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Chapter 3 : IMPROVED APPROXIMATE MEDIAN 

FILTER BASED METHOD FOR MOVING OBJECT 

SEGMENTATION 
 

In recent past, many moving object segmentation methods under varying lighting changes 

have been proposed in literature and each of them has their own benefits and limitations. 

The various methods available in literature for moving object segmentation may be 

broadly classified into four categories i.e. moving object segmentation methods based on 

(i) motion information (ii) motion and spatial information (iii) learning, and (iv) change 

detection. The objective of this chapter is two-fold i.e. firstly, this chapter presents a 

comprehensive comparative study of various classical as well as state-of-the art methods 

for moving object segmentation under varying illumination conditions under each of the 

above mentioned four categories and secondly, this chapter presents an improved 

approximation filter based method in complex wavelet domain and its comparison with 

other methods under four categories mentioned as above. The proposed approach consist 

of seven steps applied on given video frames which include: wavelet decomposition of 

frames using Daubechies complex wavelet transform; use of improved approximate 

median filter on detail co-efficient (LH, HL, HH); use of background modeling on 

approximate co-efficient (LL sub-band); soft thresholding for noise removal; strong edge 

detection; inverse wavelet transformation for reconstruction; and finally using closing 

morphology operator. The qualitative and quantitative comparative study of the various 

methods under four categories as well as the proposed method is presented for six 

different datasets. The merits, demerits, and efficacy of each of the methods under 

consideration have been examined. The extensive experimental comparative analysis on 

six different challenging benchmark data sets demonstrate that proposed method is 
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performing better to other state-of-the-art moving object segmentation methods and is 

well capable of dealing with various limitations of existing methods. 

3.1. Introduction 

Moving object detection is a crucial part of automatic video surveillance systems and it 

is useful in robotics, object detection and recognition, indoor/outdoor object classification 

and many other applications [23, 24]. To design the moving object segmentation 

algorithm for intelligent video surveillance systems, several major challenges have to be 

concerned. Toyama et al. [25] have identified the following challenges in moving object 

segmentation such as (i) lighting changes, shadows and reflections (ii) dynamic 

backgrounds such as waterfalls or waving trees (iii) Motionless foreground (iv) small 

movements of non-static objects such as tree branches and bushes blowing in the wind 

(v) noise image, due to a poor quality image source (vi) movements of objects in the 

background that leave parts of it different from the background model (ghost regions in 

the image) (vii) multiple objects moving in the scene both for long and short periods (viii) 

shadow regions that are projected by foreground objects and are detected as moving 

objects. Out of all these issues, changing illumination conditions remain a major problem 

for moving object segmentation in real-life problems. To take into account these 

problems, many approaches for automatically adapting background model to dynamic 

scene variations are proposed [90, 91] and these approaches can be classified into two 

categories [92] such as non-recursive and recursive. A non-recursive approach uses a 

sliding-window for background estimation. It stores a buffer of the previous L video 

frames, and estimates the background image based on the temporal variation of each pixel 

within the buffer. This causes non-recursive approach to have higher memory 

requirements than recursive techniques. Recursive approach maintains a single 
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background model that is updated with each new video frame. These approaches are 

generally computationally efficient and have minimal memory requirements. 

The major contributions of this chapter include: (1) comparative study of various standard 

moving object segmentation methods which is classified into four categories i.e. moving 

object segmentation methods based on (i) motion information (ii) motion and spatial 

information (iii) learning (iv) and change detection (2) proposed an improved 

approximation filter based approach for moving object segmentation in complex wavelet 

domain (3) and presented the comparative study of the proposed method with other state-

of -the-art algorithms on a set of challenging video sequences (4) analysis of the 

sensitivity of the most influencing parameters [84-87], and a discussion of their effects. 

(5) and analysis of the computational complexity and memory consumption of the 

proposed algorithm. 

 Rest of the chapter is organized as follows: Section 3.2 presents the Review of 

moving object segmentation methods. Section 3.3 presents the proposed method. 

Experimental results are given in Section 3.4. Finally, conclusion of the work is given in 

Section 3.5. 

3.2. Review of Moving Object Segmentation Methods 

Different kinds of methods exist to solve the problem of moving object segmentation. 

Good but incomplete reviews on moving object segmentation methods can be found in 

[93, 94]. As per available literatures moving object segmentation techniques can be 

broadly classified into four categories [95, 96, 97] namely (i) segmentation of moving 

object based on motion-information [33-34, 96, 98-103], (ii) segmentation of moving 

object based on motion and spatial information [27-28, 31-32, 104-109], (iii) 

segmentation of moving object based on learning [26-30, 110-115], and (iv) segmentation 

of moving object based on change detection [16, 35, 36-37, 116-125]. A review of some 
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of the classical and state-of-the-art methods under each of the categories is presented in 

following subsections. 

 Moving Object Segmentation Methods Based on Motion-

Information 

The first category of moving object segmentation methods are based on motion-

information which depends on motion estimation of moving objects. Some of the 

prominent methods available in literature are the works due to Bradski [98], Kim et al. 

[33], Liu et al. [34], Xiaoyan et al. [96], Mahmoodi [99] and Meier and Ngan [100]. 

Bradski [98] proposed a motion segmentation method using time motion history image 

(TMHI) for representing motion which is used to segment and measure the motions 

induced by the object in a video scene. The limitation of the method is that, it can only 

extract the moving objects but not the static one. A more refined application of this 

algorithm was proposed by Kim et al. [33] which is based on codebook approach where 

a codebook is formed to represent significant states in the background using quantization 

and clustering [33]. It solves some of the above mentioned problems existing in [98], such 

as sudden changes in illumination, but does not consider the problems of ghost regions or 

shadow detection. To deal with the issues mentioned in [33], Liu et al. [34] have proposed 

a moving object segmentation method which is based on cumulated difference, object 

motion and adaptive thresholding. Xiaoyan et al. [96] have proposed a video object 

segmentation technique on the basis of adaptive change. This method is not able to 

remove noise from the video frames. Mahmoodi [99] has proposed a shape based active 

contour method for video segmentation which is based on a piecewise constant 

approximation of the Mumford shah functional model.  This  method  is  slow  beacause  

it  is  based  on  level  set  framework. Due to lack of spatial information of objects, these 

algorithms suffer from unwarranted ghost objects, shadows, changing background, 
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clutter, occlusion, and varying lighting conditions. Meier and Ngan [100] have proposed 

a moving object segmentation which is based on Hausdorff distance. In this method, a 

background model is created which automatically adapts slowly and rapidly changing 

parts and matched against subsequent frames using the Hausdorff distance. The limitation 

of this method is that the boundaries of the extracted objects are not always accurate. In 

addition to above mentioned methods, in literature some other approaches [101-103] in 

the same domain have been proposed but they also suffer from most of the same problems 

mentioned as above.  

Therefore the important features of the methods under the category moving object 

segmentation methods based on motion-information can be summarized as follows: 

· The motion information based moving object segmentation methods [33-34, 96, 

98-103] are fast and usually easy to implement.  

· Motion information based moving object segmentation methods handle well the 

background changes but are not robust to sudden illumination changes.  

· Furthermore, they are likely to fail if the contrast between the moving objects and 

the background is low. 

 Moving Object Segmentation Methods Based on Motion and 

Spatial Information 

The second category of moving object segmentation methods are based on both motion 

and spatial information. The segmentation of moving objects based on motion and spatial 

information provide more stable object boundary extraction. Some of the prominent 

works under this domain are the works due to Mei et al. [28], Mcfarlane and Schofield 

[27], Remagnino et al. [104], Wren et al. [31], Zivkovic [32], Reza et al. [105], and 

Ivanov et al. [106]. In paper [28], Mei et al. proposed an automatic segmentation method 

for moving objects based on the spatial-temporal information of video. In this method, 
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the author utilizes the spatial-temporal information. Spatial segmentation is applied to 

divide each image into connected areas to find precise object boundaries of moving 

objects. The limitation of this method is that the boundaries of the extracted objects are 

not always accurate enough to locate them in different scenes. Mcfarlane and Schofield 

[27] have proposed an approximation median filter method for segmentation of multiple 

video objects. This technique has also been used in background modeling for urban traffic 

monitoring [104]. The major disadvantage of this method is that it needs many frames to 

learn the new background region revealed by an object that moves away after being 

stationary for a long time [92] but this method is computationally efficient.  Wren et al. 

[31] have proposed Running Gaussian Average model for moving object segmentation. 

This model is based on Gaussian probability density function (pdf) where a running 

average and standard deviation are maintained for each color channel. The drawback of 

this method lies in its complex nature which makes its processing slow because of the 

computational overhead involved in updating the mixture models. To deal with the issues 

mentioned in [31], Zivkovic [32] have proposed a moving object segmentation technique 

which is combination of temporal and spatial features. This approach automatically 

adapts the number of Gaussians being used to model for a given pixel. Reza et al. [105]  

have  proposed  a  moving  object  segmentation  technique,  combining  temporal  and  

spatial features.  This  approach  takes  into  account  a  current  frame,  ten  preceding  

frames  and  ten  next consecutive  frames to segment the moving object. The method 

detects moving objects independent of their size and speed but there is no provision for 

reduction of blur and noise from frames, which may lead to inaccurate object 

segmentation. Ivanov et al. [106] have proposed an improvement over background 

subtraction method, which is faster than that proposed by [105] and is invariant to runtime 

change illuminations. In addition to above mentioned methods there are many other works 
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reported in literature [107-109] under this second category but most of them suffers from 

the similar types of limitations associated with above mentioned methods.  

Therefore the important features of the methods under the category moving object 

segmentation methods based on motion- and spatial information can be summarized as 

follows: 

· The motion and spatial information based moving object segmentation methods 

[27-28, 31-32, 104-109] needs many frames to learn the new background region 

revealed by an object that moves away after being stationary for a long time [92].  

· Motion and spatial information based moving object segmentation methods is 

adaptive to only the small and gradual changes in the background and in case of 

sudden changes it distorts. 

·  Computational complexity of spatial information based moving object 

segmentation methods is also very low. 

 Moving Object Segmentation Methods Based on Learning 

The Third category of moving object segmentation methods are based on learning which 

depends on some predefined learning patterns. Some of the prominent methods available 

in literature are the works due to Oliver et al. [110], Cucchiara et al. [111], Kushwaha et 

al. [26], Kato et al. [112], Ellis et al. [30], and Stauffer et al. [29]. Oliver et al. [110] 

proposed a moving object segmentation method which is based on spatial correlations. In 

this method, author constructs the background using principal component analysis.  But 

it’s suffered the problem of noise and blur.  To deal the issue mention in [110], Cucchiara 

et al. [111] have proposed a moving object segmentation technique which is based on 

medoid filtering that can lead to color background estimation. The medoid filtering is 

capable of saving boundaries and existing edges in the frame without any blurring. But 

the computational complexity to construct the background is high. A more refined 
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application of this algorithm proposed by Kushwaha et al. [26] which is based on 

construction of basic background model where in the variance and covariance of pixels 

are computed to construct the model for scene background which is adaptive to the 

dynamically changing background.  The method described in [26] has the capability to 

relearn the background to adapt background changes. Kato et al. [112] have proposed a 

segmentation method for monitoring of traffic video based on Hidden Markov Model 

(HMM). In this method, each pixel or region is classified into three categories: shadow, 

foreground and background. This method comprises of two phases: learning phase and 

segmentation phase. Ellis et al. [30] have proposed online segmentation of moving 

objects in video using online learning. In this approach, motion segmentation is done 

using semi-supervised appearance learning task wherein supervising labels are 

autonomously generated by a motion segmentation algorithm but the computational 

complexity of this algorithm is very high. Stauffer et al. [29] have proposed a tracking 

method wherein motion segmentation was done using mixture of Gaussians and on-line 

approximation to update the model. This model has some disadvantages such as 

background  having  fast variations cannot be accurately modeled with just a few 

Gaussians  (usually  3  to  5),  causing  problems  for sensitive  detection. In addition to 

above mentioned methods, in literature various other approaches [113-115] in the same 

domain have been proposed but they also suffer from most of the same problems 

mentioned as above.  

Therefore the important features of the methods under the category moving object 

segmentation methods based on learning information can be summarized as follows: 

· Learning based moving object segmentation methods [26, 29-30, 110-112, 113-

115] are adaptive to the dynamically changing background. 
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· Computational complexity of learning based moving object segmentation 

methods is very high.  

· Learning based moving object segmentation methods suffer the problem of 

shadow regions and the presence of ghosts like appearances. 

 Moving Object Segmentation Methods Based on Change 

Detection 

The fourth category of moving object segmentation methods are based on change 

detection which depends on frame difference of two or more frames. Some of the 

prominent methods available in literature are the works due to Kim et al. [116], Chien et 

al. [117], Kim and Hwang [118], Shih et al. [119], Huang et al. [16, 35], Baradarani [36, 

37, Hsia et al. [120], Khare et al. [121]. Kim et al. [116] proposed moving object 

segmentation and automatic object tracking approach for video sequences. In this 

approach, intra-frame and inter-frame segmentation modules are used for segmentation 

and tracking. The intra-frame segmentation incorporates the user interaction in defining 

a high level semantic object of interest to be segmented and detects precise object 

boundary. The inter-frame segmentation involves boundary and region tracking to 

capture temporal coherence of moving objects with accurate object boundary information. 

The drawback of this method is that user-interaction is required for separating moving 

objects from the background in video sequences. To deal with the issues mentioned in 

[116], Chien et al. [117] proposed moving object segmentation algorithm using 

background registration method. The background registration method is used to construct 

reliable background information from the video sequence. In this approach, a 

morphological gradient operation is used to filter out the shadow. The major disadvantage 

of this method is that it adapts only static background and suffers from the problem of 

ghost objects. Kim and Hwang [118] derive an edge map using change detection method 
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and after removing edge points which belong to the previous frame, the remaining edge 

map is used to extract the video object plane. This method suffers from the problem of 

object distortion. To solve this problem, Shih et al. [119] used change detection method 

in three adjacent frames which easily handles the new appearance of the moving object. 

Huang et al. [16, 35] proposed an algorithm for moving object segmentation to solve the 

double-edge problem in the spatial domain using a change detection method with 

different thresholds in four wavelet sub-bands. Baradarani [36, 37] refined the work of 

Huang et al. [16, 35] using dual tree complex filter bank in wavelet domain. These 

methods [36, 37] suffer from the problem of noise disturbances and distortion of moving 

segmented objects due to change in speed of objects. To concern these issues, Hsia et al. 

[120] proposed a Modified Directional Lifting-based 9 /7 Discrete Wavelet Transform 

(MDLDWT) based approach, which is based on the coefficient of Lifting-based 9/7 

Discrete Wavelet Transform (LDWT). Its advantages of low critical path, fast 

computational speed and the LL3-band of the MDLDWT is employed solely to reduce 

the image transform computing cost and remove noise but it cannot handle large dynamic 

background changes. Khare et al. [121] refine the work of Baradarani [36, 37] and Huang 

et al. [16, 35] using Daubechies complex wavelet. The method proposed by Khare et al. 

[121] reduces the noise disturbance and speed change, but it suffers from the problem of 

dynamic background changes and shadow detection and due to this segmenting coherence 

occurs [122]. In addition to above mentioned methods, in literature various other 

approaches [123-125] in the same domain have been proposed but they also suffer from 

most of the same problems mentioned as above.  

Therefore the important features of the methods under the category moving object 

segmentation methods based on change detection [16, 35, 36-37, 116-125] can be 

summarized as follows: 
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· Change detection based moving object segmentation methods [16, 35, 36-37, 116-

125] are adaptive to detect only “significant” changes while rejecting 

“unimportant” ones.  

· Change detection based moving object segmentation methods [16, 35, 36-37, 116-

125] handle noise disturbance and speed change very well.  

· Change detection based moving object segmentation methods [16, 35, 36-37, 116-

125] suffer from the problem of either slow speed of moving object or abrupt 

lighting variation changes.  

· The other limitations include shadow regions, detection of only moving objects, 

and the presence of ghosts like appearances.   

Table 3.1 presents the summary of various moving object segmentation methods under 

above mentioned four categories. The brief description of methods, their advantages, 

limitations, and conclusions of each category are highlighted. For comparative analysis 

purposes, only few prominent and latest methods in each category are considered which 

are performing better in their peer groups as reported in literature and demonstrated in 

results and analysis section. 
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Table 3.1: Summary of various moving object segmentation methods 
 

Categories 

of Methods 

Methods Brief 

Description 

Advantages Limitations Conclusions 

 

 

 

 

 

Category I   

( Methods 

based on 

motion-

information) 

Bradski 

[98] 

Use time 

motion history 

image (TMHI) 

for representing 

motion 

Computationally 

Fast 

Extracts only 

the moving 

objects but 

unable to extract 

the static one  

Motion 

information 

based methods 

are fast and 

usually easy to 

implement.  

They handle 

well the 

background 

changes but are 

not robust to 

sudden 

illumination 

changes. 

Furthermore, 

they are likely  

to fail if the 

contrast 

between the 

moving objects 

and the 

Kim et 

al.[33] 

Use 

quantization 

and clustering 

[13] for 

creating a 

codebook 

Handle gradual 

illumination 

changes and 

computationally 

Fast 

Have problems 

of ghost regions, 

shadow 

detection and 

noise 

Liu et al. 

[34] 

Use cumulated 

difference, 

object motion 

and adaptive 

thresholding 

Handle ghost 

and noise 

problem 

Problem to 

handle  

sudden 

illumination 

changes and 

shadow 

Xiaoyan et 

al. [96] 

Use adaptive 

change 

detection, 

Canny edge 

Easily handle 

complex  

background and 

noise problem 

Have problems 

of ghost regions 

and shadow 
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and improved 

active contour 

to obtain the 

segmented 

object 

background is 

low. 

Mahmoodi 

[99] 

Use shape 

based active 

contour and 

Mumford shah 

functional 

model 

Easily handles 

the  shadow 

problem 

 

Computationally 

slow due to use 

of level  set  

framework 

Meier and 

Ngan [100]  

Use Hausdorff 

distance for 

background 

modelling 

Automatically 

adapts with the 

changing 

background 

The boundaries 

of the extracted 

objects are not 

always accurate. 

 

 

Category II  

( Methods 

based on 

motion and 

spatial –

information) 

Mei et al. 

[28] 

Use spatial-

temporal 

information 

Easily handle 

gradual 

illumination 

changes and 

shadow problem 

Boundaries of 

the extracted 

objects are not 

always accurate 

enough to locate 

them in different 

scenes 

Motion & 

spatial 

information 

based methods 

need  many  

frames  to  

learn  the  new  

background 

region revealed 

by an object 

Mcfarlane 

et al.[27] 

 

Use frame 

differencing 

and 

Computationally 

fast and handles  

noise  

It needs many 

frames to learn 

the new 
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Background 

modeling step 

background 

region revealed 

by an object that 

moves away 

after being 

stationary for a 

long time 

that moves 

away after 

being 

stationary for a 

long time [6]  

i.e.  it  is  

adaptive  to  

only  the  small  

and  gradual  

changes  in  the  

background    

in  case  of  

sudden changes 

it distorts and 

also the 

computational 

complexity of 

these 

algorithms are 

low. 

Wren et al. 

[31] 

Use running 

Gaussian 

average model 

and Gaussian 

probability 

density 

function 

Handle gradual 

and sudden 

illumination 

changes 

Complex nature 

which makes its 

processing slow 

because of the 

computational 

overhead 

involved in 

updating the 

mixture models. 

Zivkovic 

[32] 

Use number of 

Gaussians to 

create a model 

for a given 

pixel. 

Easily handle 

gradual  and 

sudden 

illumination 

changes 

Computationally 

slow and also 

suffers from the 

problem of 

ghost and 

shadow 

Reza et al. 

[105] 

Use  current  

frame,  ten  

Easily handle 

lighting 

Computationally 

slow and have 
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preceding  

frames  and  ten  

next 

consecutive  

frames to 

segment the 

moving object 

changes, 

shadows and 

reflections 

problem to 

handle sudden 

illumination 

changes 

Ivanov et 

al. [106] 

Use color 

intensity values 

at 

corresponding 

pixels 

Computationally 

Fast and also 

handle noise, 

shadow problem 

Problem to 

handle gradual 

and sudden 

illumination 

changes and 

ghost problem 

 

 

Category III 

( Methods 

based on 

learning 

patterns) 

Oliver et al. 

[110] 

Use spatial 

correlations 

and principal 

component 

analysis to 

construct the 

background  

Easily handle 

gradual 

illumination 

changes and 

shadow problem 

Computationally 

slow and 

Problem of 

noise and blur 

Learning based 

methods  

are  adaptive  

to  the  

dynamically  

changing  

background  

but  the  

computational  

complexity  of  

these algorithm 

is very high 

Cucchiara 

et al. [111] 

Use medoid 

filtering to 

construct the 

background 

Easily handle 

gradual 

variations of the 

lighting 

Computational 

complexity to 

construct the 

background is 

high 
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conditions in the 

scene 

and they also 

suffer with the 

problem of  

shadow regions 

and the 

presence of 

ghosts like 

appearances. 

Kushwaha 

et al. [26] 

Use variance 

and covariance 

of pixels to 

construct the 

background  

Easily handle 

gradual and 

sudden 

variations of the 

lighting 

conditions in the 

scene, 

computationally 

fast and reduce 

the noise 

problem 

Suffers from  

the problem of 

shadow and 

ghost object in 

the scene 

Ellis et al. 

[30] 

Use semi-

supervised 

appearance 

learning task 

Easily handle 

gradual 

variations of the 

lighting 

conditions in the 

scene 

Computational 

complexity to 

construct the 

background is 

high 

Stauffer et 

al. [29] 

Use mixture of 

Gaussians and 

on-line 

approximation 

to update the 

model 

Easily handle 

gradual and 

sudden 

variations of the 

lighting 

Computational 

complexity to 

construct the 

background is 

high and also 

the suffer the 
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conditions in the 

scene 

problem of 

noise and ghost 

object 

Kato et al. 

[112] 

Use Hidden 

Markov Model 

(HMM) to 

segment and 

learn the object 

Easily handle 

gradual and 

sudden 

variations of the 

lighting 

conditions in the 

scene and also 

solve the 

problem of 

shadow, noise 

Computational 

complexity to 

construct the 

background is 

high 

 

Category IV 

( Methods 

based on 

change 

detection) 

Kim et al. 

[116]  

intra-frame and 

inter-frame 

segmentation 

modules are 

used for objects  

segmentation 

and tracking 

It detects 

accurate object 

boundaries 

User-interaction 

is required for 

separating 

moving objects 

from the 

background in 

video 

sequences. 

Change 

detection based 

methods can 

handle 

appearance of 

new objects in 

the scene. But 

they suffer 

from the 

problem of 

either slow 

speed of 

Chien et al. 

[117]  

Background 

registration is 

used to 

construct 

Easily handles 

object shadow  

and noise 

1. it adapts only 

static 

background  
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reliable 

background 

information 

from the video 

sequence 

2. it suffers with 

the  problem of 

ghost objects 

moving object 

or abrupt 

lighting 

variation 

changes. 

.   Kim and 

Hwang 

[118] 

Use single 

change 

detection 

Easily handles 

the noise  

Problem to 

handle new 

appearance of 

object in the 

scene 

Shih et al. 

[119] 

Use double 

change 

detection  

Easily handles 

new appearance 

of object in the 

scene 

Problem to 

handle gradual 

and sudden 

illumination 

changes due to 

this object is 

distorted and 

also suffers 

from noise and 

ghost object 

appearance  

Huang et 

al. [16, 35] 

Use single & 

double change 

detection in 

wavelet domain 

Easily handle 

new appearance 

of object in the 

scene & 

Problem to 

handle gradual 

and sudden 

illumination 
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computationally 

fast  

changes due to 

this object is 

distorted also 

suffers noise 

and ghost object 

problem 

Baradarani 

[36, 37] 

Use change 

detection in 

dual tree 

complex 

wavelet domain 

Easily handle 

new appearance 

of object in the 

scene and 

computationally 

fast 

Suffer from the 

problem of 

noise 

disturbances and 

distortion of 

moving 

segmented 

objects due to 

change in speed 

of objects 

Hsia et al. 

[120] 

Use modified 

directional 

lifting-based 9 

/7 discrete 

wavelet 

transform 

(MDLDWT) 

Reduce the 

image transform 

computing cost, 

remove noise , 

and 

computationally 

fast 

Problem to 

handle gradual 

and sudden 

illumination 

changes and due 

to this the object 

is distorted 

Khare et al. 

[121] 

Use single 

change 

Reduces the 

noise 

Suffers from the 

problem of 
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detection  in 

Daubechies 

complex 

wavelet domain 

disturbance and 

speed change 

dynamic 

background 

changes and 

shadow 

detection and 

due to this 

segmenting 

coherence 

occurs 

 

 

After presenting the literature review of various moving object segmentation 

methods, discussed as above under each of the four categories, it is observed that the 

approximate median filter based method under second category i.e. a method based on 

motion and spatial information is better in comparison to methods presented in other 

categories also validated through experimental results and analysis presented in Section 

3.4. The approximate median filter contains two steps to segment the object: (i) frame 

differencing of two consecutive frames and (ii) background modeling step. The brief 

working of approximation median filter based method for moving object segmentation is 

given as follows [27, 104]:- 

Step I: Frame Differencing: 

For background subtraction the frame difference FDn(i,j) is obtained by taken the absolute 

difference two consecutive frames (n-1) & n. This process can be written as follows:- 

For every pixel location (i, j) ϵ the co-ordinate of frame 

1( , ) ( , ) ( , )

( , )

( , ) 0

n n n

n thr

n

i j f i j f i jFD

If i j VFD

i jFD

-= -

<

=  
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Step II:  Background Modeling:  

In background modeling step, if the corresponding pixel in the current frame ( , )nf i j  

is greater in value of previous frame 1( , )nf i j-  then previous frame is incremented by 

one otherwise previous frame is decreased by one. This process can be written as follows:- 

 

Here, ( , )nf i j is the value of (i, j)th pixel of nth  frame  and 1( , )nf i j- is the value of (i, j)th 

pixel of (n-1)th frame,  thrV is a threshold value and ( , )nFD i j is the frames difference. 

The main limitation of approximate median filter based method is that it does not 

adapt to the dynamic changes in background due to its weak background modeling steps. 

Due to this it suffers from the problems of (i) ghost like appearances in moving segmented 

object, (ii) slow adaptation toward a large change in background, and (iii) requirement of 

many frames to learn the new background region revealed by an object that moves away 

after being stationary for a long time. 

 Motivated by these facts, in this chapter, we have improved the background 

modeling step of traditional approximate median filter based method [27, 104] using 

different major changes such as background registration, background differencing, and 

background difference mask in complex wavelet domain. These major changes adapt the 

dynamic background changes and solve the above mentioned three problems in traditional 

approximate median filter. The effectiveness of the proposed method over traditional 

approximate median filter is validated through experimental result and analysis presented 

in section 3.4.  

The main advantage of performing the above mentioned tasks in the complex 

wavelet domain is that the complex wavelet transform has better noise resilience nature 
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as the lower frequency sub-band of the wavelet transform has the capability of a low-pass 

filter. The other advantage  is that the high frequency sub-bands of complex wavelet 

transform represent the edge information that provide a strong cue to handle shadow. The 

proposed method is well capable of dealing with the problems of noise, ghost like 

appearances, distortion of objects due to the speed of moving objects, dynamic 

background scenes, varying illumination conditions, shadows, and computational 

complexity as demonstrated and reported in this chapter for several challenging test  video 

sequences.  

3.3. An Improved Approximation Median Filter Based Approach in 

Complex Wavelet Domain: The Proposed Method 

In this chapter, an efficient approach for moving object segmentation under varying 

illumination conditions is proposed. The proposed method is the modified and extended 

version of traditional approximation median filter based method for moving object 

segmentation [27, 104] in complex wavelet domain as discussed in section 3.2. The 

proposed method consists of following seven steps as follows and also illustrated in Fig. 

3.1: 

(i) Complex wavelet decomposition of sequence of frames.  

(ii) Application of approximate median filter on the wavelet coefficients.  

(iii) Application of background modeling.  

(iv) Application of soft thresholding for noise removal.  

(v) Application of canny edge detector to detect strong edges.  

(vi) Application of inverse Daubechies complex wavelet transform.  

(vii) Finally the application of closing morphological operators.  

All above steps are iteratively applied until the result does not surpass the set threshold 

value for object segmentation.  
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The workings of these steps are given as follows and illustrated in Fig. 3.1 & 3.2 

. 

 

 

 

 

 

 

 

 

 

Background Modeling in complex wavelet domain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                  

 

 

LL1       LH1       HL1       HH1 LL2       LH2       HL2       HH2 LLn    LHn        HLn         HHn 

WDn,LL 
Soft-thresholding for LH’, HL’ and HH’ sub-band by Daubechies 

complex wavelet  

Apply Canny edge detector operation on LH”, HL”, and HH” sub-band 

Inverse Daubechies complex wavelet transforms and merges the sub-band 

Morphological operations with binary closing operation 

Apply Improved Approximate Median Filter Method for LH, HL, and 

HH band with threshold Vth,d 

WD’n,d=(LH, HL, HH) 

DEn,d=(LH, HL, HH) 

Segmented Object 

Background ModelingTechnique 
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Daubechies complex wavelet 

transforms 

Apply Canny edge detector 
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                   .......................................................  

                                  ..........................................

Wavelet Decomposition of image frames using Daubechies complex wavelet transform 

Figure 3.1: Block Diagram of the Proposed Method 
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Step 1: Wavelet Decomposition of frames 

In the proposed approach, a 2-D Daubechies complex wavelet transform is applied on 

current frame and previous frame to get wavelet coefficients in four sub-bands: LL, LH, 

HL and HH. The generating Daubechies complex wavelet transform is described as 

follows: 

The basic equation of multiresolution theory is the scaling equation [4] 

                   
( ) 2 (2 )

i
i

u a u if få= -                  (3.1) 

where  '
i

a s are coefficients, and  ( )uf  is the scaling function. The '
i

a s can be real as 

well as complex valued. Daubechies’s wavelet bases {
,
( )

j k
ty } in one-dimension is 

defined using the above mentioned scaling function ( )uf and multi resolution analysis 

of L2( ) [4]. The generating wavelet ( )ty is defined as: 

                   1
( ) 2 ( 1) (2 )n

n
t a t ny f

-
å= - -                         (3.2) 

Where ( )tf  and ( )ty  share same compact support [-L, L+1]. 
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Figure 3.2: Sub-block Diagram of the proposed approach 
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Any function f (t) can be decomposed into complex scaling function and mother wavelet 

as: 

     

1max

,
,

( ) ( ) ( )
j

j jo

k k
k j jj ko j k

f t C t d tf y
-

=
å å= +                       (3.3) 

where, 
oj  is a given low resolution level,  {

jo
kC } is called approximation coefficient 

and  {
j

kd } is  known as detail coefficient. 

Applying the approximate median filter based method [27, 104] in complex wavelet 

domain have following advantages (a) it is shift invariant and have a better directional 

selectivity as compared to real valued wavelet transforms [4] (b) it has perfect 

reconstruction property (c) it provides true phase information [4], while other complex 

wavelet transform does not provide true phase information (d) Daubechies complex 

wavelet transform has no redundancy [4]. 

Step 2: Application of improved approximate median filter method on wavelet co-

efficient 

In step 2, an approximate median filter based method is applied on detail wavelet 

coefficients i.e. on sub-bands: LH, HL, and HH. Let 
,

( , )( { , , })
n d

Wf i j d LH HL HH=

and 
1,

( , )( { , , })
n d

Wf i j d LH HL HH
-

= are the wavelet coefficients at location (i, j) of 

the current frame and previous frame. Instead of assigning a fixed a priori threshold 
,

V
th d

 

to each frame difference, this method uses the fast Euler number computation technique 

[126] to automatically determine 
,

V
th d

 from the video frame. The fast Euler numbers 

algorithm calculates the Euler number for every possible threshold with a single raster of 

the frame difference image using following equation:   

                   
1 3

1
( ) [( ( ) ( ) 2 ( ))]

4
d

E i q i q i q i= - -                                                                             (3.4) 
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where 1q ,  3q , and dq is the quads (quad is a  2*2 masks of bit cells) contained in the 

given image.  

The output of the algorithm is an array of Euler numbers: one of each threshold value. 

The Zero crossings find out the optimal threshold. Detailed algorithms for the fast Euler 

number computation method can be found in [126]. 

The wavelet domain frame difference , ( , )n dWD i j for respective sub-bands are 

computed as: 

for every pixel location (i, j) ϵ the co-ordinate of frame 

, 1, ,

,

1 ( , ) ( , )
( , )

0

n d n d th d

n dWD
if Wf i j Wf i j V

i j
otherwise

-
ì ü- >ï ï

=í ý
ï ïî þ

    (3.5)
 

Step 3: Application of background modeling using LL sub-band 

This step of the proposed method deals with the problems of slow adaptiveness toward 

a large change in background and requirement of many frames to learn the new 

background region revealed by an object that moves away after being stationary for a long 

time as noted in traditional approximate median filter based method [27, 104]. To deal 

with these issues, here we propose to modify the background modeling approach which 

uses background registration mask, background difference mask and the frame difference 

mask to construct the background in LL sub band. The background modeling step is 

divided in to four major steps as shown in Fig 3.3.  

The first step calculates the frame difference mask , ( , )n LL i jWD of the LL image which 

is obtained by thresholding the difference between coefficients in two LL sub-bands as 

follows: 

, 1, ,

,

1 ( , ) ( , )
( , )

0

n LL n LL th WD

n LLWD
if Wf i j Wf i j V

i j
otherwise

-
ì ü- <ï ï

=í ý
ï ïî þ                      

(3.6) 
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where ,th FD
V  is a threshold of , ( , )n LLWD i j  determined automatically from the video 

frame by the fast Euler number computation method as explained in [126]. If 

, ( , ) 0n LL i jWD = , then the difference between two frames is almost the same.  

The second step of background modeling maintains an up-to-date background buffer as 

well as background registration mask indicating whether the background information of 

a pixel is available or not. According to the frame difference mask of the past several 

frames, pixels that are not moving for a long time are considered as reliable background. 

The reliable background,  , ( , )n LL i jBR  is defined as  

,
1,

,

( , ) 1 ( , ) 0
( , )

0

n LL
n LL

n LL

WD
BR

BR i j if i j
i j

otherwise

-
+ =ì ü

=í ý
î þ                     

 (3.7) 

The , ( , )n LLBR i j  value is accumulated until , ( , )n LLWD i j holds zero value. At any time that 

, ( , )n LLWD i j is changed from 0 to 1, , ( , )n LLBR i j becomes zero.  

In third step of background modeling, if the value in , ( , )n LLBR i j  exceeds a predefined 

value, denoted by L, then the background difference masks , ( , )n LLBD i j is calculated. It is 

obtained by taking the difference between the current frame and the background 

information stored. This background difference mask is the primary information for 

object shape generation i.e. 

1, , ,

,

1 ( , ) ( , )
( , )

0

n LL n LL th BD

n LLBD
if Bf i j Wf i j V

i j
otherwise

-
ì ü- >ï ï

=í ý
ï ïî þ                        

(3.8) 

where
1,

( , )
n LL

Bf i j
- is the pixel value in the current frame that is copied to the 

corresponding pixel in the , ( , )n LLBR i j , and ,th BD
V  is a threshold value determined 

automatically from the video frame by the fast Euler number computation method as 

explained in [126]. In the case of , ( , )BR n LL i j L< , it is assumed that the background is 
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not constructed, so frame differences mask , ( , )n LLWD i j is used which is calculated in the 

first step. 

In the fourth step of background modeling, a background model is constructed using the 

background difference mask, background registration mask, and the frame difference 

mask. The background model generated has some noise regions because of irregular 

object motion and noise. Also, the boundary region may not be very smooth. The 

workings of these steps are given as follows and illustrated in Fig 3.3. 

 

 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 4: Application of soft thresholding method for noise removal 

After applying approximate median filter based method and background modeling, the 

obtained result may have noise. This step deals with the noise reduction from the data 

obtained in step 2 and step 3. In presence of noise, the equation is expressed as: 

              , ( , , , ) , ( , , , )
*( , ) ( , )n d LL LH HL HH n d LL LH HL HH

i j i jWD WD h= =
= +                                       

(3.9) 
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Figure 3.3: Block Diagram of the Background Modeling in LL sub-band 
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where *
, ( , , , )

( , )
n d LL LH HL HH

i jWD
=

is frame difference without noise, , ( , , , )( , )n d LL LH HL HH i jWD =  is the 

original frame difference with noise, and h  is the additive noise. The wavelet domain 

soft thresholding T is applied on wavelet coefficients for noise reduction. The value of 

soft thresholding parameter T for de-noising is computed as [127] 

                                     
1

1

2 j
T

y
w

x-

æ ö
= ç ÷

è ø
                              (3.10)

 

where j  is wavelet decomposition level  and
   
y  ,

 
x

 
and

 
w

  
are standard deviation, 

absolute mean and absolute median of wavelet coefficients of a sub-band.
 

Step 5: Application of canny edge detector to detect strong edges in wavelet domain 

Canny edge detection method is one of the most useful and popular edge detection 

methods, because of its low error rate well localized edge points and single edge detection 

response [128]. In next step, the canny edge detection operator is applied on

*
, ( , , , )

( , )
n d LL LH HL HH

WD i j
=  to detect the edges of significant difference pixels in all sub-

bands as follows: 

 

*
, ( , , , ) , ( , , , )

( , ) ( ( , ))n d LL LH HL HH n d LL LH HL HH
DE i j canny i jWD= =

=
                             

(3.11)

 

where 
, ( , , , )

( , )
n d LL LH HL HH

DE i j
=  

is an edge map of  *
, ( , , , )

( , )
n d LL LH HL HH

WD i j
= . 

Step 6: Application of inverse Daubechies complex wavelet transform 

After finding edge map 
, ( , , , )

( , )
n d LL LH HL HH

DE i j
=  in wavelet domain, inverse wavelet 

transform is applied to get moving object edges in spatial domain i.e. E
n .

 

Step 7:  Application of closing morphological operation to sub-band 

As a result of step 6, the obtained segmented object may include a number of disconnected 

edges due to non-ideal segmentation of moving object edges. Extractions of object using 

these disconnected edges may lead to inaccurate object segmentation.  Therefore,  some 
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morphological  operation  is  needed  for  post-processing  of  object  edge  map  to  

generate  connected edges.  Here, a binary closing morphological operation is used [128] 

which gives ( )nM E  i.e. the set of connected edge. In this step, the segmented output is 

obtained. 

3.4. Experimental Results and Comparative Studies 

 Dataset Description 

In  this  section,  a  brief  overview  of  few  datasets  used for experimentation purpose 

in this chapter are presented. 

Pets Dataset [129] 

First video dataset used for experimentation in this chapter is the people video sequence 

which is part of Pets dataset available from [129]. This video data contains 2967 frames 

of frame size 480 x 272. The main characteristics of this video data are that they are record 

in outdoor environment wherein multiple objects (Human beings and cars) are present 

and cases of partial and full occlusions among human beings are also present.  

Visor datasets [130-132] 

The another video data considered for experimentation is the Visor  dataset  which is  the  

largest  publically available  and  most  standard  dataset  widely  used  for  benchmarking  

results  for  segmentation. In this chapter, three video data sets from this category are used 

for experimentation which are Intelligent Room video sequence [130] containing 299 

frames each of size 320 x 240, Camera2_070605 video sequence [131] containing 2881 

frames each of size 384 x 288 and HighwayI_raw dataset [132] containing 439 frames 

each of size 320 x 240. Camera2_070605 video sequence dataset is performed at 

particular angle and is of low-quality and low contrast. Intelligent Room video sequence 

is recorded in full noisy environment i.e. video quality is low with poor contrast and 



61 
 

shadow of object is also present.  In highwayI_raw video sequence is recorded in full 

noisy environment and full and partial occlusion occurs between fast moving cars. 

Caviar Dataset [133] 

The next video data considered for experimentation is the one step video sequence dataset 

which is the part of Caviar video dataset available from [133]. This video data contains 

number of video clips, having 1995 frames each of size 480 x 272, which were recorded 

acting out the different scenarios of interest. This video is recorded in stationary 

background situation and multiple human beings are present in the video. 

CVCR Dataset (Crowdie Environment Dataset) [134] 

The final data set used for experimentation contains videos of crowd’s density 

environment. 4917-5_70 is one of the video sequences of CVCR dataset [134] which 

contain 1789 frames each of size 480 x 320. This video was shooted on much more height 

and in very crowdie environment which contains full occlusions, shadow and noise.  

 Performance Measures  

It  is  very  difficult  to  compare  the segmentation  results  visually  because  human  

visual  system  can  identify  and  understand  scenes  with different  connected  objects  

effortlessly.  Therefore, quantitative performance metrics together with visual results are 

more appropriate. The performance measures are categorized into various categories for 

determining the performance of the chosen method or comparing the proposed method 

with other methods for moving object segmentation. The various categories of 

performance measures calculate the accuracy of moving object segmentation; measures 

for noise removal in moving object segmentation; and computational time and memory 

required in moving object segmentation. The performance measures listed under various 

categories are defined as follows: 
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3.4.2.1. Accuracy of Moving Object Segmentation

The accuracy of moving object segmentation is calculated in terms of Relative 

Foreground Area Measure (RFAM) [84], Misclassification Penalty (MP) [84], Pixel 

Classification Based Measure (PCM) [84], and Relative Position Based Measure (RPM) 

[84] as discussed in chapter 2 (in section 2.5). 

3.4.2.2. Noise Removal Capacity in Moving Object Segmentation 

Here three performance measurement metrics namely Peak Signal-to-Noise Ratio [87], 

Normalized Absolute Error (NAE) [86], and Normalized Cross Correlation [85] are used 

for noise.  

3.4.2.3. Computational Time and Memory 

Here two performance measurement metrics namely computational time and memory 

consumption are used for Computational time and memory.  

 Results & Comparative Studies 

In this section, comparative studies of some prominent methods as reported in literature 

and as discussed in Section 3.2, under the four categories, is presented both qualitatively 

and quantitatively on six video datasets discussed as above [129-134] in Section 3.4.1.  

Further, the comparative study of the proposed method is also presented with various 

methods under each category. The object intended for segmentation in the test video clips 

are appearing after approximately 100 frames in the test cases under consideration. The 

performance measures were calculated for whole video clips at the frame interval of 25 

after 100th frame. In this chapter, the result for only four frames viz. 125, 150, 175, and 

200 are shown. However, the performance trend remained the same for all video frames. 

In Tables 3.2 through 3.8, results of various moving object segmentation methods under 

each of the four categories as discussed in Section 3.2 in terms of seven different 

performance metrics divided under two categories viz. segmentation accuracy and noise 
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removal, as discussed in sub-section 3.4.2, are listed. In Table 3.9, average computation 

time (frames/second) and memory consumption for different methods for a video of frame 

size 320 x 240 for first 100 frames [133] are shown. The comparative study has been done 

on a computer with Intel 2.53GHz core i3 processor with 4 GB RAM using OpenCV 2.9 

and MATLAB 2013a software. 

3.4.3.1. Qualitative Analysis 

In this section, we report the experimental analysis and results of methods under 

categories I to IV and that of the proposed method. In  category-I, we report the 

experimental analysis and results of four latest methods proposed by Kim et al. [33], 

Bradaski [98], Liu et al. [34], and Meier and Ngan [100] based on their advantages and 

limitations. In category-II, three latest methods for experimentation and comparative 

analysis are considered which are due to Mcfarlane et al. [27], Wren et al. [31] and 

Zivkovic et al. [32]. In category-III, we consider three latest methods for experimentation 

and comparative analysis which are due to Kushwaha et al. [26], Cucchiara [111], and 

Oliver [110]. Similar way, in category-IV, we consider four latest methods for 

experimentation and comparative analysis which are due to Kim et al. [116],Chien et al. 

[117],  Khare et al. [121] and Hsia et al. [120].  

Some observations about the results obtained by methods in categories I to IV and 

proposed method are as follows for six different video data sets [129-134]. From Fig. 3.4-

3.9, it can be observed that: 

(a) The segmentation results obtained by the method proposed by Kim et al. [33] perform 

better to other methods such as by Bradaski [98], Liu et al. [34] and Meier and Ngan 

[100] in category-I because the results of  methods reported in [98, 34, 100] depends on 

the motion of the object (see frame no. 125-200 (ix, x, xiv)). If object is static then 
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methods reported in [98, 34, 100] are not able to segment the object but Kim et al. [33] 

method works well for different data sets [129-134] (see frame no. 125-200 (iv)).  

(b) The segmentation results obtained by the method proposed by Mcfarlane et al. [27] 

perform better to other methods in category II (see frame no. 125-200 (iii)). From Fig. 

3.4-3.5, one can conclude that Mcfarlane et al. [27] give better  shape  of  moving  object  

with  least  noise  in segmented  frames by the methods in category-II (see frame no. 125-

200 (iii)). From Fig. 3.6-3.9, it is clear that Wren et al. [31] and Zivkovic et al. [32] both 

suffers from the ghost object, noise, and shadow (see frame no. 125-200 (v & xi)) but 

Mcfarlane et al. [27] give better result with respect to least noise in segmented frame in 

category-II.  

(c) For the methods under category-III: 

· The segmentation results obtained by the method proposed by Kushwaha 

et al. [26] perform better to other methods in category III (see frame no. 

125-200 (xii)).  

· Results obtained by Cucchiara [111] suffer from the problem of ghosts, 

noise and shadows and also some portion of the object is distorted (see 

frame no. 125-200 (vi)).  

· Results obtained by the method proposed by Oliver [110] have the 

problem of disappearance of the object in the frame during segmentation 

process after some time and the object is also distorted (see frame 125-150 

(xiii)).  

(d) The segmentation results obtained by the method proposed by Khare et al. [121] under 

category–IV perform better to other methods such as Kim et al. [116], Chien et al. [117] 

and Hsia et al. [120]. From Fig. 3.4, it is clear that, results of methods reported in [116, 

117, 120] is not accurate (i.e. objects are collapsed) due to occlusions between multiple 



65 
 

objects in the frame (see frame no. 125-200 (vii, xv, xvi)). In this situation Khare et al. 

[121] method works well but it suffers from the problem of ghosts (see frame no. 125-

200 (viii)). From Fig. 3.5, one can conclude that, methods reported in [116, 117, 120] is 

not able to give comparable shape structure as compared to the Khare et al. [121] (see 

frame no. 125-200 (vii, viii, xvi)). From Fig. 3.6, it is also seen that the method proposed 

by Khare et al. [121] suffered the problem of ghost as compared to the Chien et al. [117] 

and Hsia et al. [120] (see frame no. 125-200 (vii, viii, xvi)). From Figs. 3.8 and 3.9, it is 

clear that, result obtained by Hsia et al. [120] method is distorted (see frame 125-200 (vi)) 

due to speed change of cars but in this condition Khare et al. [121] method work properly 

(see frame no. 125-200 (vii & viii)).  

(e) The segmentation results obtained by proposed method perform well to other methods 

in the category I to IV having fast moving objects, crowdie and shadow environment in 

the video dataset. The proposed method does not suffer from the problem of ghost, object 

distortion, shadow, and disappearance of object in video scene (see frame no.125-200 (ii)) 

in comparison to other method in the category I to IV for different datasets [129-134].  

3.4.3.2. Quantitative Analysis 

In this section, the performances of the proposed method have been compared 

quantitatively under categories I to IV and proposed method in terms of seven different 

performance metrics divided under two categories viz. segmentation accuracy and noise 

removal as discussed in section 3.4.2.  

From Tables 3.2-3.9 and Figs. 3.10-3.16(a-f) it can be observed that the following 

methods are performing better under each of their respective categories. These methods 

are associated with high value of RFAM, RPM, PCM and low value of MP in comparison 

to other methods under each category which indicate better segmentation accuracy. The 

high values of PSNR and NCC and low value of NAE indicate better noise removal 
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capacity in comparison to other methods under respective categories for different datasets 

[129-134]. Also, the following methods under each of the respective category are 

associated with less computational time and memory consumption in comparison to other 

methods in their respective categories. These observations are summarized as: 

· Kim et al. [33] method is performing better in terms of segmentation accuracy, 

noise removal capacity and computational complexity in category-I for each 

of the datasets. 

· Macflrane et al. [27] method is performing better in terms of segmentation 

accuracy, noise removal capacity and computational complexity in category-

II for each of the datasets. 

· Kushwaha et al. [26] method is performing better in terms of segmentation 

accuracy, noise removal and computational complexity in category-III for 

each of the datasets. 

· Khare et al. [121] method is performed better in terms of segmentation 

accuracy, noise removal and computational complexity in category-IV for 

each of the datasets. 

Further, the proposed method is associated with high value of RFAM, RPM, PCM, PSNR, 

NCC; and low value of MP and NAE in most of the frames in comparison to other 

methods under each category for different datasets [129-134]. From Table 3.9, one can 

also observe that the proposed method had taken less computational time and consumed 

only 3.90 megabytes of RAM which was the least in comparison with the other methods 

in category-I to IV. Hence, proposed method is performing better in terms of 

segmentation accuracy, noise removal and computational complexity in comparison to 

other methods in categories I to IV for each of the datasets. 
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Overall observation of performance of methods under Categories I to IV and the 

proposed method: 

From qualitative and quantitative observations of the comparative analysis and results of 

methods in Categories I to IV and the proposed method, we conclude that proposed 

method is performing better in comparison to all methods under consideration for 

different datasets [129-134]. For experimentation, we have taken different complex 

datasets i.e. multiple objects with partial and full occlusion, crowded object, and fast 

moving object with shadow. After overall observation, we conclude that the proposed 

method perform better to other methods from category I to IV. The other methods which 

perform better after the proposed method in decreasing order of their performances are 

Kushwaha et al. [26], Mcflarne et al. [27], Khare et al. [121], and Kim et al. [33].  

3.5. Conclusions 

This chapter presented a review and experimental study of various recent moving object 

segmentation methods available in literature and these methods were classified into four 

categories i.e. moving object segmentation methods based on (i) motion information (ii) 

motion and spatial information (iii) learning, and (iv) change detection. The objective of 

this chapter was two-fold i.e. firstly, this chapter presented a comprehensive literature 

review and comparative study of various classical as well as state-of-the art methods for 

moving object segmentation under varying illumination conditions under each of the 

above mentioned four categories. Further, in this chapter, an efficient approach for 

moving object segmentation under varying illumination conditions was proposed and its 

comparative study with other methods under consideration was presented. The qualitative 

and quantitative comparative study of the various methods under four categories as well 

as the proposed method was presented for six different datasets [129-134]. The advantage, 

limitations, and efficacy of each of the methods under consideration have been examined. 
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The extensive experimental results on six challenging data sets demonstrate that the 

proposed method is superior to other state -of-the-art background subtraction methods as 

well as this chapter also provided an insight about other methods available in literature. 

 

 
    (i)                    (ii)                 (iii)                   (iv)              (v)                 (vi)               (vii)              (viii) 

 
   (ix)                    (x)                  (xi)                (xii)              (xiii)           (xiv)             (xv)                 (xvi) 

 (a)Frame 125 

 
   (i)                    (ii)                 (iii)                   (iv)              (v)                 (vi)               (vii)              (viii) 

 
(ix)                    (x)                  (xi)                (xii)              (xiii)           (xiv)             (xv)                 (xvi) 

(b)Frame 150 

 
   (i)                    (ii)                 (iii)                   (iv)              (v)                 (vi)               (vii)              (viii) 

 
(ix)                    (x)                  (xi)                (xii)              (xiii)           (xiv)             (xv)                 (xvi) 

(c)Frame 175 

 
    (i)                    (ii)                 (iii)                   (iv)              (v)                 (vi)               (vii)              (viii) 
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 (ix)                    (x)                  (xi)                (xii)              (xiii)           (xiv)             (xv)                 (xvi) 

  

(d)Frame 200 

 

Figure 3.4: Segmentation results for People video sequence [129] corresponding to (a) 

Frame 125,( b) frame 150, (c) frame 175, (d) frame 200 (i) original frame, and the 

segmented frame obtained by various methods such as: (ii) the proposed method, 

(iii)McFarlane and Schofield[27], (iv) Kim et al.[33], (v) Zivkovic[32] (vi) Cucchiara et 

al.[111], (vii)Hsia et al.[120],  (viii) Khare et al.[121]   (ix) Bradski[98],  (x)  Liu et al. 

[34],   (xi)  Wren et al.[31],  (xii) Kushwaha et al. [26],  (xiii)  Oliver et al.[110], (xiv) 

Meier and Ngan [100], (xv) Kim et al. [116], and (xvi) Chien et al. [117]. 
 

 

 
     (i)                    (ii)                 (iii)                   (iv)              (v)                 (vi)               (vii)              (viii) 

 
(ix)                    (x)                  (xi)                (xii)              (xiii)           (xiv)             (xv)                 (xvi) 

(a) Frame 125 

 
   (i)                    (ii)                 (iii)                   (iv)              (v)                 (vi)               (vii)              (viii) 

 
(ix)                    (x)                  (xi)                (xii)              (xiii)           (xiv)             (xv)                 (xvi) 

(b) Frame 150 

 
      (i)                    (ii)                 (iii)                   (iv)              (v)                 (vi)               (vii)              (viii) 

 
(ix)                    (x)                  (xi)                (xii)              (xiii)           (xiv)             (xv)                 (xvi) 

(c) Frame 175 
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    (i)                    (ii)                 (iii)                   (iv)              (v)                 (vi)               (vii)              (viii) 

 
 (ix)                    (x)                  (xi)                (xii)              (xiii)           (xiv)             (xv)                 (xvi) 

(d) Frame 200 
 

Figure 3.5: Segmentation results for Intelligent Room video sequence [130] 

corresponding to (a) Frame 125,( b) frame 150, (c) frame 175, (d) frame 200 (i) original 

frame, and the segmented frame obtained by various methods such as: (ii) the proposed 

method, (iii)McFarlane and Schofield[27], (iv) Kim et al.[33], (v) Zivkovic[32] (vi) 

Cucchiara et al.[111], (vii)Hsia et al.[120],  (viii) Khare et al.[121]   (ix) Bradski[98],  (x)  

Liu et al. [34],   (xi)  Wren et al.[31],  (xii) Kushwaha et al. [26],  (xiii)  Oliver et al.[110], 

(xiv) Meier and Ngan [100], (xv) Kim et al. [116], and (xvi) Chien et al. [117]. 
 

 

 
    (i)                    (ii)                 (iii)                   (iv)              (v)                 (vi)               (vii)              (viii) 

 
(ix)                    (x)                  (xi)                (xii)              (xiii)           (xiv)             (xv)                 (xvi) 

(a)    Frame 125 

 
    (i)                    (ii)                 (iii)                   (iv)              (v)                 (vi)               (vii)              (viii) 

 
(ix)                    (x)                  (xi)                (xii)              (xiii)           (xiv)             (xv)                 (xvi) 

(b) Frame 150 

 
(i)                    (ii)                 (iii)                   (iv)              (v)                 (vi)               (vii)              (viii) 
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(ix)                    (x)                  (xi)                (xii)              (xiii)           (xiv)             (xv)                 (xvi) 

(c) Frame 175 

 
(i)                    (ii)                 (iii)                   (iv)              (v)                 (vi)               (vii)              (viii) 

 

 
 (ix)                    (x)                  (xi)                (xii)              (xiii)           (xiv)             (xv)                 (xvi) 

 

(d) Frame 200 

 

Figure 3.6: Segmentation results for One Step video sequence [133] corresponding to(a) 

Frame 125,( b) frame 150, (c) frame 175, (d) frame 200 (i) original frame, and the 

segmented frame obtained by various methods such as: (ii) the proposed method, 

(iii)McFarlane and Schofield[27], (iv) Kim et al.[33], (v) Zivkovic[32] (vi) Cucchiara et 

al.[111], (vii)Hsia et al.[120],  (viii) Khare et al.[121]   (ix) Bradski[98],  (x)  Liu et al. 

[34],   (xi)  Wren et al.[31],  (xii) Kushwaha et al. [26],  (xiii)  Oliver et al.[110], (xiv) 

Meier and Ngan [100], (xv) Kim et al. [116], and (xvi) Chien et al. [117]. 
 

 
(i)                    (ii)                 (iii)                   (iv)              (v)                 (vi)               (vii)              (viii) 

 
(ix)                    (x)                  (xi)                (xii)              (xiii)           (xiv)             (xv)                 (xvi) 

(a)Frame 125 

 
(i)                    (ii)                 (iii)                   (iv)              (v)                 (vi)               (vii)              (viii) 

 
(ix)                    (x)                  (xi)                (xii)              (xiii)           (xiv)             (xv)                 (xvi) 

(b)Frame 150 
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(i)                    (ii)                 (iii)                   (iv)              (v)                 (vi)               (vii)              (viii) 

 

 
(ix)                    (x)                  (xi)                (xii)              (xiii)           (xiv)             (xv)                 (xvi) 

 (c)Frame 175 

 
(i)                    (ii)                 (iii)                   (iv)              (v)                 (vi)               (vii)              (viii) 

 
 (ix)                    (x)                  (xi)                (xii)              (xiii)           (xiv)             (xv)                 (xvi) 

(d)Frame 200 

 

Figure 3.7: Segmentation results for Camera2_070605 video sequence [131] 

corresponding (a) Frame 125,( b) frame 150, (c) frame 175, (d) frame 200 (i) original 

frame, and the segmented frame obtained by various methods such as: (ii) the proposed 

method, (iii)McFarlane and Schofield[27], (iv) Kim et al.[33], (v) Zivkovic[32] (vi) 

Cucchiara et al.[111], (vii)Hsia et al.[120],  (viii) Khare et al.[121]   (ix) Bradski[98],  (x)  

Liu et al. [34],   (xi)  Wren et al.[31],  (xii) Kushwaha et al. [26],  (xiii)  Oliver et al.[110], 

(xiv) Meier and Ngan [100], (xv) Kim et al. [116], and (xvi) Chien et al. [117]. 
 

 

 

(i)                    (ii)                 (iii)                   (iv)              (v)                 (vi)               (vii)              (viii) 

 
(ix)                    (x)                  (xi)                (xii)              (xiii)           (xiv)             (xv)                 (xvi) 

(a)Frame 125 

 
(i)                    (ii)                 (iii)                   (iv)              (v)                 (vi)               (vii)              (viii) 
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(ix)                    (x)                  (xi)                (xii)              (xiii)           (xiv)             (xv)                 (xvi) 

 (b)Frame 150 

 
(i)                    (ii)                 (iii)                   (iv)              (v)                 (vi)               (vii)              (viii) 

 
(ix)                    (x)                  (xi)                (xii)              (xiii)           (xiv)             (xv)                 (xvi) 

 (c)Frame 175 

 
(i)                    (ii)                 (iii)                   (iv)              (v)                 (vi)               (vii)              (viii) 

 
 (ix)                    (x)                  (xi)                (xii)              (xiii)           (xiv)             (xv)                 (xvi) 

(d)Frame 200 

 

Figure 3.8: Segmentation results for highwayI_raw video sequence [132] corresponding 

to (a) Frame 125,( b) frame 150, (c) frame 175, (d) frame 200 (i) original frame, and the 

segmented frame obtained by various methods such as: (ii) the proposed method, 

(iii)McFarlane and Schofield[27], (iv) Kim et al.[33], (v) Zivkovic[32] (vi) Cucchiara et 

al.[111], (vii)Hsia et al.[120],  (viii) Khare et al.[121]   (ix) Bradski[98],  (x)  Liu et al. 

[34],   (xi)  Wren et al.[31],  (xii) Kushwaha et al. [26],  (xiii)  Oliver et al.[110], (xiv) 

Meier and Ngan [100], (xv) Kim et al. [116], and (xvi) Chien et al. [117]. 
 

 

 

(i)                    (ii)                 (iii)                   (iv)              (v)                 (vi)               (vii)              (viii) 

 
(ix)                    (x)                  (xi)                (xii)              (xiii)           (xiv)             (xv)                 (xvi) 

(a)Frame 125 
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(i)                    (ii)                 (iii)                   (iv)              (v)                 (vi)               (vii)              (viii) 

 

 
(ix)                    (x)                  (xi)                (xii)              (xiii)           (xiv)             (xv)                 (xvi) 

(b)Frame 150 

 
(i)                    (ii)                 (iii)                   (iv)              (v)                 (vi)               (vii)              (viii) 

 
(ix)                    (x)                  (xi)                (xii)              (xiii)           (xiv)             (xv)                 (xvi) 

 (c)Frame 175 

 
(i)                    (ii)                 (iii)                   (iv)              (v)                 (vi)               (vii)              (viii) 

 
 (ix)                    (x)                  (xi)                (xii)              (xiii)           (xiv)             (xv)                 (xvi) 

 (d)Frame 200 

 

Figure 3.9: Segmentation results for 4917-5_70 video sequence [134] corresponding 

to(a) Frame 125,( b) frame 150, (c) frame 175, (d) frame 200 (i) original frame, and the 

segmented frame obtained by various methods such as: (ii) the proposed method, 

(iii)McFarlane and Schofield[27], (iv) Kim et al.[33], (v) Zivkovic[32] (vi) Cucchiara et 

al.[111], (vii)Hsia et al.[120],  (viii) Khare et al.[121]   (ix) Bradski[98],  (x)  Liu et al. 

[34],   (xi)  Wren et al.[31],  (xii) Kushwaha et al. [26],  (xiii)  Oliver et al.[110], (xiv) 

Meier and Ngan [100], (xv) Kim et al. [116], and (xvi) Chien et al. [117]. 
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Table 3.2: Comparison of methods in terms of Relative foreground area measure 

 

A-People Video Sequences [129] 

F. 

No. 
Category I             Category II Category III Category IV 

Bradsk

i [98] 

Kim et 

al.[33] 

Liu et 

al. [34] 

Meier 

and 

Ngan 

[100] 

McFar

lane et 

al. [27] 

Wren 

et 

al.[31] 

Zivkov

ic[32] 

Kushw

aha et 

al. [26] 

Cucchi

ara et 

al.[111

] 

Oliver 

et 

al.[110

] 

Hsia et 

al.[120

] 

Khare 

et 

al.[121

] 

Kim 

et al. 

[116] 

Chien 

et al. 

[117] 

prop

osed 

125 0.7661 0.4220 0.558 0.463 0.8219 0.5969 0.5074 0.8667 0.2674 0.4045 0.5870 0.7126 0.444 0.663 0.9327 

150 0.7798 0.4665 0.598 0.489 0.7982 0.5575 0.4617 0.8764 0.2607 0.4239 0.6491 0.6005 0.347 0.686 0.9066 

175 0.7077 0.5719 0.591 0.493 0.8883 0.6335 0.5266 0.8077 0.3221 0.4755 0.7457 0.6190 0.389 0.662 0.9777 

200 0.7521 0.5084 0.513 0.529 0.9167 0.6683 0.5656 0.8682 0.3181 0.4336 0.6206 0.7508 0.434 0.673 0.9014 

B-Camera2_070605 Video Sequence [131] 

125 0.7779 0.8631 0.5067 0.471 0.6546 0.9429 0.8645 0.8491 0.8662 0.2269 0.9514 0.8757 0.417 0.655 0.9019 

150 0.7888 0.9316 0.5531 0.532 0.5601 0.9223 0.7925 0.8618 0.7813 0.489 0.8087 0.8184 0.402 0.651 0.9878 

175 0.7086 0.9365 0.5935 0.552 0.5033 0.9263 0.8177 0.8625 0.7612 0.6827 0.7920 0.8500 0.446 0.667 0.9625 

200 0.7561 0.8274 0.5888 0.456 0.5961 0.8455 0.8820 0.8746 0.5615 0.5716 0.8949 0.7261 0.432 0.706 0.9271 

C-One Step Video Sequence [133] 

125 0.3405 0.7535 0.5132 0.477 0.4773 0.6366 0.4633 0.8726 0.3493 0.7133 0.8651 0.6893 0.384 0.677 0.8862 

150 0.2637 0.7583 0.4071 0.509 0.4448 0.6162 0.4414 0.8974 0.3409 0.7225 0.7607 0.8612 0.381 0.689 0.8137 

175 0.3945 0.7866 0.5043 0.515 0.4272 0.6393 0.4501 0.8550 0.3848 0.8142 0.8249 0.7893 0.389 0.677 0.7550 

200 0.3537 0.7005 0.4678 0.514 0.4770 0.6935 0.4980 0.8671 0.3733 0.4154 0.8199 0.9752 0.391 0.659 0.9071 

D-Intelligent room Video Sequence [130] 

125 0.7556 0.8215 0.5407 0.520 0.9503 0.8157 0.5216 0.9351 0.6180 0.7569 0.8961 0.6415 0.368 0.663 0.9287 

150 0.7081 0.8084 0.5653 0.474 0.9092 0.7895 0.5019 0.9375 0.6888 0.7341 0.7992 0.6320 0.364 0.662 0.9375 

175 0.7285 0.8833 0.52 0.460 0.9851 0.7541 0.5424 0.9622 0.6816 0.738 0.6747 0.5326 0.414 0.654 0.9462 

200 0.7193 0.8492 0.5635 0.478 0.9031 0.876 0.5171 0.9126 0.6809 0.7547 0.7583 0.6739 0.419 0.690 0.8526 

E-HighwayI_raw video sequence [132] 

125 0.3476 0.6708 0.4143 0.471 0.6154 0.5193 0.5308 0.7956 0.5678 0.5162 0.7133 0.8302 0.370 0.713 0.8336 

150 0.3294 0.6200 0.4487 0.483 0.5880 0.4942 0.5944 0.7320 0.8218 0.4876 0.8287 0.8768 0.409 0.694 0.8830 

175 0.3927 0.7074 0.4122 0.490 0.5901 0.5518 0.4858 0.7971 0.7123 0.5262 0.7645 0.7423 0.416 0.674 0.8571 

200 0.3123 0.6733 0.4615 0.533 0.5845 0.5761 0.3408 0.7123 0.6773 0.5517 0.7013 0.5521 0.364 0.672 0.8523 

F-Crowd Video Sequence [134] 

125 0.3149 0.5514 0.5067 0.527 0.3696 0.4723 0.7623 0.7733 0.5744 0.5252 0.4396 0.6581 0.434 0.692 0.9243 

150 0.3318 0.4445 0.5231 0.532 0.2149 0.4392 0.8307 0.7247 0.5465 0.5696 0.4089 0.6064 0.372 0.709 0.8987 

175 0.3016 0.4629 0.5785 0.541 0.2140 0.4926 0.7988 0.7143 0.6619 0.4991 0.4762 0.6183 0.413 0.689 0.9143 

200 0.3511 0.5103 0.5839 0.457 0.3229 0.4727 0.6827 0.7305 0.8735 0.5167 0.4114 0.6835 0.411 0.689 0.9305 
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Table 3.3: Comparison of methods in terms of Misclassification Penalty  
 

 
 

A-People Video Sequences [129] 

F. 

No

. 

Category I             Category II Category III Category IV 

Bradsk

i [98] 

Kim et 

al.[33] 

Liu et 

al. [34] 

Meier 

and 

Ngan 

[100] 

McFar

lane et 

al. [27] 

Wren 

et 

al.[31] 

Zivkov

ic[32] 

Kushw

aha et 

al. [26] 

Cucchi

ara et 

al.[111

] 

Oliver 

et 

al.[110

] 

Hsia et 

al.[120

] 

Khare 

et 

al.[121

] 

Kim 

et al. 

[116] 

Chien 

et al. 

[117] 

propos

ed 

125 0.1061 0.0378 0.201 0.184 0.0011 0.0131 0.0018 0.0656 0.0167 0.0011 0.0060 0.0011 0.067

4 

0.020

631 
1.1546

e-004 

150 0.1028 

 

0.0040 0.102 0.179 5.0e-

006 

9.45E-

04 

0.0622 0.0109 0.0112 0.0027 0.0030 1.4e-

003 

0.073

6 

0.018

506 
6.3695

e-006 

175 0.1168 

 

0.0067 0.104 0.178 2.0797

e-004 

0.0012 0.0125 0.0037 0.0063 0.0027 0.0020 8.4168

e-003 

0.073

1 

0.016

423 
6.4861

e-006 

200 0.1221 

 

0.0189 0.023 0.162 2.1236

e-004 

0.0145 

 

0.0082 0.0121 0.0168 4.56E-

04 

0.0095 1.3720

e-004 

0.069

8 

0.021

26 
6.6059

e-006 

B-Camera2_070605 Video Sequence [131] 
 

125 0.0123 0.0035 0.1088 0.212 0.0021 0.0063 

 

0.0134 0.0362 0.0088 0.0362 2.0025

e-004 

4.3669

e-004 

0.069

45 

0.015

142 
0.0046 

150 0.03 1.4146

e-004 

0.124 

 

0.256 0.0032 0.0051 

 

0.0101 0.0291 0.0105 0.0123 

 

0.0032 0.0010 0.069

89 

0.021

289 
1.1815

e-004 

175 0.0071 3.6778

e-004 

0.1778 

 

0.229 0.0305 0.0058 

 

0.0074 0.0083 0.0115 0.0195 

 

0.0034 5.4249

e-004 

0.071

34 

0.014

267 
1.3563

e-004 

200 0.0027 0.0013 0.1162 

 

0.221 9.3381

e-004 

0.0114 

 

0.0096 0.0167 0.0280 0.0186 

 

0.0066 2.2011

e-004 

0.070

12 

0.015

88 

4.0812

e-004 

C-One Step Video Sequence [133] 
 

125 0.1194 0.1502 0.2556 

0.228 

0.0739 0.1337 0.1883 0.0016 0.1366 0.1161 0.0069 0.0275 

0.066 0.019 

2.9030

e-004 
150 0.2086 0.1846 0.2226 0.179 0.0114 0.1562 0.1235 0.0731 0.1752 0.0218 0.0034 0.0043 0.069 0.014 0.0014 
175 0.3111 0.1581 0.1979 0.208 0.0063 0.1009 0.1800 0.0935 0.1095 0.0512 0.0094 0.0046 0.064 0.021 0.0059 
200 0.2492 0.1988 0.2247 

0.182 

0.0086 0.1475 0.1763 0.0081 0.1875 0.067 0.0078 0.0400 

0.073 0.017 

1.7832

e-004 

D-Intelligent room Video Sequence [130] 

 
125 0.1045 0.1064 0.0536 0.226 0.0070 0.0193 0.1017 0.0571 0.1742 0.0406 0.0031 0.0035 0.072

34 

0.017

56 
1.9051

e-004 

150 0.1086 0.0052 0.0109 0.229 8.0105

e-004 

0.0087 

 

0.0128 0.0044 0.0484 0.0281 

 

6.0313

e-004 

8.4038

e-004 

0.066

67 

0.016

352 
5.0712

e-005 

175 3.57E-

004 

0.0107 0.0153 

 

0.185 2.8677

e-004 

0.0026 

 

0.0084 0.0052 0.0318 0.0115 

 

5.0712

e-005 

1.6023

e-004 

0.065

89 

0.016

777 
4.9444

e-005 

200 4.29E-

004 

0.1097 0.0255 

 

0.241 0.0026 0.0025 

 

0.0250 0.0631 0.0454 0.0066 

 

2.0408

e-004 

0.0024 0.068

23 

0.020

179 
5.1020

e-005 

E-HighwayI_raw video sequence [132] 

125 0.1271 0.1242 0.1672 0.220 0.0621 0.0263 0.1302 0.0016 0.1512 0.1836 0.0975 0.1463 0.068 0.013 0.0028 

150 0.1792 0.1307 0.1529 0.218 0.1044 0.0192 0.1932 0.0169 0.1387 0.1731 0.0136 0.1498 0.072 0.016 0.0112 

175 0.1641 0.1217 0.1853 0.209 0.0366 0.0416 0.0110 0.0027 0.0345 0.1285 0.0285 0.1444 0.073 0.018 0.0020 

200 0.1862 0.1894 0.1992 0.174 0.0131 0.0322 0.1900 0.0031 0.1232 0.1166 0.0104 0.1424 0.064 0.020 0.0013 

F-Crowd Video Sequence [134] 

125 0.1617 0.0021 0.2937 0.203 0.0342 0.1482 0.0653 0.0023 0.0675 0.1782 0.0698 0.1256 0.071 0.017 0.0035 

150 0.1249 0.0201 0.3724 0.249 0.0395 0.2836 0.0571 0.0193 0.0342 0.1539 0.0970 0.1195 0.072 0.019 0.0139 

175 0.1591 0.0085 0.1936 0.162 0.0719 0.1729 0.0069 0.0062 0.0563 0.1846 0.0096 0.1456 0.070 0.020 0.0035 

200 0.1814 0.0120 0.2933 0.221 0.0382 0.1936 0.0071 0.0142 0.0762 0.1592 0.0178 0.1864 0.073 0.015 0.0042 
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Table 3.4: Comparison of methods in terms of Relative position based measure (RPM) 

A-People Video Sequences [129] 

F. 

No

. 

Category I             Category II Category III Category IV 

Bradsk

i [98] 

Kim et 

al.[33] 

Liu et 

al. [34] 

Meier 

and 

Ngan 

[100] 

McFar

lane et 

al. [27] 

Wren 

et 

al.[31] 

Zivkov

ic[32] 

Kushw

aha et 

al. [26] 

Cucchi

ara et 

al.[111

] 

Oliver 

et 

al.[110

] 

Hsia et 

al.[120

] 

Khare 

et 

al.[121

] 

Kim 

et al. 

[116] 

Chien 

et al. 

[117] 

propos

ed 

125 0.7585 0.9537 0.896 0.686 0.9214 0.8546 0.8091 0.8791 0.6569 0.8983 0.7840 0.9268 0.723 0.865 0.9647 

150 0.8475 0.8440 0.846 0.658 0.9016 0.922 0.8867 0.8691 0.7324 0.846 0.8616 0.8602 0.777 0.843 0.9941 

175 0.7688 0.8328 0.820 0.715 0.9576 0.9276 0.8941 0.8725 0.8195 0.8537 0.9053 0.8842 0.751 0.825 0.9944 

200 0.8817 0.8775 0.947 0.679 0.9734 0.8403 0.7939 0.8846 0.6877 0.947 0.7890 0.9789 0.734 0.820 0.9941 

B-Camera2_070605 Video Sequence [131] 

125 0.9279 0.9525 0.7196 0.651 0.9358 0.9416 0.9262 0.8817 0.9196 0.876 0.9800 0.9125 0.777 0.854 0.9507 

150 0.8968 0.9900 0.7851 0.703 0.9550 0.9525 0.9397 0.8819 0.9248 0.7874 0.9490 0.9576 0.771 0.840 0.9929 

175 0.8864 0.9775 0.751 0.654 0.8966 0.9446 0.9466 0.8230 0.9195 0.3787 0.9495 0.9107 0.723 0.834 0.9900 

200 0.9616 0.9754 0.7016 0.647 0.9604 0.9269 0.9374 0.8861 0.8879 0.8918 0.9359 0.9690 0.729 0.844 0.9861 

C-One Step Video Sequence [133] 

125 0.726 0.7854 0.536 0.682 0.8482 0.6887 0.6145 0.8688 0.5941 0.6203 0.9244 0.9002 0.760 0.823 0.9863 

150 0.712 0.7802 0.547 0.756 0.9505 0.7439 0.6626 0.8893 0.6646 0.8747 0.9411 0.9667 0.779 0.864 0.9804 

175 0.7845 0.8277 0.6075 0.733 0.9610 0.8056 0.7274 0.8829 0.7305 0.9071 0.9269 0.9904 0.752 0.848 0.9568 

200 0.7686 0.8004 0.5677 0.683 0.9505 0.8432 0.7782 0.8772 0.7275 0.767 0.9240 0.9705 0.777 0.837 0.9900 

D-Intelligent room Video Sequence [130] 

125 0.8903 0.6608 0.7672 0.743 0.9216 0.8492 0.6020 0.8626 0.3886 0.7868 0.9403 0.9515 0.734 0.824 0.9889 

150 0.8707 0.8503 0.7049 0.655 0.9234 0.7293 0.6717 0.8897 0.3489 0.5464 0.9459 0.9395 0.745 0.856 0.9869 

175 0.9746 0.7864 0.7435 0.771 0.9590 0.8714 0.7667 0.8954 0.5572 0.7405 0.9876 0.9735 0.739 0.860 0.9886 

200 0.8877 0.4521 0.6718 0.762 0.8949 0.884 0.6366 0.8886 0.4677 0.8647 0.9652 0.9245 0.743 0.846 0.9826 

E-HighwayI_raw video sequence [132] 

125 0.5562 0.8773 0.6882 0.688 0.9467 0.7645 0.8815 0.8896 0.7813 0.7284 0.8910 0.7437 0.733 0.825 0.9856 

150 0.5458 0.8549 0.7281 0.647 0.9714 0.7821 0.8370 0.8827 0.8235 0.7119 0.8804 0.6589 0.730 0.852 0.9858 

175 0.5382 0.9521 0.7192 0.711 0.9344 0.8194 0.9649 0.8699 0.7856 0.7302 0.9471 0.6896 0.756 0.846 0.9799 

200 0.5281 0.8325 0.6901 0.712 0.9014 0.7293 0.8559 0.8786 0.7919 0.7521 0.8670 0.7230 0.720 0.814 0.9756 

F-Crowd Video Sequence [134] 

125 0.3376 0.8894 0.5721 0.759 0.7399 0.6713 0.5403 0.7972 0.8576 0.5823 0.9149 0.7202 0.753 0.868 0.9170 

150 0.3145 0.8659 0.5518 0.722 0.7631 0.6691 0.5369 0.7857 0.8126 0.5317 0.9145 0.7447 0.765 0.840 0.9753 

175 0.3297 0.8475 0.5592 0.692 0.7132 0.672 0.5572 0.7928 0.7845 0.5673 0.9451 0.7647 0.732 0.827 0.9666 

200 0.3453 0.8484 0.5782 0.704 0.7259 0.6218 0.5687 0.7891 0.8263 0.5584 0.9594 0.7474 0.763 0.830 0.9818 
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Table 3.5: Comparisons of methods in terms of Normalized Cross Correlation (NCC) 

A-People Video Sequences [129] 

F. 

No

. 

Category I             Category II Category III Category IV 

Bradsk

i [98] 

Kim et 

al.[33] 

Liu et 

al. [34] 

Meier 

and 

Ngan 

[100] 

McFar

lane et 

al. [27] 

Wren 

et 

al.[31] 

Zivkov

ic[32] 

Kushw

aha et 

al. [26] 

Cucchi

ara et 

al.[111

] 

Oliver 

et 

al.[110

] 

Hsia et 

al.[120

] 

Khare 

et 

al.[121

] 

Kim 

et al. 

[116] 

Chien 

et al. 

[117] 

propos

ed 

125 0.3163 0.3598 0.306 0.415 0.8995 0.881 0.8913 0.9655 0.7946 0.3147 0.8739 0.9505 0.516 0.778 0.9837 

150 0.3069 0.4371 0.391 0.448 0.8975 0.8085 0.8711 0.9712 0.8488 0.4045 0.7991 0.8785 0.453 0.747 1 

175 0.3013 0.3692 0.391 0.401 0.8747 0.9346 0.9622 0.9465 0.8184 0.3266 0.8980 0.8799 0.472 0.727 0.9598 

200 0.3224 0.3890 0.371 0.412 0.7894 0.8403 0.7150 0.9516 0.6923 0.483 0.6379 0.7121 0.469 0.711 0.8516 

B-Camera2_070605 Video Sequence [131] 

125 0.7257 0.7980 0.3379 0.454 0.6960 0.5418 0.6669 0.8859 0.4489 0.4754 0.6215 0.7799 0.482 0.728 0.8455 

150 0.7273 0.7621 0.3901 0.393 0.6247 0.7563 0.8277 0.9215 0.6786 0.5096 0.7411 0.9070 0.472 0.693 0.9505 

175 0.7011 0.7034 0.3265 0.429 0.4145 0.7562 0.8386 0.9071 0.6801 0.5083 0.7446 0.8030 0.495 0.775 0.9428 

200 0.7444 0.7245 0.3144 0.410 0.4033 0.6077 0.7393 0.9023 0.4911 0.5395 0.7053 0.8091 0.475 0.691 0.9253 

C-One Step Video Sequence [133] 

125 0.3369 0.4162 0.3073 0.407 0.4054 0.5026 0.5791 0.9534 0.7236 0.612 0.9407 0.8755 0.491 0.763 0.9871 

150 0.2178 0.3435 0.3299 0.434 0.4761 0.5102 0.6278 0.9782 0.7513 0.6056 0.9928 0.9298 0.524 0.728 1 

175 0.2733 0.3762 0.3016 0.454 0.4915 0.6033 0.6521 0.9018 0.8532 0.6198 0.8847 0.9594 0.486 0.751 0.9068 

200 0.3455 0.3029 0.3456 0.421 0.5757 0.672 0.7781 0.9812 0.9116 0.6583 0.9093 0.9726 0.514 0.688 0.9992 

D-Intelligent room Video Sequence [130] 

125 0.7206 0.8477 0.4838 0.452 0.9268 0.8178 0.8567 0.9761 0.8396 0.7604 0.8769 0.7154 0.477 0.753 1 

150 0.7672 0.8928 0.4926 0.433 0.9519 0.9365 0.9737 0.9816 0.4945 0.7438 0.9672 0.7182 0.490 0.720 0.9956 

175 0.7803 0.8033 0.4197 0.403 0.9098 0.8525 0.9016 0.9668 0.9574 0.7836 0.9475 0.6529 0.530 0.712 1 

200 0.7655 0.8038 0.4628 0.417 0.8831 0.864 0.9253 0.9425 0.9693 0.7245 0.9368 0.7302 0.500 0.684 1 

E-HighwayI_raw video sequence [132] 

125 0.6276 0.7631 0.3772 0.459 0.8819 0.5293 0.4379 0.9540 0.5631 0.6614 0.4543 0.3263 0.473 0.718 0.9998 

150 0.7193 0.7174 0.3991 0.421 0.8873 0.5829 0.3316 0.9762 0.3458 0.6491 0.2374 0.3394 0.454 0.728 1 

175 0.6863 0.7590 0.3183 0.408 0.8770 0.5425 0.5741 0.9418 0.4128 0.6825 0.5364 0.3830 0.530 0.732 0.9998 

200 0.6659 0.7215 0.3637 0.414 0.7772 0.5814 0.4169 0.9423 0.4847 0.6285 0.3583 0.4596 0.531 0.754 0.9983 

F-Crowd Video Sequence [134] 

125 0.2391 0.2496 0.1829 0.416 0.1968 0.4182 0.7604 0.8821 0.3452 0.3691 0.3128 0.4027 0.475 0.767 0.9819 

150 0.1838 0.2029 0.2836 0.405 0.2332 0.4492 0.7395 0.8918 0.4356 0.3519 0.3093 0.4217 0.461 0.757 0.9918 

175 0.2192 0.1837 0.2947 0.417 0.2479 0.4378 0.7275 0.8863 0.3583 0.3861 0.2944 0.4133 0.493 0.748 0.9893 

200 0.2482 0.1865 0.2168 0.442 0.1921 0.4891 0.7575 0.8717 0.3891 0.3126 0.3578 0.4126 0.529 0.716 0.9971 
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Table 3.6: Comparison of methods in terms of Peak Signal-to-Noise Ratio (PSNR)  

A-People Video Sequences [129] 

F. 

No

. 

Category I             Category II Category III Category IV 

Bradsk

i [98] 

Kim et 

al.[33] 

Liu et 

al. [34] 

Meier 

and 

Ngan 

[100] 

McFar

lane et 

al. [27] 

Wren 

et 

al.[31] 

Zivkov

ic[32] 

Kushw

aha et 

al. [26] 

Cucchi

ara et 

al.[111

] 

Oliver 

et 

al.[110

] 

Hsia et 

al.[120

] 

Khare 

et 

al.[121

] 

Kim 

et al. 

[116] 

Chien 

et al. 

[117] 

propos

ed 

125 67.228 62.262 67.16 47.31 70.532 67.085 65.948 70.830 61.731 67.183 66.853 69.670 52.14 65.07 76.388 

150 67.191 62.262 66.18 44.86 69.262 65.112 64.274 66.662 60.869 66.248 66.035 67.258 58.03 63.06 75.559 

175 65.184 62.250 65.67 42.35 69.599 66.794 65.393 68.172 61.393 65.788 67.887 67.056 56.99 66.36 75.072 

200 65.283 62.304 66.19 45.63 70.407 64.960 64.448 65.838 61.331 66.237 64.404 68.592 53.92 67.07 72.512 

B-Camera2_070605 Video Sequence [131] 

125 59.653 62.022 63.844 41.27 67.690 63.203 62.447 67.759 63.167 62.716 64.560 63.239 57.37 63.50 66.918 

150 64.719 66.786 63.698 44.31 67.188 67.468 65.821 64.998 66.981 63.720 68.052 67.878 56.99 66.99 73.041 

175 64.688 64.857 63.629 48.01 65.851 67.448 66.289 66.613 67.153 63.526 68.323 66.859 52.04 67.56 71.710 

200 64.494 64.420 63.801 45.62 64.760 65.570 65.312 64.825 64.956 63.732 66.470 65.924 53.74 69.34 69.800 

C-One Step Video Sequence [133] 

125 63.970 61.287 62.97 46.97 63.75 61.083 60.01 66.984 59.222 62.966 68.655 64.571 55.28 64.67 71.093 

150 63.725 61.011 63.18 41.88 65.24 61.66 60.10 63.18 59.295 63.405 67.969 68.354 57.28 65.36 69.488 

175 63.398 61.181 62.9 45.44 65.09 61.66 60.16 64.122 60.245 63.035 66.526 67.551 53.13 68.98 67.022 

200 63.721 61.763 63.35 44.04 65.54 62.070 60.42 63.629 60.681 63.36 67.307 68.457 54.51 64.57 73.077 

D-Intelligent room Video Sequence [130] 

125 67.584 65.109 68.835 48.51 75.980 71.232 68.159 70.994 60.173 69.039 73.292 72.752 54.74 69.70 79.994 

150 68.552 66.554 70.328 43.45 77.442 69.774 66.727 72.213 60.025 69.668 75.311 74.359 58.66 62.17 81.543 

175 69.032 67.926 68.882 44.03 76.731 71.255 65.949 75.811 58.719 68.795 71.445 71.721 57.77 67.99 81.543 

200 70.559 63.978 69.692 41.72 74.554 73.721 69.525 77.254 59.857 69.917 73.329 73.909 51.37 66.47 77.394 

E-HighwayI_raw video sequence [132] 

125 53.582 58.050 57.593 44.72 59.495 55.620 53.863 64.038 56.153 59.836 54.841 55.636 58.12 61.04 65.782 

150 54.394 58.912 58.204 49.03 57.429 53.734 54.040 65.103 51.357 59.937 55.699 54.183 56.04 68.74 65.808 

175 56.872 58.439 57.845 46.60 57.448 56.926 54.378 62.429 53.135 58.835 56.276 54.190 51.70 64.99 64.929 

200 55.384 58.579 55.936 47.63 55.412 53.485 53.589 64.254 55.671 59.282 56.190 54.521 53.31 67.65 65.994 

F-Crowd Video Sequence [134] 

125 55.395 63.144 58.493 46.97 61.396 52.938 68.202 62.864 64.936 62.592 62.647 58.887 51.66 66.56 71.169 

150 56.946 62.240 55.294 44.92 60.962 57.294 65.677 64.909 62.826 61.924 62.344 57.153 53.96 68.10 70.109 

175 58.748 61.544 56.846 47.03 60.585 54.193 65.178 63.125 65.395 60.163 61.454 56.677 55.44 63.79 70.100 

200 60.293 61.744 55.628 45.79 60.112 55.357 64.551 64.275 63.673 58.295 62.140 57.036 50.10 67.22 71.760 
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Table 3.7: Comparison of methods in terms of Normalized absolute error (NAE)  

A-People Video Sequences [129] 

F. 

No

. 

Category I             Category II Category III Category IV 

Bradsk

i [98] 

Kim et 

al.[33] 

Liu et 

al. [34] 

Meier 

and 

Ngan 

[100] 

McFar

lane et 

al. [27] 

Wren 

et 

al.[31] 

Zivkov

ic[32] 

Kushw

aha et 

al. [26] 

Cucchi

ara et 

al.[111

] 

Oliver 

et 

al.[110

] 

Hsia et 

al.[120

] 

Khare 

et 

al.[121

] 

Kim 

et al. 

[116

] 

Chien 

et al. 

[117] 

propos

ed 

125 0.8734 0.7239 0.886 0.722 0.4082 0.7027 1.1728 0.6821 1.0967 0.8826 0.9522 0.4978 0.464 0.433 0.1060 

150 0.7253 0.7559 0.914 0.685 0.4501 0.7705 1.4197 0.5434 1.1092 0.9011 0.9463 0.7141 0.497 0.353 0.1056 

175 0.7138 0.7925 0.905 0.719 0.3668 0.6998 0.9661 0.2381 1.4271 0.8822 0.9441 0.6588 0.540 0.344 0.1040 

200 0.7944 0.7732 0.887 0.699 0.3364 0.7789 1.3264 0.5827 1.7189 0.907 1.3399 0.5109 0.506 0.423 0.2071 

B-Camera2_070605 Video Sequence [131] 

125 0.7797 0.7751 0.8381 0.697 0.7458 0.6715 0.562 0.3734 0.7797 1.0867 0.4107 0.5836 0.487 0.339 0.4130 

150 0.7697 0.7781 0.9737 0.724 0.7359 0.4086 0.5971 0.5133 0.7572 0.9686 0.3572 0.3718 0.455 0.349 0.1133 

175 0.7808 0.7510 0.9965 0.663 0.7973 0.4136 0.5401 0.4550 0.7426 1.0205 0.3381 0.4736 0.553 0.336 0.1550 

200 0.7818 0.7953 0.9171 0.735 0.7353 0.6102 0.6475 0.3304 0.7029 0.9318 0.4960 0.5624 0.501 0.426 0.2304 

C-One Step Video Sequence [133] 

125 0.8011 0.4856 1.008 0.705 0.5416 1.557 1.9899 0.2554 1.7905 1.0094 0.2724 0.6975 0.516 0.354 0.1554 

150 0.8683 0.6223 0.9824 0.711 0.6122 1.4351 1.9007 0.3273 1.7083 0.9349 0.3268 0.2991 0.495 0.422 0.2303 

175 0.906 0.5092 1.0156 0.721 0.6128 1.3498 1.9078 0.3386 1.8723 0.9844 0.4408 0.3482 0.510 0.434 0.3932 

200 0.9129 0.4329 0.9921 0.670 0.5995 1.3349 1.9481 0.3253 1.8379 0.9909 0.3997 0.3655 0.452 0.350 0.1059 

D-Intelligent room Video Sequence [130] 

125 1.4567 1.3988 1.4171 0.690 0.1963 0.5857 1.1885 0.8178 1.8735 0.9704 0.3645 0.3029 0.498 0.428 0.0779 

150 1.5252 1.4158 1.5131 0.730 0.1969 0.551 1.3217 0.9316 1.8643 1.1794 0.3217 0.2914 0.543 0.337 0.0766 

175 1.423 1.0197 1.359 0.729 0.1738 0.6131 1.0803 0.9584 1.9933 1.0803 0.5869 0.3750 0.471 0.365 0.0574 

200 1.4941 1.8276 1.3268 0.703 0.3352 0.4061 1.0670 0.8293 1.8870 0.9751 0.4444 0.2929 0.524 0.403 0.1743 

E-HighwayI_raw video sequence [132] 

125 1.3371 1.3876 1.327 0.713 0.8579 0.783 1.1378 0.6341 1.7356 0.989 1.5055 1.0860 0.459 0.407 0.2017 

150 1.263 1.6452 1.183 0.685 0.9217 0.882 1.0113 0.6339 1.2563 1.144 1.3726 1.9462 0.481 0.423 0.1339 

175 1.739 1.4875 1.293 0.725 0.9365 0.761 1.8987 0.7672 1.6571 1.728 1.2266 1.9827 0.522 0.360 0.1673 

200 1.482 1.4619 1.217 0.701 0.9324 0.883 1.0923 0.6383 1.5427 0.925 1.6993 1.4953 0.506 0.355 0.1778 

F-Crowd Video Sequence [134] 

125 1.492 0.7742 1.428 0.684 1.283 1.381 0.2416 0.9605 0.5143 1.758 0.8681 1.0635 0.492 0.397 0.1220 

150 1.338 0.8175 1.582 0.725 1.638 1.881 0.3704 0.8102 0.9484 1.375 0.7981 1.6374 0.513 0.388 0.1335 

175 1.826 0.8542 1.726 0.736 1.184 0.372 0.3699 0.9831 0.7563 1.274 0.8721 1.6194 0.554 0.435 0.1191 

200 1.394 0.8321 1.381 0.716 1.346 1.853 0.4360 0.9179 0.8945 1.836 0.7595 1.4604 0.538 0.383 0.0829 
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Table 3.8: Comparison of methods in terms of Pixel Classification Measure (PCM) 

 

A-People Video Sequences [129] 

F. 

No

. 

Category I             Category II Category III Category IV 

Bradsk

i [98] 

Kim et 

al.[33] 

Liu et 

al. [34] 

Meier 

and 

Ngan 

[100] 

McFar

lane et 

al. [27] 

Wren 

et 

al.[31] 

Zivkov

ic[32] 

Kushw

aha et 

al. [26] 

Cucchi

ara et 

al.[111

] 

Oliver 

et 

al.[110

] 

Hsia et 

al.[120

] 

Khare 

et 

al.[121

] 

Kim 

et al. 

[116] 

Chien 

et al. 

[117] 

propos

ed 

125 0.6081 0.6731 0.569 0.567 0.9517 0.8183 0.7318 0.8788 0.7215 0.9142 0.8076 0.8454 0.640 0.729 0.9824 

150 0.5852 0.6098 0.553 0.536 0.9323 0.7437 0.7604 0.8531 0.7432 0.8699 0.7610 0.7790 0.650 0.743 0.9335 

175 0.5578 0.6218 0.543 0.572 0.9304 0.7302 0.7547 0.8491 0.6925 0.8791 0.7443 0.7598 0.666 0.730 0.9693 

200 0.5595 0.5780 0.595 0.528 0.9468 0.7667 0.7115 0.8549 0.6876 0.8614 0.7640 0.8127 0.610 0.693 0.9349 

B-Camera2_070605 Video Sequence [131] 

125 0.7148 0.8377 0.7195 0.511 0.8985 0.7846 0.7993 0.8559 0.7512 0.8493 0.8125 0.8076 0.641 0.749 0.9288 

150 0.7879 0.8284 0.7629 0.564 0.8550 0.7862 0.7176 0.8482 0.7634 0.8396 0.8419 0.8180 0.676 0.725 0.8808 

175 0.8066 0.8294 0.7756 0.521 0.8645 0.7873 0.7317 0.8273 0.7688 0.843 0.8462 0.8230 0.615 0.738 0.8988 

200 0.8093 0.8375 0.7653 0.533 0.8581 0.7733 0.7427 0.8658 0.7529 0.858 0.8177 0.7960 0.659 0.767 0.8613 

C-One Step Video Sequence [133] 

125 0.6569 0.6709 0.695 0.537 0.9373 0.6411 0.5014 0.8691 0.8496 0.9581 0.5762 0.6810 0.648 0.723 0.9592 

150 0.667 0.6803 0.6697 0.575 0.9498 0.6379 0.4949 0.8546 0.8527 0.9358 0.5646 0.7645 0.650 0.764 0.9546 

175 0.6561 0.6797 0.645 0.544 0.9492 0.6381 0.4874 0.8550 0.8984 0.9875 0.4817 0.7462 0.662 0.734 0.9637 

200 0.6468 0.7732 0.6811 0.528 0.9385 0.655 0.4877 0.8429 0.8782 0.9416 0.5317 0.7449 0.624 0.715 0.9873 

D-Intelligent room Video Sequence [130] 

125 0.7848 0.7716 0.9566 0.520 0.9566 0.8269 0.5894 0.8882 0.7328 0.9288 0.9015 0.6810 0.624 0.698 0.9654 

150 0.8218 0.7271 0.9598 0.563 0.9611 0.7421 0.5952 0.8572 0.6492 0.9069 0.9155 0.7645 0.642 0.749 0.9663 

175 0.8368 0.8343 0.9624 0.554 0.9693 0.8435 0.6002 0.8558 0.7942 0.9176 0.9041 0.7462 0.655 0.714 0.9717 

200 0.8251 0.7441 0.9685 0.575 0.9538 0.8742 0.6778 0.8895 0.7223 0.9503 0.9315 0.7583 0.631 0.728 0.9485 

E-HighwayI_raw video sequence [132] 

125 0.538 0.5707 0.592 0.509 0.6419 0.783 0.7817 0.8488 0.6757 0.794 0.5245 0.8490 0.660 0.690 0.8718 

150 0.564 0.6316 0.562 0.545 0.6150 0.692 0.7067 0.8582 0.5414 0.757 0.4859 0.7911 0.653 0.728 0.8084 

175 0.568 0.6371 0.544 0.574 0.6211 0.685 0.7878 0.8748 0.5876 0.726 0.4354 0.7363 0.644 0.701 0.8745 

200 0.581 0.6333 0.572 0.514 0.6607 0.648 0.7041 0.8752 0.5294 0.753 0.4747 0.7494 0.627 0.731 0.8581 

F-Crowd Video Sequence [134] 

125 0.725 0.8451 0.524 0.577 0.7368 0.656 0.6545 0.8469 0.7553 0.472 0.7755 0.9106 0.675 0.701 0.9519 

150 0.636 0.8392 0.537 0.561 0.7279 0.685 0.6423 0.7384 0.7114 0.583 0.7718 0.8490 0.669 0.716 0.9520 

175 0.634 0.8332 0.521 0.510 0.7192 0.613 0.6220 0.7642 0.7016 0.527 0.7546 0.8322 0.658 0.727 0.9273 

200 0.735 0.8372 0.532 0.523 0.7145 0.639 0.6476 0.7793 0.7812 0.585 0.7490 0.8470 0.618 0.740 0.9213 
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Table 3.9: Computational Time and Consumption Memory for One step video [133] 
 

S.no.  Methods Computational Time 

(in frame/second) 

Memory Consumption 

(MB) 

1 McFarlane et al.[27] 1.376 8.68 

2 Kim et al.[33] 0.722 22.92 

3 Zivkovic[32] 1.864 9.40 

4 Cucchiara et al.[111] 1.625 24.95 

5 Hsia et al.[120] 1.912 8.64 

6 Khare et al.[121] 1.753 7.08 

7 Kim et al. [116] 1.325 11.37 

8 Chien et al. [117] 1.687 13.35 

9 Bradski [98] 0.912 17.62 

10 Liu et al. [34] 1.412 30.92 

11 Wren et al.[31] 1.443 25.17 

12 Kushwaha et al. [26] 0.824 15.26 

13 Oliver et al.[110] 1.392 20.62 

14 Meier and Ngan [100] 1.427 18.35 

15 The Proposed Method 1.232 3.90 

 

In Fig. 3.10-3.16(a-f), Y-axis shows the different quantitative measure such as RFAM, 

MP, RPM, NCC, PSNR, NAE, PCM and X-axis shows the frame number. From Fig. 

3.10-3.16(a-f), one can conclude that proposed method performed better than other 

methods in different quantitative measures such as RFAM, MP, RPM, NCC, PSNR, 

NAE, and PCM. 
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M1: Bradski[98]; M2: Kim et al.[33]; M3: Liu et al. [34]; M4: Meier and Ngan [100]; M5: McFarlane et al. 

[27];  M6: Wren et al.[31]; M7: Zivkovic[32];M8: Kushwaha et al. [26] ; M9: Cucchiara et al.[111]; M10: 

Oliver et al.[110]; M11: Hsia et al.[120]; M12: Khare et al.[121]; M13: Kim et al. [116]; M14: Chien et al. 

[117];   M15:Proposed Method 
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     Figure 3.10: (a-f) RFAM variations with respect to frame no. for different Test cases  
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 (f) 

Figure 3.11: (a-f) MP variations with respect to frame no. for different Test cases  
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Figure 3.12: (a-f) RPM variations with respect to frame no. for different Test cases  
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 (f) 

Figure 3.13: (a-f) NCC variations with respect to frame no. for different Test cases  
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Figure 3.14: (a-f) PSNR variations with respect to frame no. for different Test cases  
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 (f) 

Figure 3.15: (a-f) NAE variations with respect to frame no. for different Test cases  
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Figure 3.16: (a-f) PCM variations with respect to frame no. for different Test cases  
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