are iteratively applied until the result does not surpass the set threshold value for object segmentation.

The workings of these steps are given as follows and illustrated in Fig. 3.1 & 3.2

Segmented Object

Figure 3.2: Sub-block Diagram of the proposed approach

Step 1: Wavelet Decomposition of frames

In the proposed approach, a 2-D Daubechies complex wavelet transform is applied on current frame and previous frame to get wavelet coefficients in four sub-bands: LL, LH, HL and HH. The generating Daubechies complex wavelet transform is described as follows:

The basic equation of multiresolution theory is the scaling equation [4]

$$\phi(u) = 2\sum_{i} a_i \phi(2u - i) \tag{3.1}$$

where a_i 's are coefficients, and $\phi(u)$ is the scaling function. The a_i 's can be real as well as complex valued. Daubechies's wavelet bases $\{\Psi_{j,k}(t)\}$ in one-dimension is defined using the above mentioned scaling function $\phi(u)$ and multi resolution analysis of L₂(\Re) [4]. The generating wavelet $\psi(t)$ is defined as:

$$\psi(t) = 2\Sigma(-1)^n a_{1-n} \phi(2t - n)$$
(3.2)

Where $\phi(t)$ and $\psi(t)$ share same compact support [-L, L+1].

Any function f (t) can be decomposed into complex scaling function and mother wavelet as:

$$f(t) = \sum_{k} C_{k}^{j_{o}} \phi_{j_{o},k}(t) + \sum_{j=j}^{j_{max}-1} d_{k}^{j} \psi_{j,k}(t)$$
(3.3)

where, j_o is a given low resolution level, $\{C_k^{j_o}\}$ is called approximation coefficient and $\{d_k^j\}$ is known as detail coefficient.

Applying the approximate median filter based method [27, 104] in complex wavelet domain have following advantages (a) it is shift invariant and have a better directional selectivity as compared to real valued wavelet transforms [4] (b) it has perfect reconstruction property (c) it provides true phase information [4], while other complex wavelet transform does not provide true phase information (d) Daubechies complex wavelet transform has no redundancy [4].

Step 2: Application of improved approximate median filter method on wavelet coefficient

In step 2, an approximate median filter based method is applied on detail wavelet coefficients i.e. on sub-bands: LH, HL, and HH. Let $Wf_{n,d}(i,j)(d=\{LH,HL,HH\})$ and $Wf_{n-1,d}(i,j)(d=\{LH,HL,HH\})$ are the wavelet coefficients at location (i, j) of the current frame and previous frame. Instead of assigning a fixed *a priori* threshold $V_{th,d}$ to each frame difference, this method uses the fast Euler number computation technique [126] to automatically determine $V_{th,d}$ from the video frame. The fast Euler numbers algorithm calculates the Euler number for every possible threshold with a single raster of the frame difference image using following equation:

$$E(i) = \frac{1}{4} [(q_1(i) - q_3(i) - 2q_d(i))]$$
(3.4)

where q_1 , q_3 , and q_d is the quads (quad is a 2*2 masks of bit cells) contained in the given image.

The output of the algorithm is an array of Euler numbers: one of each threshold value. The Zero crossings find out the optimal threshold. Detailed algorithms for the fast Euler number computation method can be found in [126].

The wavelet domain frame difference $WD_{n,d}(i, j)$ for respective sub-bands are computed as:

for every pixel location (i, j) ϵ the co-ordinate of frame

$$WD_{n,d}(i,j) = \begin{cases} 1 & if \quad |Wf_{n,d}(i,j) - Wf_{n-1,d}(i,j)| > V_{uh,d} \\ 0 & otherwise \end{cases}$$
(3.5)

Step 3: Application of background modeling using LL sub-band

This step of the proposed method deals with the problems of slow adaptiveness toward a large change in background and requirement of many frames to learn the new background region revealed by an object that moves away after being stationary for a long time as noted in traditional approximate median filter based method [27, 104]. To deal with these issues, here we propose to modify the background modeling approach which uses background registration mask, background difference mask and the frame difference mask to construct the background in LL sub band. The background modeling step is divided in to four major steps as shown in Fig 3.3.

The first step calculates the frame difference mask $WD_{n,LL}(i, j)$ of the LL image which is obtained by thresholding the difference between coefficients in two LL sub-bands as follows:

$$WD_{n,LL}(i,j) = \begin{cases} 1 & if \quad |Wf_{n,LL}(i,j) - Wf_{n-1,LL}(i,j)| < V_{th,WD} \\ 0 & otherwise \end{cases}$$
(3.6)

where $V_{th,FD}$ is a threshold of $_{WD_{n,LL}}(i,j)$ determined automatically from the video frame by the fast Euler number computation method as explained in [126]. If $WD_{n,LL}(i,j)=0$, then the difference between two frames is almost the same.

The second step of background modeling maintains an up-to-date background buffer as well as background registration mask indicating whether the background information of a pixel is available or not. According to the frame difference mask of the past several frames, pixels that are not moving for a long time are considered as reliable background. The reliable background, $BR_{n,LL}(i, j)$ is defined as

$$BR_{n,LL}(i,j) = \begin{cases} BR_{n-1,LL}(i,j) + 1 & if \quad WD_{n,LL}(i,j) = 0 \\ 0 & otherwise \end{cases}$$
(3.7)

The $_{BR_{n,LL}}(i, j)$ value is accumulated until $_{WD_{n,LL}}(i, j)$ holds zero value. At any time that $_{WD_{n,LL}}(i, j)$ is changed from 0 to 1, $_{BR_{n,LL}}(i, j)$ becomes zero.

In third step of background modeling, if the value in $_{BR_{n,LL}}(i, j)$ exceeds a predefined value, denoted by L, then the background difference masks $_{BD_{n,LL}}(i, j)$ is calculated. It is obtained by taking the difference between the current frame and the background information stored. This background difference mask is the primary information for object shape generation i.e.

$$BD_{n,LL}(i,j) = \begin{cases} 1 & if \quad \left| Bf_{n-1,LL}(i,j) - Wf_{n,LL}(i,j) \right| > V_{th,BD} \\ 0 & otherwise \end{cases}$$
(3.8)

where $Bf_{n-1,LL}(i,j)$ is the pixel value in the current frame that is copied to the corresponding pixel in the $BR_{n,LL}(i,j)$, and $V_{th,BD}$ is a threshold value determined automatically from the video frame by the fast Euler number computation method as explained in [126]. In the case of $BR_{n,LL}(i,j) < L$, it is assumed that the background is

not constructed, so frame differences $\max_{WD_{n,LL}}(i, j)$ is used which is calculated in the first step.

In the fourth step of background modeling, a background model is constructed using the background difference mask, background registration mask, and the frame difference mask. The background model generated has some noise regions because of irregular object motion and noise. Also, the boundary region may not be very smooth. The workings of these steps are given as follows and illustrated in Fig 3.3.

Step 4: Application of soft thresholding method for noise removal

After applying approximate median filter based method and background modeling, the obtained result may have noise. This step deals with the noise reduction from the data obtained in step 2 and step 3. In presence of noise, the equation is expressed as:

$$WD_{n,d=(LL,LH,HL,HH)}(i,j) = WD^{*}_{n,d=(LL,LH,HL,HH)}(i,j) + \eta$$
(3.9)

where $WD_{n,d=(LL,LH,HL,HH)}^{*}(i, j)$ is frame difference without noise, $WD_{n,d=(LL,LH,HL,HH)}(i, j)$ is the original frame difference with noise, and γ is the additive noise. The wavelet domain soft thresholding T is applied on wavelet coefficients for noise reduction. The value of soft thresholding parameter T for de-noising is computed as [127]

$$T = \frac{1}{2^{j-1}} \left(\frac{\psi}{\xi}\right) \omega \tag{3.10}$$

where j is wavelet decomposition level and ψ , ξ and ω are standard deviation, absolute mean and absolute median of wavelet coefficients of a sub-band.

Step 5: Application of canny edge detector to detect strong edges in wavelet domain Canny edge detection method is one of the most useful and popular edge detection methods, because of its low error rate well localized edge points and single edge detection response [128]. In next step, the canny edge detection operator is applied on $WD_{n,d=(LL,LH,HL,HH)}^*(i,j)$ to detect the edges of significant difference pixels in all subbands as follows:

$$DE_{n,d=(LL,LH,HL,HH)}(i,j) = canny(WD^*_{n,d=(LL,LH,HL,HH)}(i,j))$$
(3.11)

where $DE_{n,d=(LL,LH,HL,HH)}(i,j)$ is an edge map of $WD^*_{n,d=(LL,LH,HL,HH)}(i,j)$.

Step 6: Application of inverse Daubechies complex wavelet transform

After finding edge map $DE_{n,d=(LL,LH,HL,HH)}(i,j)$ in wavelet domain, inverse wavelet transform is applied to get moving object edges in spatial domain i.e. E_n .

Step 7: Application of closing morphological operation to sub-band

As a result of step 6, the obtained segmented object may include a number of disconnected edges due to non-ideal segmentation of moving object edges. Extractions of object using these disconnected edges may lead to inaccurate object segmentation. Therefore, some

morphological operation is needed for post-processing of object edge map to generate connected edges. Here, a binary closing morphological operation is used [128] which gives $M(E_n)$ i.e. the set of connected edge. In this step, the segmented output is obtained.

3.4. Experimental Results and Comparative Studies

3.4.1. Dataset Description

In this section, a brief overview of few datasets used for experimentation purpose in this chapter are presented.

Pets Dataset [129]

First video dataset used for experimentation in this chapter is the people video sequence which is part of Pets dataset available from [129]. This video data contains 2967 frames of frame size 480 x 272. The main characteristics of this video data are that they are record in outdoor environment wherein multiple objects (Human beings and cars) are present and cases of partial and full occlusions among human beings are also present.

Visor datasets [130-132]

The another video data considered for experimentation is the Visor dataset which is the largest publically available and most standard dataset widely used for benchmarking results for segmentation. In this chapter, three video data sets from this category are used for experimentation which are Intelligent Room video sequence [130] containing 299 frames each of size 320 x 240, Camera2_070605 video sequence [131] containing 2881 frames each of size 384 x 288 and HighwayI_raw dataset [132] containing 439 frames each of size 320 x 240. Camera2_070605 video sequence dataset is performed at particular angle and is of low-quality and low contrast. Intelligent Room video sequence is recorded in full noisy environment i.e. video quality is low with poor contrast and

shadow of object is also present. In highwayI_raw video sequence is recorded in full noisy environment and full and partial occlusion occurs between fast moving cars.

Caviar Dataset [133]

The next video data considered for experimentation is the one step video sequence dataset which is the part of Caviar video dataset available from [133]. This video data contains number of video clips, having 1995 frames each of size 480 x 272, which were recorded acting out the different scenarios of interest. This video is recorded in stationary background situation and multiple human beings are present in the video.

CVCR Dataset (Crowdie Environment Dataset) [134]

The final data set used for experimentation contains videos of crowd's density environment. 4917-5_70 is one of the video sequences of CVCR dataset [134] which contain 1789 frames each of size 480 x 320. This video was shooted on much more height and in very crowdie environment which contains full occlusions, shadow and noise.

3.4.2. Performance Measures

It is very difficult to compare the segmentation results visually because human visual system can identify and understand scenes with different connected objects effortlessly. Therefore, quantitative performance metrics together with visual results are more appropriate. The performance measures are categorized into various categories for determining the performance of the chosen method or comparing the proposed method with other methods for moving object segmentation. The various categories of performance measures calculate the accuracy of moving object segmentation; measures for noise removal in moving object segmentation; and computational time and memory required in moving object segmentation. The performance measures listed under various categories are defined as follows:

3.4.2.1. Accuracy of Moving Object Segmentation

The accuracy of moving object segmentation is calculated in terms of Relative Foreground Area Measure (RFAM) [84], Misclassification Penalty (MP) [84], Pixel Classification Based Measure (PCM) [84], and Relative Position Based Measure (RPM) [84] as discussed in chapter 2 (in section 2.5).

3.4.2.2. Noise Removal Capacity in Moving Object Segmentation

Here three performance measurement metrics namely Peak Signal-to-Noise Ratio [87], Normalized Absolute Error (NAE) [86], and Normalized Cross Correlation [85] are used for noise.

3.4.2.3. Computational Time and Memory

Here two performance measurement metrics namely computational time and memory consumption are used for Computational time and memory.

3.4.3. Results & Comparative Studies

In this section, comparative studies of some prominent methods as reported in literature and as discussed in Section 3.2, under the four categories, is presented both qualitatively and quantitatively on six video datasets discussed as above [129-134] in Section 3.4.1. Further, the comparative study of the proposed method is also presented with various methods under each category. The object intended for segmentation in the test video clips are appearing after approximately 100 frames in the test cases under consideration. The performance measures were calculated for whole video clips at the frame interval of 25 after 100th frame. In this chapter, the result for only four frames viz. 125, 150, 175, and 200 are shown. However, the performance trend remained the same for all video frames. In Tables 3.2 through 3.8, results of various moving object segmentation methods under each of the four categories as discussed in Section 3.2 in terms of seven different performance metrics divided under two categories viz. segmentation accuracy and noise removal, as discussed in sub-section 3.4.2, are listed. In Table 3.9, average computation time (frames/second) and memory consumption for different methods for a video of frame size 320 x 240 for first 100 frames [133] are shown. The comparative study has been done on a computer with Intel 2.53GHz core i3 processor with 4 GB RAM using OpenCV 2.9 and MATLAB 2013a software.

3.4.3.1. Qualitative Analysis

In this section, we report the experimental analysis and results of methods under categories I to IV and that of the proposed method. In category-I, we report the experimental analysis and results of four latest methods proposed by Kim *et al.* [33], Bradaski [98], Liu *et al.* [34], and Meier and Ngan [100] based on their advantages and limitations. In category-II, three latest methods for experimentation and comparative analysis are considered which are due to Mcfarlane *et al.* [27], Wren *et al.* [31] and Zivkovic *et al.* [32]. In category-III, we consider three latest methods for experimentation and comparative analysis which are due to Kushwaha *et al.* [26], Cucchiara [111], and Oliver [110]. Similar way, in category-IV, we consider four latest methods for experimentation and comparative analysis which are due to Kim *et al.* [116], Chien *et al.* [117], Khare *et al.* [121] and Hsia *et al.* [120].

Some observations about the results obtained by methods in categories I to IV and proposed method are as follows for six different video data sets [129-134]. From Fig. 3.4-3.9, it can be observed that:

(a) The segmentation results obtained by the method proposed by Kim *et al.* [33] perform better to other methods such as by Bradaski [98], Liu *et al.* [34] and Meier and Ngan [100] in category-I because the results of methods reported in [98, 34, 100] depends on the motion of the object (see frame no. 125-200 (ix, x, xiv)). If object is static then

methods reported in [98, 34, 100] are not able to segment the object but Kim *et al.* [33] method works well for different data sets [129-134] (see frame no. 125-200 (iv)).

(b) The segmentation results obtained by the method proposed by Mcfarlane *et al.* [27] perform better to other methods in category II (see frame no. 125-200 (iii)). From Fig. 3.4-3.5, one can conclude that Mcfarlane *et al.* [27] give better shape of moving object with least noise in segmented frames by the methods in category-II (see frame no. 125-200 (iii)). From Fig. 3.6-3.9, it is clear that Wren *et al.* [31] and Zivkovic *et al.* [32] both suffers from the ghost object, noise, and shadow (see frame no. 125-200 (v & xi)) but Mcfarlane *et al.* [27] give better result with respect to least noise in segmented frame in category-II.

(c) For the methods under category-III:

- The segmentation results obtained by the method proposed by Kushwaha *et al.* [26] perform better to other methods in category III (see frame no. 125-200 (xii)).
- Results obtained by Cucchiara [111] suffer from the problem of ghosts, noise and shadows and also some portion of the object is distorted (see frame no. 125-200 (vi)).
- Results obtained by the method proposed by Oliver [110] have the problem of disappearance of the object in the frame during segmentation process after some time and the object is also distorted (see frame 125-150 (xiii)).

(d) The segmentation results obtained by the method proposed by Khare *et al.* [121] under category–IV perform better to other methods such as Kim *et al.* [116], Chien *et al.* [117] and Hsia *et al.* [120]. From Fig. 3.4, it is clear that, results of methods reported in [116, 117, 120] is not accurate (i.e. objects are collapsed) due to occlusions between multiple

objects in the frame (see frame no. 125-200 (vii, xv, xvi)). In this situation Khare *et al.* [121] method works well but it suffers from the problem of ghosts (see frame no. 125-200 (viii)). From Fig. 3.5, one can conclude that, methods reported in [116, 117, 120] is not able to give comparable shape structure as compared to the Khare *et al.* [121] (see frame no. 125-200 (vii, viii, xvi)). From Fig. 3.6, it is also seen that the method proposed by Khare *et al.* [121] suffered the problem of ghost as compared to the Chien *et al.* [117] and Hsia *et al.* [120] (see frame no. 125-200 (vii, viii, xvi)). From Fig. 3.6, it is distorted (see frame 125-200 (vi)) due to speed change of cars but in this condition Khare *et al.* [121] method work properly (see frame no. 125-200 (vii & viii)).

(e) The segmentation results obtained by proposed method perform well to other methods in the category I to IV having fast moving objects, crowdie and shadow environment in the video dataset. The proposed method does not suffer from the problem of ghost, object distortion, shadow, and disappearance of object in video scene (see frame no.125-200 (ii)) in comparison to other method in the category I to IV for different datasets [129-134].

3.4.3.2. Quantitative Analysis

In this section, the performances of the proposed method have been compared quantitatively under categories I to IV and proposed method in terms of seven different performance metrics divided under two categories viz. segmentation accuracy and noise removal as discussed in section 3.4.2.

From Tables 3.2-3.9 and Figs. 3.10-3.16(a-f) it can be observed that the following methods are performing better under each of their respective categories. These methods are associated with high value of RFAM, RPM, PCM and low value of MP in comparison to other methods under each category which indicate better segmentation accuracy. The high values of PSNR and NCC and low value of NAE indicate better noise removal

capacity in comparison to other methods under respective categories for different datasets [129-134]. Also, the following methods under each of the respective category are associated with less computational time and memory consumption in comparison to other methods in their respective categories. These observations are summarized as:

- Kim *et al.* [33] method is performing better in terms of segmentation accuracy, noise removal capacity and computational complexity in category-I for each of the datasets.
- Macflrane *et al.* [27] method is performing better in terms of segmentation accuracy, noise removal capacity and computational complexity in category-II for each of the datasets.
- Kushwaha *et al.* [26] method is performing better in terms of segmentation accuracy, noise removal and computational complexity in category-III for each of the datasets.
- Khare *et al.* [121] method is performed better in terms of segmentation accuracy, noise removal and computational complexity in category-IV for each of the datasets.

Further, the proposed method is associated with high value of RFAM, RPM, PCM, PSNR, NCC; and low value of MP and NAE in most of the frames in comparison to other methods under each category for different datasets [129-134]. From Table 3.9, one can also observe that the proposed method had taken less computational time and consumed only 3.90 megabytes of RAM which was the least in comparison with the other methods in category-I to IV. Hence, proposed method is performing better in terms of segmentation accuracy, noise removal and computational complexity in comparison to other methods in categories I to IV for each of the datasets.

Overall observation of performance of methods under Categories I to IV and the proposed method:

From qualitative and quantitative observations of the comparative analysis and results of methods in Categories I to IV and the proposed method, we conclude that proposed method is performing better in comparison to all methods under consideration for different datasets [129-134]. For experimentation, we have taken different complex datasets i.e. multiple objects with partial and full occlusion, crowded object, and fast moving object with shadow. After overall observation, we conclude that the proposed method perform better to other methods from category I to IV. The other methods which perform better after the proposed method in decreasing order of their performances are Kushwaha *et al.* [26], Mcflarne *et al.* [27], Khare *et al.* [121], and Kim *et al.* [33].

3.5. Conclusions

This chapter presented a review and experimental study of various recent moving object segmentation methods available in literature and these methods were classified into four categories i.e. moving object segmentation methods based on (i) motion information (ii) motion and spatial information (iii) learning, and (iv) change detection. The objective of this chapter was two-fold i.e. firstly, this chapter presented a comprehensive literature review and comparative study of various classical as well as state-of-the art methods for moving object segmentation under varying illumination conditions under each of the above mentioned four categories. Further, in this chapter, an efficient approach for moving object segmentation under varying illumination conditions was proposed and its comparative study with other methods under consideration was presented. The qualitative and quantitative comparative study of the various methods under four categories as well as the proposed method was presented for six different datasets [129-134]. The advantage, limitations, and efficacy of each of the methods under consideration have been examined.

The extensive experimental results on six challenging data sets demonstrate that the proposed method is superior to other state -of-the-art background subtraction methods as well as this chapter also provided an insight about other methods available in literature.

	^{6,} et	6 N	14 H. J.	1110	12.6	۰ ^۱ ۴	ş t ^r e
(i)	(ii)	(iii)	(iv)	(v)	(vi)	(vii)	(viii)
÷. e	÷.	IT'B	s ^{a t} ip	ŝ. Q	R (R	ð 8	111
(ix)	(x)	(xi)	(xii) (a)Fran	(xiii) me 125	(xiv)	(xv)	(xvi)
	ⁱⁱ⁾ # j	^{; \$}*} ₩x)	1.10	1 "LI" #2)	1. ¹⁸¹ 11.1	8) [*] #3	i n'#
(i)	(ii)	(iii)	(iv)	(v)	(vi)	(vii)	(viii)
^V e	in G	str _a	^{, ⊎1*} ₩2)	6) AR 1	8 Ø.	¥) 4	1 ^{B)} D
(ix)	(x)	(xi)	(xii) (b)Frar	(xiii) ne 150	(xiv)	(xv)	(xvi)
	fit the 1	at the se	THE L	1 11 11 11	1 22 11 11	W they	1 ¹¹ 1
(i)	(ii)	(iii)	(iv)	(v)	(vi)	(vii)	(viii)
^{0.0} .8	⁶⁰ 89 g	T RETHAL	s ****** xy	~~ W F	42 Q2 E	" D 6	T"" "
(ix)	(x)	(xi)	(xii) (c)Frar	(xiii) me 175	(xiv)	(xv)	(xvi)
	ⁱⁱ at g	\$7.At. +		1 " 4 4	s that	N 16. j	1 * h 4
(i)	(ii)	(iii)	(iv)	(v)	(vi)	(vii)	(viii)

Figure 3.4: Segmentation results for People video sequence [129] corresponding to (a) Frame 125,(b) frame 150, (c) frame 175, (d) frame 200 (i) original frame, and the segmented frame obtained by various methods such as: (ii) the proposed method, (iii)McFarlane and Schofield[27], (iv) Kim *et al.*[33], (v) Zivkovic[32] (vi) Cucchiara *et al.*[111], (vii)Hsia *et al.*[120], (viii) Khare *et al.*[121] (ix) Bradski[98], (x) Liu *et al.* [34], (xi) Wren *et al.*[31], (xii) Kushwaha *et al.* [26], (xiii) Oliver *et al.*[110], (xiv) Meier and Ngan [100], (xv) Kim *et al.* [116], and (xvi) Chien *et al.* [117].

Figure 3.5: Segmentation results for Intelligent Room video sequence [130] corresponding to (a) Frame 125,(b) frame 150, (c) frame 175, (d) frame 200 (i) original frame, and the segmented frame obtained by various methods such as: (ii) the proposed method, (iii)McFarlane and Schofield[27], (iv) Kim *et al.*[33], (v) Zivkovic[32] (vi) Cucchiara *et al.*[111], (vii)Hsia *et al.*[120], (viii) Khare *et al.*[121] (ix) Bradski[98], (x) Liu *et al.* [34], (xi) Wren *et al.*[31], (xii) Kushwaha *et al.* [26], (xiii) Oliver *et al.*[110], (xiv) Meier and Ngan [100], (xv) Kim *et al.* [116], and (xvi) Chien *et al.* [117].

Figure 3.6: Segmentation results for One Step video sequence [133] corresponding to(a) Frame 125,(b) frame 150, (c) frame 175, (d) frame 200 (i) original frame, and the segmented frame obtained by various methods such as: (ii) the proposed method, (iii)McFarlane and Schofield[27], (iv) Kim *et al.*[33], (v) Zivkovic[32] (vi) Cucchiara *et al.*[111], (vii)Hsia *et al.*[120], (viii) Khare *et al.*[121] (ix) Bradski[98], (x) Liu *et al.* [34], (xi) Wren *et al.*[31], (xii) Kushwaha *et al.* [26], (xiii) Oliver *et al.*[110], (xiv) Meier and Ngan [100], (xv) Kim *et al.* [116], and (xvi) Chien *et al.* [117].

Figure 3.7: Segmentation results for Camera2_070605 video sequence [131] corresponding (a) Frame 125,(b) frame 150, (c) frame 175, (d) frame 200 (i) original frame, and the segmented frame obtained by various methods such as: (ii) the proposed method, (iii)McFarlane and Schofield[27], (iv) Kim *et al.*[33], (v) Zivkovic[32] (vi) Cucchiara *et al.*[111], (vii)Hsia *et al.*[120], (viii) Khare *et al.*[121] (ix) Bradski[98], (x) Liu *et al.* [34], (xi) Wren *et al.*[31], (xii) Kushwaha *et al.* [26], (xiii) Oliver *et al.*[110], (xiv) Meier and Ngan [100], (xv) Kim *et al.* [116], and (xvi) Chien *et al.* [117].

Figure 3.8: Segmentation results for highwayI_raw video sequence [132] corresponding to (a) Frame 125,(b) frame 150, (c) frame 175, (d) frame 200 (i) original frame, and the segmented frame obtained by various methods such as: (ii) the proposed method, (iii)McFarlane and Schofield[27], (iv) Kim *et al.*[33], (v) Zivkovic[32] (vi) Cucchiara *et al.*[111], (vii)Hsia *et al.*[120], (viii) Khare *et al.*[121] (ix) Bradski[98], (x) Liu *et al.* [34], (xi) Wren *et al.*[31], (xii) Kushwaha *et al.* [26], (xiii) Oliver *et al.*[110], (xiv) Meier and Ngan [100], (xv) Kim *et al.* [116], and (xvi) Chien *et al.* [117].

Figure 3.9: Segmentation results for 4917-5_70 video sequence [134] corresponding to(a) Frame 125,(b) frame 150, (c) frame 175, (d) frame 200 (i) original frame, and the segmented frame obtained by various methods such as: (ii) the proposed method, (iii)McFarlane and Schofield[27], (iv) Kim *et al.*[33], (v) Zivkovic[32] (vi) Cucchiara *et al.*[111], (vii)Hsia *et al.*[120], (viii) Khare *et al.*[121] (ix) Bradski[98], (x) Liu *et al.* [34], (xi) Wren *et al.*[31], (xii) Kushwaha *et al.* [26], (xiii) Oliver *et al.*[110], (xiv) Meier and Ngan [100], (xv) Kim *et al.* [116], and (xvi) Chien *et al.* [117].

						A-	People V	ideo Seo	quences	[129]					
F. No.	Catego	ry I				Categor	y II	C	ategory	III		Ca	tegory	IV	
	Bradsk i [98]	Kim <i>et</i> <i>al.</i> [33]	Liu <i>et</i> <i>al.</i> [34]	Meier and Ngan [100]	McFar lane <i>et</i> <i>al.</i> [27]	Wren <i>et</i> <i>al.</i> [31]	Zivkov ic[32]	Kushw aha <i>et</i> <i>al.</i> [26]	Cucchi ara <i>et</i> <i>al.</i> [111	Oliver et al.[110	Hsia <i>et</i> <i>al</i> .[120]	Khare <i>et</i> <i>al.</i> [121	Kim <i>et al.</i> [116]	Chien <i>et al.</i> [117]	prop osed
125	0.7661	0.4220	0.558	0.463	0.8219	0.5969	0.5074	0.8667	0.2674	0.4045	0.5870	0.7126	0.444	0.663	0.9327
150	0.7798	0.4665	0.598	0.489	0.7982	0.5575	0.4617	0.8764	0.2607	0.4239	0.6491	0.6005	0.347	0.686	0.9066
175	0.7077	0.5719	0.591	0.493	0.8883	0.6335	0.5266	0.8077	0.3221	0.4755	0.7457	0.6190	0.389	0.662	0.9777
200	0.7521	0.5084	0.513	0.529	0.9167	0.6683	0.5656	0.8682	0.3181	0.4336	0.6206	0.7508	0.434	0.673	0.9014
	•	•	•	•	•	B-Cam	era2_07	0605 Vid	eo Sequ	ence [131]	•	•	•	•
125	0.7779	0.8631	0.5067	0.471	0.6546	0.9429	0.8645	0.8491	0.8662	0.2269	0.9514	0.8757	0.417	0.655	0.9019
150	0.7888	0.9316	0.5531	0.532	0.5601	0.9223	0.7925	0.8618	0.7813	0.489	0.8087	0.8184	0.402	0.651	0.9878
175	0.7086	0.9365	0.5935	0.552	0.5033	0.9263	0.8177	0.8625	0.7612	0.6827	0.7920	0.8500	0.446	0.667	0.9625
200	0.7561	0.8274	0.5888	0.456	0.5961	0.8455	0.8820	0.8746	0.5615	0.5716	0.8949	0.7261	0.432	0.706	0.9271
	•	•	•	•	•	C-	One Step	Video S	equence	[133]	•	•	•	•	•
125	0.3405	0.7535	0.5132	0.477	0.4773	0.6366	0.4633	0.8726	0.3493	0.7133	0.8651	0.6893	0.384	0.677	0.8862
150	0.2637	0.7583	0.4071	0.509	0.4448	0.6162	0.4414	0.8974	0.3409	0.7225	0.7607	0.8612	0.381	0.689	0.8137
175	0.3945	0.7866	0.5043	0.515	0.4272	0.6393	0.4501	0.8550	0.3848	0.8142	0.8249	0.7893	0.389	0.677	0.7550
200	0.3537	0.7005	0.4678	0.514	0.4770	0.6935	0.4980	0.8671	0.3733	0.4154	0.8199	0.9752	0.391	0.659	0.9071
	1	1		•	1	D-Inte	lligent ro	oom Vide	eo Seque	nce [130	l		•	1	1
125	0.7556	0.8215	0.5407	0.520	0.9503	0.8157	0.5216	0.9351	0.6180	0.7569	0.8961	0.6415	0.368	0.663	0.9287
150	0.7081	0.8084	0.5653	0.474	0.9092	0.7895	0.5019	0.9375	0.6888	0.7341	0.7992	0.6320	0.364	0.662	0.9375
175	0.7285	0.8833	0.52	0.460	0.9851	0.7541	0.5424	0.9622	0.6816	0.738	0.6747	0.5326	0.414	0.654	0.9462
200	0.7193	0.8492	0.5635	0.478	0.9031	0.876	0.5171	0.9126	0.6809	0.7547	0.7583	0.6739	0.419	0.690	0.8526
	•	•			•	E-Hig	ghwayI_	raw vide	o sequen	ce [132]	•				•
125	0.3476	0.6708	0.4143	0.471	0.6154	0.5193	0.5308	0.7956	0.5678	0.5162	0.7133	0.8302	0.370	0.713	0.8336
150	0.3294	0.6200	0.4487	0.483	0.5880	0.4942	0.5944	0.7320	0.8218	0.4876	0.8287	0.8768	0.409	0.694	0.8830
175	0.3927	0.7074	0.4122	0.490	0.5901	0.5518	0.4858	0.7971	0.7123	0.5262	0.7645	0.7423	0.416	0.674	0.8571
200	0.3123	0.6733	0.4615	0.533	0.5845	0.5761	0.3408	0.7123	0.6773	0.5517	0.7013	0.5521	0.364	0.672	0.8523
						F	-Crowd	Video Se	quence [134]	•				
125	0.3149	0.5514	0.5067	0.527	0.3696	0.4723	0.7623	0.7733	0.5744	0.5252	0.4396	0.6581	0.434	0.692	0.9243
150	0.3318	0.4445	0.5231	0.532	0.2149	0.4392	0.8307	0.7247	0.5465	0.5696	0.4089	0.6064	0.372	0.709	0.8987
175	0.3016	0.4629	0.5785	0.541	0.2140	0.4926	0.7988	0.7143	0.6619	0.4991	0.4762	0.6183	0.413	0.689	0.9143
200	0.3511	0.5103	0.5839	0.457	0.3229	0.4727	0.6827	0.7305	0.8735	0.5167	0.4114	0.6835	0.411	0.689	0.9305

|--|

Table 3.3: Comparison of methods in terms of Misclassification Penalty

						A	-People V	ideo Se	quences	[129]					
F. No	Catego	ry I				Categor	y II	C	ategory	III		Ca	tegory]	IV	
	Bradsk i [98]	Kim <i>et</i> <i>al.</i> [33]	Liu <i>et</i> <i>al.</i> [34]	Meier and Ngan [100]	McFar lane <i>et</i> <i>al.</i> [27]	Wren et al.[31]	Zivkov ic[32]	Kushw aha <i>et</i> <i>al.</i> [26]	Cucchi ara <i>et</i> <i>al.</i> [111]	Oliver <i>et</i> <i>al.</i> [110]	Hsia <i>et</i> <i>al</i> .[120]	Khare <i>et</i> <i>al.</i> [121]	Kim <i>et al.</i> [116]	Chien <i>et al.</i> [117]	propos ed
125	0.1061	0.0378	0.201	0.184	0.0011	0.0131	0.0018	0.0656	0.0167	0.0011	0.0060	0.0011	0.067	0.020	1.1546 e-004
150	0.1028	0.0040	0.102	0.179	5.0e- 006	9.45E- 04	0.0622	0.0109	0.0112	0.0027	0.0030	1.4e- 003	0.073	0.018 506	6.3695 e-006
175	0.1168	0.0067	0.104	0.178	2.0797 e-004	0.0012	0.0125	0.0037	0.0063	0.0027	0.0020	8.4168 e-003	0.073	0.016 423	6.4861 e-006
200	0.1221	0.0189	0.023	0.162	2.1236 e-004	0.0145	0.0082	0.0121	0.0168	4.56E- 04	0.0095	1.3720 e-004	0.069	0.021	6.6059 e-006
	B-Camera2_070605 Video Sequence [131]														
125	0.0123	0.0035	0.1088	0.212	0.0021	0.0063	0.0134	0.0362	0.0088	0.0362	2.0025	4.3669	0.069	0.015	0.0046
150	0.03	1.4146	0.124	0.256	0.0032	0.0051	0.0101	0.0291	0.0105	0.0123	e-004 0.0032	e-004 0.0010	45 0.069	0.021	1.1815
175	0.0071	e-004 3.6778	0.1778	0.229	0.0305	0.0058	0.0074	0.0083	0.0115	0.0195	0.0034	5.4249	89 0.071	289 0.014	e-004 1.3563
200	0.0027	e-004	0.1162	0.221	9.3381	0.0114	0.0096	0.0167	0.0280	0.0186	0.0066	e-004	34	267	e-004
200	0.0027	0.0015	0.1102	0.221	e-004	0.0111	0.0090	V. 1 0	0.0200	[122]	0.0000	e-004	12	88	e-004
		-		-	-		One Step	video S	equence	[133]			_	_	-
125	0.1194	0.1502	0.2556	0.228	0.0739	0.1337	0.1883	0.0016	0.1366	0.1161	0.0069	0.0275	0.066	0.019	2.9030 e-004
150	0.2086	0.1846	0.2226	0.179	0.0114	0.1562	0.1235	0.0731	0.1752	0.0218	0.0034	0.0043	0.069	0.014	0.0014
175	0.3111	0.1581	0.1979	0.208	0.0063	0.1009	0.1800	0.0935	0.1095	0.0512	0.0094	0.0046	0.064	0.021	0.0059
200	0.2492	0.1988	0.2247	0.182	0.0086	0.14/5	0.1763	0.0081	0.18/5	0.067	0.0078	0.0400	0.073	0.017	1.7832 e-004
						D-Inte	lligent ro	oom Vid	eo Seque	nce [130]				
125	0.1045	0.1064	0.0536	0.226	0.0070	0.0193	0.1017	0.0571	0.1742	0.0406	0.0031	0.0035	0.072	0.017	1.9051
150	0.1086	0.0052	0.0109	0.229	8.0105	0.0087	0.0128	0.0044	0.0484	0.0281	6.0313	8.4038	0.066	0.016	5.0712
175	3.57E-	0.0107	0.0153	0.185	2.8677	0.0026	0.0084	0.0052	0.0318	0.0115	5.0712 e-005	1.6023 e-004	0.065	0.016	4.9444
200	4.29E-	0.1097	0.0255	0.241	0.0026	0.0025	0.0250	0.0631	0.0454	0.0066	2.0408	0.0024	0.068	0.020	5.1020
	004					E-Hi		raw vide	o sequen	ce [132]	e-004		23	179	e-005
125	0 1271	0 1242	0 1672	0.220	0.0621	0.0263	0 1302	0.0016	0 1512	0.1836	0.0975	0 1463	0.068	0.013	0.0028
150	0.1792	0.1307	0.1529	0.218	0.1044	0.0192	0.1932	0.0169	0.1387	0.1731	0.0136	0.1498	0.072	0.016	0.0112
175	0.1641	0.1217	0.1853	0.209	0.0366	0.0416	0.0110	0.0027	0.0345	0.1285	0.0285	0.1444	0.073	0.018	0.0020
200	0.1862	0.1894	0 1992	0.174	0.0131	0.0322	0.1900	0.0027	0.1232	0.1166	0.0104	0 1474	0.064	0.020	0.0013
200	0.1002	0.1074	0.1772	0.174	0.0151	0.0522	0.1500	0.0051	0.1252	0.1100	0.0104	0.1424	0.004	0.020	0.0015
						F	-Crowd	Video Se	quence [134]					
125	0.1617	0.0021	0.2937	0.203	0.0342	0.1482	0.0653	0.0023	0.0675	0.1782	0.0698	0.1256	0.071	0.017	0.0035
150	0.1249	0.0201	0.3724	0.249	0.0395	0.2836	0.0571	0.0193	0.0342	0.1539	0.0970	0.1195	0.072	0.019	0.0139
175	0.1591	0.0085	0.1936	0.162	0.0719	0.1729	0.0069	0.0062	0.0563	0.1846	0.0096	0.1456	0.070	0.020	0.0035
200	0.1814	0.0120	0.2933	0.221	0.0382	0.1936	0.0071	0.0142	0.0762	0.1592	0.0178	0.1864	0.073	0.015	0.0042

						A	People V	video Seo	quences	[129]					
F.	Catego	ry I				Categor	y II	C	ategory	Ш		Ca	tegory	IV	
	Bradsk i [98]	Kim <i>et</i> <i>al.</i> [33]	Liu <i>et</i> <i>al.</i> [34]	Meier and Ngan [100]	McFar lane <i>et</i> <i>al.</i> [27]	Wren <i>et</i> <i>al.</i> [31]	Zivkov ic[32]	Kushw aha <i>et</i> <i>al.</i> [26]	Cucchi ara <i>et</i> <i>al.</i> [111	Oliver <i>et</i> <i>al.</i> [110	Hsia <i>et</i> <i>al</i> .[120]	Khare <i>et</i> <i>al.</i> [121	Kim <i>et al.</i> [116]	Chien <i>et al.</i> [117]	propos ed
125	0.7585	0.9537	0.896	0.686	0.9214	0.8546	0.8091	0.8791	0.6569	0.8983	0.7840	0.9268	0.723	0.865	0.9647
150	0.8475	0.8440	0.846	0.658	0.9016	0.922	0.8867	0.8691	0.7324	0.846	0.8616	0.8602	0.777	0.843	0.9941
175	0.7688	0.8328	0.820	0.715	0.9576	0.9276	0.8941	0.8725	0.8195	0.8537	0.9053	0.8842	0.751	0.825	0.9944
200	0.8817	0.8775	0.947	0.679	0.9734	0.8403	0.7939	0.8846	0.6877	0.947	0.7890	0.9789	0.734	0.820	0.9941
B-Camera2_070605 Video Sequence [131]											•				
125	0.9279	0.9525	0.7196	0.651	0.9358	0.9416	0.9262	0.8817	0.9196	0.876	0.9800	0.9125	0.777	0.854	0.9507
150	0.8968	0.9900	0.7851	0.703	0.9550	0.9525	0.9397	0.8819	0.9248	0.7874	0.9490	0.9576	0.771	0.840	0.9929
175	0.8864	0.9775	0.751	0.654	0.8966	0.9446	0.9466	0.8230	0.9195	0.3787	0.9495	0.9107	0.723	0.834	0.9900
200	0.9616	0.9754	0.7016	0.647	0.9604	0.9269	0.9374	0.8861	0.8879	0.8918	0.9359	0.9690	0.729	0.844	0.9861
	C-One Step Video Sequence [133]												1		
125	0.726	0.7854	0.536	0.682	0.8482	0.6887	0.6145	0.8688	0.5941	0.6203	0.9244	0.9002	0.760	0.823	0.9863
150	0.712	0.7802	0.547	0.756	0.9505	0.7439	0.6626	0.8893	0.6646	0.8747	0.9411	0.9667	0.779	0.864	0.9804
175	0.7845	0.8277	0.6075	0.733	0.9610	0.8056	0.7274	0.8829	0.7305	0.9071	0.9269	0.9904	0.752	0.848	0.9568
200	0.7686	0.8004	0.5677	0.683	0.9505	0.8432	0.7782	0.8772	0.7275	0.767	0.9240	0.9705	0.777	0.837	0.9900
	1			•	L	D-Inte	lligent ro	oom Vid	eo Seque	nce [130	l	•	•		
125	0.8903	0.6608	0.7672	0.743	0.9216	0.8492	0.6020	0.8626	0.3886	0.7868	0.9403	0.9515	0.734	0.824	0.9889
150	0.8707	0.8503	0.7049	0.655	0.9234	0.7293	0.6717	0.8897	0.3489	0.5464	0.9459	0.9395	0.745	0.856	0.9869
175	0.9746	0.7864	0.7435	0.771	0.9590	0.8714	0.7667	0.8954	0.5572	0.7405	0.9876	0.9735	0.739	0.860	0.9886
200	0.8877	0.4521	0.6718	0.762	0.8949	0.884	0.6366	0.8886	0.4677	0.8647	0.9652	0.9245	0.743	0.846	0.9826
	1			•	L	E-Hiş	ghwayI_	raw vide	o sequen	ce [132]		•	•		
125	0.5562	0.8773	0.6882	0.688	0.9467	0.7645	0.8815	0.8896	0.7813	0.7284	0.8910	0.7437	0.733	0.825	0.9856
150	0.5458	0.8549	0.7281	0.647	0.9714	0.7821	0.8370	0.8827	0.8235	0.7119	0.8804	0.6589	0.730	0.852	0.9858
175	0.5382	0.9521	0.7192	0.711	0.9344	0.8194	0.9649	0.8699	0.7856	0.7302	0.9471	0.6896	0.756	0.846	0.9799
200	0.5281	0.8325	0.6901	0.712	0.9014	0.7293	0.8559	0.8786	0.7919	0.7521	0.8670	0.7230	0.720	0.814	0.9756
	1				1	F	-Crowd	Video Se	quence [134]	1	1	1	I	1
125	0.3376	0.8894	0.5721	0.759	0.7399	0.6713	0.5403	0.7972	0.8576	0.5823	0.9149	0.7202	0.753	0.868	0.9170
150	0.3145	0.8659	0.5518	0.722	0.7631	0.6691	0.5369	0.7857	0.8126	0.5317	0.9145	0.7447	0.765	0.840	0.9753
175	0.3297	0.8475	0.5592	0.692	0.7132	0.672	0.5572	0.7928	0.7845	0.5673	0.9451	0.7647	0.732	0.827	0.9666
200	0.3453	0.8484	0.5782	0.704	0.7259	0.6218	0.5687	0.7891	0.8263	0.5584	0.9594	0.7474	0.763	0.830	0.9818

Table 3.4: Comparison	of methods in	terms of Relative	position based mea	asure (RPM)
-----------------------	---------------	-------------------	--------------------	-------------

						A	People V	ideo Sec	uences	[129]					
F.	Catego	ry I				Categor	y II	C	ategory	III		Ca	tegory	IV	
	Bradsk i [98]	Kim <i>et</i> <i>al.</i> [33]	Liu <i>et</i> <i>al.</i> [34]	Meier and Ngan [100]	McFar lane <i>et</i> <i>al.</i> [27]	Wren <i>et</i> <i>al.</i> [31]	Zivkov ic[32]	Kushw aha <i>et</i> <i>al.</i> [26]	Cucchi ara <i>et</i> <i>al.</i> [111	Oliver <i>et</i> <i>al.</i> [110	Hsia <i>et</i> <i>al.</i> [120]	Khare <i>et</i> <i>al.</i> [121	Kim <i>et al.</i> [116]	Chien <i>et al.</i> [117]	propos ed
125	0.3163	0.3598	0.306	0.415	0.8995	0.881	0.8913	0.9655	0.7946	0.3147	0.8739	0.9505	0.516	0.778	0.9837
150	0.3069	0.4371	0.391	0.448	0.8975	0.8085	0.8711	0.9712	0.8488	0.4045	0.7991	0.8785	0.453	0.747	1
175	0.3013	0.3692	0.391	0.401	0.8747	0.9346	0.9622	0.9465	0.8184	0.3266	0.8980	0.8799	0.472	0.727	0.9598
200	0.3224	0.3890	0.371	0.412	0.7894	0.8403	0.7150	0.9516	0.6923	0.483	0.6379	0.7121	0.469	0.711	0.8516
	B-Camera2_070605 Video Sequence [131]														
125	0.7257	0.7980	0.3379	0.454	0.6960	0.5418	0.6669	0.8859	0.4489	0.4754	0.6215	0.7799	0.482	0.728	0.8455
150	0.7273	0.7621	0.3901	0.393	0.6247	0.7563	0.8277	0.9215	0.6786	0.5096	0.7411	0.9070	0.472	0.693	0.9505
175	0.7011	0.7034	0.3265	0.429	0.4145	0.7562	0.8386	0.9071	0.6801	0.5083	0.7446	0.8030	0.495	0.775	0.9428
200	0.7444	0.7245	0.3144	0.410	0.4033	0.6077	0.7393	0.9023	0.4911	0.5395	0.7053	0.8091	0.475	0.691	0.9253
	l	l	1	1		C-0	One Step	Video S	equence	[133]	I	1	I	I	l
125	0.3369	0.4162	0.3073	0.407	0.4054	0.5026	0.5791	0.9534	0.7236	0.612	0.9407	0.8755	0.491	0.763	0.9871
150	0.2178	0.3435	0.3299	0.434	0.4761	0.5102	0.6278	0.9782	0.7513	0.6056	0.9928	0.9298	0.524	0.728	1
175	0.2733	0.3762	0.3016	0.454	0.4915	0.6033	0.6521	0.9018	0.8532	0.6198	0.8847	0.9594	0.486	0.751	0.9068
200	0.3455	0.3029	0.3456	0.421	0.5757	0.672	0.7781	0.9812	0.9116	0.6583	0.9093	0.9726	0.514	0.688	0.9992
	I	I	1		I	D-Inte	lligent ro	oom Vide	eo Seque	nce [130]	1			I
125	0.7206	0.8477	0.4838	0.452	0.9268	0.8178	0.8567	0.9761	0.8396	0.7604	0.8769	0.7154	0.477	0.753	1
150	0.7672	0.8928	0.4926	0.433	0.9519	0.9365	0.9737	0.9816	0.4945	0.7438	0.9672	0.7182	0.490	0.720	0.9956
175	0.7803	0.8033	0.4197	0.403	0.9098	0.8525	0.9016	0.9668	0.9574	0.7836	0.9475	0.6529	0.530	0.712	1
200	0.7655	0.8038	0.4628	0.417	0.8831	0.864	0.9253	0.9425	0.9693	0.7245	0.9368	0.7302	0.500	0.684	1
	1	1	1	1		E-Hiş	ghwayI_	raw vide	o sequen	ce [132]	1	1		1	1
125	0.6276	0.7631	0.3772	0.459	0.8819	0.5293	0.4379	0.9540	0.5631	0.6614	0.4543	0.3263	0.473	0.718	0.9998
150	0.7193	0.7174	0.3991	0.421	0.8873	0.5829	0.3316	0.9762	0.3458	0.6491	0.2374	0.3394	0.454	0.728	1
175	0.6863	0.7590	0.3183	0.408	0.8770	0.5425	0.5741	0.9418	0.4128	0.6825	0.5364	0.3830	0.530	0.732	0.9998
200	0.6659	0.7215	0.3637	0.414	0.7772	0.5814	0.4169	0.9423	0.4847	0.6285	0.3583	0.4596	0.531	0.754	0.9983
	<u>I</u>	<u>I</u>	1	1	L	F	-Crowd	Video Se	quence [134]	1	1	1	1	<u>. </u>
125	0.2391	0.2496	0.1829	0.416	0.1968	0.4182	0.7604	0.8821	0.3452	0.3691	0.3128	0.4027	0.475	0.767	0.9819
150	0.1838	0.2029	0.2836	0.405	0.2332	0.4492	0.7395	0.8918	0.4356	0.3519	0.3093	0.4217	0.461	0.757	0.9918
175	0.2192	0.1837	0.2947	0.417	0.2479	0.4378	0.7275	0.8863	0.3583	0.3861	0.2944	0.4133	0.493	0.748	0.9893
200	0.2482	0.1865	0.2168	0.442	0.1921	0.4891	0.7575	0.8717	0.3891	0.3126	0.3578	0.4126	0.529	0.716	0.9971

Table 3.5: Comparisons of methods in terms of Normalized Cross Correlation (NCC)

						A-	People V	video Seo	quences	[129]					
F.	Catego	ry I				Categor	y II	C	ategory	III		Ca	tegory	IV	
	Bradsk i [98]	Kim <i>et</i> <i>al.</i> [33]	Liu <i>et</i> <i>al.</i> [34]	Meier and Ngan [100]	McFar lane <i>et</i> <i>al.</i> [27]	Wren et al.[31]	Zivkov ic[32]	Kushw aha <i>et</i> <i>al.</i> [26]	Cucchi ara <i>et</i> <i>al.</i> [111	Oliver et al.[110	Hsia <i>et</i> <i>al.</i> [120]	Khare <i>et</i> <i>al.</i> [121	Kim <i>et al.</i> [116]	Chien <i>et al.</i> [117]	propos ed
125	67.228	62.262	67.16	47.31	70.532	67.085	65.948	70.830	61.731	67.183	66.853	69.670	52.14	65.07	76.388
150	67.191	62.262	66.18	44.86	69.262	65.112	64.274	66.662	60.869	66.248	66.035	67.258	58.03	63.06	75.559
175	65.184	62.250	65.67	42.35	69.599	66.794	65.393	68.172	61.393	65.788	67.887	67.056	56.99	66.36	75.072
200	65.283	62.304	66.19	45.63	70.407	64.960	64.448	65.838	61.331	66.237	64.404	68.592	53.92	67.07	72.512
		•	•	•	•	B-Cam	era2_07	0605 Vid	eo Sequ	ence [131]	•	•	•	•
125	59.653	62.022	63.844	41.27	67.690	63.203	62.447	67.759	63.167	62.716	64.560	63.239	57.37	63.50	66.918
150	64.719	66.786	63.698	44.31	67.188	67.468	65.821	64.998	66.981	63.720	68.052	67.878	56.99	66.99	73.041
175	64.688	64.857	63.629	48.01	65.851	67.448	66.289	66.613	67.153	63.526	68.323	66.859	52.04	67.56	71.710
200	64.494	64.420	63.801	45.62	64.760	65.570	65.312	64.825	64.956	63.732	66.470	65.924	53.74	69.34	69.800
	C-One Step Video Sequence [133]												1		
125	63.970	61.287	62.97	46.97	63.75	61.083	60.01	66.984	59.222	62.966	68.655	64.571	55.28	64.67	71.093
150	63.725	61.011	63.18	41.88	65.24	61.66	60.10	63.18	59.295	63.405	67.969	68.354	57.28	65.36	69.488
175	63.398	61.181	62.9	45.44	65.09	61.66	60.16	64.122	60.245	63.035	66.526	67.551	53.13	68.98	67.022
200	63.721	61.763	63.35	44.04	65.54	62.070	60.42	63.629	60.681	63.36	67.307	68.457	54.51	64.57	73.077
		1	1	1	1	D-Inte	lligent ro	oom Vid	eo Seque	nce [130]	1	1	I	1
125	67.584	65.109	68.835	48.51	75.980	71.232	68.159	70.994	60.173	69.039	73.292	72.752	54.74	69.70	79.994
150	68.552	66.554	70.328	43.45	77.442	69.774	66.727	72.213	60.025	69.668	75.311	74.359	58.66	62.17	81.543
175	69.032	67.926	68.882	44.03	76.731	71.255	65.949	75.811	58.719	68.795	71.445	71.721	57.77	67.99	81.543
200	70.559	63.978	69.692	41.72	74.554	73.721	69.525	77.254	59.857	69.917	73.329	73.909	51.37	66.47	77.394
						E-Hiş	ghwayI_	raw vide	o sequen	ce [132]					
125	53.582	58.050	57.593	44.72	59.495	55.620	53.863	64.038	56.153	59.836	54.841	55.636	58.12	61.04	65.782
150	54.394	58.912	58.204	49.03	57.429	53.734	54.040	65.103	51.357	59.937	55.699	54.183	56.04	68.74	65.808
175	56.872	58.439	57.845	46.60	57.448	56.926	54.378	62.429	53.135	58.835	56.276	54.190	51.70	64.99	64.929
200	55.384	58.579	55.936	47.63	55.412	53.485	53.589	64.254	55.671	59.282	56.190	54.521	53.31	67.65	65.994
				1		F	-Crowd	Video Se	quence [134]			1		
125	55.395	63.144	58.493	46.97	61.396	52.938	68.202	62.864	64.936	62.592	62.647	58.887	51.66	66.56	71.169
150	56.946	62.240	55.294	44.92	60.962	57.294	65.677	64.909	62.826	61.924	62.344	57.153	53.96	68.10	70.109
175	58.748	61.544	56.846	47.03	60.585	54.193	65.178	63.125	65.395	60.163	61.454	56.677	55.44	63.79	70.100
200	60.293	61.744	55.628	45.79	60.112	55.357	64.551	64.275	63.673	58.295	62.140	57.036	50.10	67.22	71.760

Table 3.6:	Comparison	of methods in	terms of Peak S	Signal-to-Noise	Ratio (PSNR)
	1			0	

						A	People V	ideo Seo	uences	[129]					
F.	Catego	ry I				Categor	y II	C	ategory	III		Ca	tegory	IV	
	Bradsk i [98]	Kim <i>et</i> <i>al.</i> [33]	Liu <i>et</i> <i>al.</i> [34]	Meier and Ngan [100]	McFar lane <i>et</i> <i>al.</i> [27]	Wren <i>et</i> <i>al.</i> [31]	Zivkov ic[32]	Kushw aha <i>et</i> <i>al</i> . [26]	Cucchi ara <i>et</i> <i>al.</i> [111	Oliver <i>et</i> <i>al.</i> [110	Hsia <i>et</i> <i>al.</i> [120]	Khare <i>et</i> <i>al.</i> [121	Kim <i>et al.</i> [116	Chien <i>et al.</i> [117]	propos ed
125	0.8734	0.7239	0.886	0.722	0.4082	0.7027	1.1728	0.6821	1.0967	0.8826	0.9522	0.4978	0.464	0.433	0.1060
150	0.7253	0.7559	0.914	0.685	0.4501	0.7705	1.4197	0.5434	1.1092	0.9011	0.9463	0.7141	0.497	0.353	0.1056
175	0.7138	0.7925	0.905	0.719	0.3668	0.6998	0.9661	0.2381	1.4271	0.8822	0.9441	0.6588	0.540	0.344	0.1040
200	0.7944	0.7732	0.887	0.699	0.3364	0.7789	1.3264	0.5827	1.7189	0.907	1.3399	0.5109	0.506	0.423	0.2071
	I	I				B-Cam	era2_07)605 Vid	eo Seque	ence [131]		I	1	I
125	0.7797	0.7751	0.8381	0.697	0.7458	0.6715	0.562	0.3734	0.7797	1.0867	0.4107	0.5836	0.487	0.339	0.4130
150	0.7697	0.7781	0.9737	0.724	0.7359	0.4086	0.5971	0.5133	0.7572	0.9686	0.3572	0.3718	0.455	0.349	0.1133
175	0.7808	0.7510	0.9965	0.663	0.7973	0.4136	0.5401	0.4550	0.7426	1.0205	0.3381	0.4736	0.553	0.336	0.1550
200	0.7818	0.7953	0.9171	0.735	0.7353	0.6102	0.6475	0.3304	0.7029	0.9318	0.4960	0.5624	0.501	0.426	0.2304
						C-(Dne Step	Video S	equence	[133]					
125	0.8011	0.4856	1.008	0.705	0.5416	1.557	1.9899	0.2554	1.7905	1.0094	0.2724	0.6975	0.516	0.354	0.1554
150	0.8683	0.6223	0.9824	0.711	0.6122	1.4351	1.9007	0.3273	1.7083	0.9349	0.3268	0.2991	0.495	0.422	0.2303
175	0.906	0.5092	1.0156	0.721	0.6128	1.3498	1.9078	0.3386	1.8723	0.9844	0.4408	0.3482	0.510	0.434	0.3932
200	0.9129	0.4329	0.9921	0.670	0.5995	1.3349	1.9481	0.3253	1.8379	0.9909	0.3997	0.3655	0.452	0.350	0.1059
						D-Inte	lligent ro	oom Vide	eo Seque	nce [130]	<u> </u> 				
125	1.4567	1.3988	1.4171	0.690	0.1963	0.5857	1.1885	0.8178	1.8735	0.9704	0.3645	0.3029	0.498	0.428	0.0779
150	1.5252	1.4158	1.5131	0.730	0.1969	0.551	1.3217	0.9316	1.8643	1.1794	0.3217	0.2914	0.543	0.337	0.0766
175	1.423	1.0197	1.359	0.729	0.1738	0.6131	1.0803	0.9584	1.9933	1.0803	0.5869	0.3750	0.471	0.365	0.0574
200	1.4941	1.8276	1.3268	0.703	0.3352	0.4061	1.0670	0.8293	1.8870	0.9751	0.4444	0.2929	0.524	0.403	0.1743
						E-Hig		raw vide	o sequen	ce [132]					
125	1.3371	1.3876	1.327	0.713	0.8579	0.783	1.1378	0.6341	1.7356	0.989	1.5055	1.0860	0.459	0.407	0.2017
150	1.263	1.6452	1.183	0.685	0.9217	0.882	1.0113	0.6339	1.2563	1.144	1.3726	1.9462	0.481	0.423	0.1339
175	1.739	1.4875	1.293	0.725	0.9365	0.761	1.8987	0.7672	1.6571	1.728	1.2266	1.9827	0.522	0.360	0.1673
200	1.482	1.4619	1.217	0.701	0.9324	0.883	1.0923	0.6383	1.5427	0.925	1.6993	1.4953	0.506	0.355	0.1778
	<u> </u>	<u> </u>	1	1	<u> </u>	F	-Crowd '	Video Se	quence [134]	I	1	1	1	<u> </u>
125	1.492	0.7742	1.428	0.684	1.283	1.381	0.2416	0.9605	0.5143	1.758	0.8681	1.0635	0.492	0.397	0.1220
150	1.338	0.8175	1.582	0.725	1.638	1.881	0.3704	0.8102	0.9484	1.375	0.7981	1.6374	0.513	0.388	0.1335
175	1.826	0.8542	1.726	0.736	1.184	0.372	0.3699	0.9831	0.7563	1.274	0.8721	1.6194	0.554	0.435	0.1191
200	1.394	0.8321	1.381	0.716	1.346	1.853	0.4360	0.9179	0.8945	1.836	0.7595	1.4604	0.538	0.383	0.0829

Table 3.7: Comparison of methods in terms of Normalized absolute error (NAE)

						A	-People V	Video See	quences	[129]					
F.	Catego	ry I				Categor	уII	C	ategory	III		Ca	tegory]	IV	
	Bradsk i [98]	Kim <i>et</i> <i>al.</i> [33]	Liu <i>et</i> <i>al.</i> [34]	Meier and Ngan [100]	McFar lane <i>et</i> <i>al.</i> [27]	Wren et al.[31]	Zivkov ic[32]	Kushw aha <i>et</i> <i>al.</i> [26]	Cucchi ara <i>et</i> <i>al.</i> [111	Oliver et al.[110	Hsia <i>et</i> <i>al.</i> [120]	Khare <i>et</i> <i>al.</i> [121	Kim <i>et al.</i> [116]	Chien <i>et al.</i> [117]	propos ed
125	0.6081	0.6731	0.569	0.567	0.9517	0.8183	0.7318	0.8788	0.7215	0.9142	0.8076	0.8454	0.640	0.729	0.9824
150	0.5852	0.6098	0.553	0.536	0.9323	0.7437	0.7604	0.8531	0.7432	0.8699	0.7610	0.7790	0.650	0.743	0.9335
175	0.5578	0.6218	0.543	0.572	0.9304	0.7302	0.7547	0.8491	0.6925	0.8791	0.7443	0.7598	0.666	0.730	0.9693
200	0.5595	0.5780	0.595	0.528	0.9468	0.7667	0.7115	0.8549	0.6876	0.8614	0.7640	0.8127	0.610	0.693	0.9349
	1	1			1	B-Cam	era2_07	0605 Vid	eo Sequ	ence [131]	•		1	1
125	0.7148	0.8377	0.7195	0.511	0.8985	0.7846	0.7993	0.8559	0.7512	0.8493	0.8125	0.8076	0.641	0.749	0.9288
150	0.7879	0.8284	0.7629	0.564	0.8550	0.7862	0.7176	0.8482	0.7634	0.8396	0.8419	0.8180	0.676	0.725	0.8808
175	0.8066	0.8294	0.7756	0.521	0.8645	0.7873	0.7317	0.8273	0.7688	0.843	0.8462	0.8230	0.615	0.738	0.8988
200	0.8093	0.8375	0.7653	0.533	0.8581	0.7733	0.7427	0.8658	0.7529	0.858	0.8177	0.7960	0.659	0.767	0.8613
	C-One Step Video Sequence [133]											1			
125	0.6569	0.6709	0.695	0.537	0.9373	0.6411	0.5014	0.8691	0.8496	0.9581	0.5762	0.6810	0.648	0.723	0.9592
150	0.667	0.6803	0.6697	0.575	0.9498	0.6379	0.4949	0.8546	0.8527	0.9358	0.5646	0.7645	0.650	0.764	0.9546
175	0.6561	0.6797	0.645	0.544	0.9492	0.6381	0.4874	0.8550	0.8984	0.9875	0.4817	0.7462	0.662	0.734	0.9637
200	0.6468	0.7732	0.6811	0.528	0.9385	0.655	0.4877	0.8429	0.8782	0.9416	0.5317	0.7449	0.624	0.715	0.9873
	I	I	1		1	D-Inte	lligent ro	oom Vid	eo Seque	nce [130]		•	1	ı
125	0.7848	0.7716	0.9566	0.520	0.9566	0.8269	0.5894	0.8882	0.7328	0.9288	0.9015	0.6810	0.624	0.698	0.9654
150	0.8218	0.7271	0.9598	0.563	0.9611	0.7421	0.5952	0.8572	0.6492	0.9069	0.9155	0.7645	0.642	0.749	0.9663
175	0.8368	0.8343	0.9624	0.554	0.9693	0.8435	0.6002	0.8558	0.7942	0.9176	0.9041	0.7462	0.655	0.714	0.9717
200	0.8251	0.7441	0.9685	0.575	0.9538	0.8742	0.6778	0.8895	0.7223	0.9503	0.9315	0.7583	0.631	0.728	0.9485
						E-Hiş	ghwayI_1	raw vide	o sequen	ce [132]					
125	0.538	0.5707	0.592	0.509	0.6419	0.783	0.7817	0.8488	0.6757	0.794	0.5245	0.8490	0.660	0.690	0.8718
150	0.564	0.6316	0.562	0.545	0.6150	0.692	0.7067	0.8582	0.5414	0.757	0.4859	0.7911	0.653	0.728	0.8084
175	0.568	0.6371	0.544	0.574	0.6211	0.685	0.7878	0.8748	0.5876	0.726	0.4354	0.7363	0.644	0.701	0.8745
200	0.581	0.6333	0.572	0.514	0.6607	0.648	0.7041	0.8752	0.5294	0.753	0.4747	0.7494	0.627	0.731	0.8581
					·	F	-Crowd	Video Se	quence [134]			•		·
125	0.725	0.8451	0.524	0.577	0.7368	0.656	0.6545	0.8469	0.7553	0.472	0.7755	0.9106	0.675	0.701	0.9519
150	0.636	0.8392	0.537	0.561	0.7279	0.685	0.6423	0.7384	0.7114	0.583	0.7718	0.8490	0.669	0.716	0.9520
175	0.634	0.8332	0.521	0.510	0.7192	0.613	0.6220	0.7642	0.7016	0.527	0.7546	0.8322	0.658	0.727	0.9273
200	0.735	0.8372	0.532	0.523	0.7145	0.639	0.6476	0.7793	0.7812	0.585	0.7490	0.8470	0.618	0.740	0.9213

Table 3.8: Comparison of methods in terms of Pixel Classification Measure (PCM)

S.no.	Methods	Computational Time	Memory Consumption
		(in frame/second)	(MB)
1	McFarlane <i>et al.</i> [27]	1.376	8.68
2	Kim <i>et al.</i> [33]	0.722	22.92
3	Zivkovic[32]	1.864	9.40
4	Cucchiara et al.[111]	1.625	24.95
5	Hsia <i>et al.</i> [120]	1.912	8.64
6	Khare <i>et al.</i> [121]	1.753	7.08
7	Kim <i>et al.</i> [116]	1.325	11.37
8	Chien <i>et al.</i> [117]	1.687	13.35
9	Bradski [98]	0.912	17.62
10	Liu <i>et al.</i> [34]	1.412	30.92
11	Wren <i>et al.</i> [31]	1.443	25.17
12	Kushwaha et al. [26]	0.824	15.26
13	Oliver et al.[110]	1.392	20.62
14	Meier and Ngan [100]	1.427	18.35
15	The Proposed Method	1.232	3.90

 Table 3.9: Computational Time and Consumption Memory for One step video [133]

In Fig. 3.10-3.16(a-f), Y-axis shows the different quantitative measure such as RFAM, MP, RPM, NCC, PSNR, NAE, PCM and X-axis shows the frame number. From Fig. 3.10-3.16(a-f), one can conclude that proposed method performed better than other methods in different quantitative measures such as RFAM, MP, RPM, NCC, PSNR, NAE, and PCM.

M1: Bradski[98]; M2: Kim *et al.*[33]; M3: Liu *et al.* [34]; M4: Meier and Ngan [100]; M5: McFarlane *et al.* [27]; M6: Wren *et al.*[31]; M7: Zivkovic[32]; M8: Kushwaha *et al.* [26] ; M9: Cucchiara *et al.*[111]; M10: Oliver *et al.*[110]; M11: Hsia *et al.*[120]; M12: Khare *et al.*[121]; M13: Kim *et al.* [116]; M14: Chien *et al.* [117]; M15: Proposed Method

f125

(f)

Figure 3.10: (a-f) RFAM variations with respect to frame no. for different Test cases

84

(c)

(d)

(e)

(f)

Figure 3.11: (a-f) MP variations with respect to frame no. for different Test cases

(a)

(c)

(f)

Figure 3.12: (a-f) RPM variations with respect to frame no. for different Test cases

(a)

(b)

(e)

(f)

Figure 3.13: (a-f) NCC variations with respect to frame no. for different Test cases

(a) Camera2_070605 Video Sequence 80 60 PSNR f125 40 f150 20 f175 0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M 11 M 12 M13 M14 M 15 f200 METHODS

(c)

(f)

Figure 3.14: (a-f) PSNR variations with respect to frame no. for different Test cases

(a)

(c)

(d)

(e)

(f)

Figure 3.15: (a-f) NAE variations with respect to frame no. for different Test cases

92

(e)

(f)

Figure 3.16: (a-f) PCM variations with respect to frame no. for different Test cases