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1. Introduction

The reaction-diffusion equation has an important role in dissipative dynamical systems as addressed by many scientists,
engineers and biologists. Travelling waves appearing in chemical concentration is one of the key areas of research for last few
decades. It is seen that travelling waves of chemical concentration have very good effect in biochemical change for the reac-
tion-diffusion equation
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where u(x, t) is the chemical concentration, D is diffusion coefficient and f{u) represents the kinetics. The equation can easily
be solved when f{u) is linear but it becomes complicated when f{u) is nonlinear. The simplest nonlinear reaction-diffusion
equation is the Fisher equation for f{u) = u(1 — u). The generalization of Fisher equation which is used as a density dependent
diffusion was considered by Feng [1], taking flu) = u(u + fu — yu®), where p, f, y are real constants. The detailed study of trav-
elling wave solution of Eq. (1) can be obtained in Volpert [2].

But the situation becomes challenging when both diffusion and kinetic terms become nonlinear. Pablo and Vazquez
([3,4]) have solved the following strong reaction-slow diffusion equation
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Later, Pablo and Sanchez [5] have studied the large time behaviour of Fisher equation in porous medium of the following
type
N0 ((a U
ot 0x ox
In 2007, Witelski [6] consider the model as
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where he used perturbation method to solve the inner problem for the merging dynamics. He observed that at the neigh-
bourhood of the position where the two populations first meet, the reaction terms do not affect the solution to leading terms.
This motivated the authors to solve the fractional reaction-diffusion equation with fractional time derivative
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The fractional differential equations have gained much attention recently due to the fact that fractional order system re-
sponse ultimately converges to the integer order system response.

For the study of dynamics of merging travelling waves, the perturbation theory and matched asymptotic expansions are
needed. Let two populations be moving towards each other and merge at (xo,to). But for t > to, let us consider a short time
after merger at t = ty through the time scale t =ty + €1, ¢ < 1 with another rescale of dependent variable
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Fig. 1. Plots of u(x,t) vs. t when (a) n = -1, (b) n=—1, (c) n=—3, and (d) n= -2 at x=1 for different values of .
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u(x,t) = eu(x,t) and x=Xxo+ &x.

Then the governing equation reduces to
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Now applying the perturbation technique
U(X, 7) = Up(X, T) + &li1 (X, T) + U (X, T) + - --
the Eq. (5) reduces to
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when o becomes unity i.e., for standard motion the population-merging dynamics are diffusion dominated but for fractional
Brownian motion the affect of reaction terms can be observed in diffusion process in the neighbourhood of x,.

The perturbation methods which are generally used to solve nonlinear problems have some limitations e.g., the approx-
imate solution involves series of small parameters which poses difficulty since majority of nonlinear problems have no small
parameters at all. Although appropriate choices of small parameters some time leads to ideal solution but in most of the
cases unsuitable choices lead to serious effects in the solutions. The homotopy perturbation method (HPM) proposed by
the Chinese scientist He [7] is a new approach for finding the approximate solution of linear and nonlinear partial differential
equations, which does not require small parameters in the equation and so overcomes the limitations of the traditional per-
turbation techniques. The objective of the present article is to solve the time fractional reaction diffusion equation for
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Fig. 2. Plots of u(x,t) vs. t when (a) n =14, (b)n=1, (c)n=3, and (d) n=2 at x=1 for different values of o.
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different fractional Brownian motions and also for standard motion using the powerful mathematical tool HPM. The numer-
ical studies of anomalous diffusion for different particular cases are presented through graphs.

2. Solution of the problem by HPM

The fractional advection Eq. (4) in an operator form can be written as
Dfu = Dy(u"Dyu) + u(l —u"), 0<a<1, (6)
with initial condition
u(x,0) = uo(x, t) = f(x). (7)
Using the homotopy technique ([8-11]), we construct a homotopy v(x,t,p) : Q x [0, 1] — R, which satisfies
H(v.p) = (1 = p)[Df(v) = D (uo)] + p[Df (v) — Dy(v"Dyv) = V(1 =V")] =0, (x,t) € Q.

Applying the idea of Caputo derivative D (ug) = J*D;(uo) = O [J* is the Riemann-Liouville operator], we get

Dfv = p[Dy(v"Dyv) + v(1 — v")], ®)
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Fig. 3. Plots of u(x,t) vs. different range of n (a) n=0to 0.5, (b) n=0.5to 1.6, (c) n=1.6 to 5, and (d) n= -2 to O, for various values of « at x=1 and t=1.
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where the homotopy parameter p is considered as a small parameter (p € [0,1]). Now applying the classical perturbation

technique, we can assume that the solution of Eq. (8) can be expressed as a power series in p as given below

V=Vo+pvi +pVa + PPV 4o

9)

When p — 1, Eq. (8) corresponds to Eq. (6) and Eq. (9) becomes the approximate solution of Eq. (6), that is, of Eq. (4). Substi-

tuting Eq. (9) in Eq. (8) and comparing the like powers of p, we obtain the following set of differential equations
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and so on. Here, "C; = ;5t; is the binomial coefficient.
Now, applying the operator Ji on both sides of the Egs. (10)-(13), we obtain
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Proceeding in this manner, the rest of the components v,(x,t) can be obtained and the series solutions are thus entirely
determined.
Finally, we approximate the analytical solution u(x,t) by the truncated series

u(x, t) = lim Oy (x, 1), (18)

where ®y(x,t) = SN 1, (x, t).
The above series solutions generally converge very rapidly. A classical approach of convergence of this type of series is
already presented by Abbaoui and Cherruault [12].

3. Numerical results and discussion

Numerical results of the probability density function u(x,t) for different fractional Brownian motions & = 1,1 ,2 and stan-
dard motion o = 1 for f{x) = x are calculated at different values of n and x and are depicted in Figs. 1-3.

It has been observed from Fig. 1 that the probability density function rapidly decreases with the increase in t when n be-
comes more negative i.e., diffusion increases in opposite direction with the increase in time and negative values of n. Again
the magnitude of u(x,t) decreases with the increase ofo, which conforms the exponential decay of regular Brownian motion
and the result is in complete agreement with results of Das [13], Giona and Roman [14].

It is seen that u(x, t) increases with the increase in t for n = 1,1,3 but decreases with ¢ for n=2 at x = 1 for every o as de-
scribed in Fig. 2. Again the behavior of u(x,t) with o is same as the previous case.

Fig. 3 describes the explicit nature of u(x,t) for various range of n at x=1 and t = 1. It is seen from the figures that three
consecutive sub-diffusions occur where first two are slow and in the positive direction but the third one is faster and in the
opposite direction and after that super-diffusion occurs. Again for the negative values of n, the rapid diffusion occurs in the
opposite direction.

4. Conclusion

The important part of the study is the effect of reaction term in the nonlinear fractional diffusion equation in the range
0 < n <5 where anomalous diffusion is observed with sub-diffusion in the range 0 < n < 4 and super-diffusion in the range of
4 <n<5. As revealed by Fig. 3 unlike standard nonlinear fractional diffusion equation, there is no threshold between sub-
diffusion and super-diffusion. Moreover, slow and fast diffusions have been observed with reverse diffusion in the range
of 2.5 <n < 4. But in the range —2 < n < 0 (Fig. 1) no sub-diffusion or super-diffusion occurs, demarcation has been observed
and u(x,t) describes the asymptotic behavior with t.
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