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CHAPTER 3: MATHEMATICAL MODEL 

 

3.1 Introduction 

Genetic algorithms (GA) are numerical optimisation processes encouraged by both 

natural selection and natural genetics. The technique is capable of being functional 

to an extremely varied range of problems. Several classes of optimisation models 

including linear programming, non-linear programming, dynamic programming, 

enumeration technique are discussed in literature review. Although every method 

has benefits and weaknesses, an effective technique for finding global optimal 

solution for large networks is still required. GA based mathematical model can be 

selected by considering its ability to find the global optimal solution in the search 

space also referred to as the feasible region, satisfying the set of (equality or 

inequality) constraints. 

In this thesis, Genetic Algorithm (GA) has been proposed as a practical means of 

finding global optimisation of pipe network design for carrying water and slurry. 

GA has been extensively studied, tested and applied in various fields in engineering 

world. Not only genetic algorithm deliver an alternative technique to answering 

problem, it consistently beats other traditional approaches in most of the problems. 

Many of the real world problems which involve finding optimal parameters might 

prove hard for traditional techniques but are perfect for genetic algorithms.  

The genetic algorithm (GA) is an optimisation and search technique based on the 

principles of genetics and natural selection. A GA allows a population composed 



 

 

Mathematical Model 

_________________________________________________________________ 

 

________________________________________________________ 
 

IIT   (BHU)  [28] 

 
 

of many individuals to evolve under specified selection rules to a state that 

maximizes the “fitness” (i.e., minimizes the cost function). The method was 

proposed by John Holland (1975) and finally popularized by one of his students, 

David Goldberg, who was competent to solve a difficult problem connecting the 

control of gas-pipeline transmission for his dissertation, Goldberg (1989). He was 

the first to advance a theoretical basis for GA through his schema theorem. The 

work of De Jong (1975) presented the practicality of the GA for function 

optimisation and prepared the first intensive effort to find optimized GA 

parameters. Some of the advantages of a GA includes  

a. It is capable of solving problem with a large number of variables. 

b. Variables may be continuous or discrete. 

c. GA work with a coding of the parameter set, not with the parameters 

themselves and doesn’t require derivative information. 

d. Doesn’t require derivative information. 

e. GA search from a population of points, not from a single point. 

f. Delivers a list of optimum variables, not just a single solution. 

g. It can solve analytical functions, numerically generated data or 

experimental data. 

These advantages are fascinating and produce fabulous results when traditional 

optimisation approaches fail. 

3.2 Key Elements 

Genetic Algorithms are based on philosophies of natural selection and natural 

genetics. There are more individuals (solutions) born than can stay alive, so there 

is a continuous struggle for life. Individuals with an advantage have a greater 

chance for survive i.e., the survival of the fittest. GA works on survival on fittest 

theorem.   
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Like any other optimisation algorithm, the GA begins, by describing the 

optimisation variables and the objective function. It ends by testing for 

convergence. In genetic algorithms, the word chromosome typically refers to an 

arbitrarily selected solution to a problem, frequently encoded as a bit string. An 

allele in a bit string is either 0 or 1. The term "search space" mentions to all possible 

solutions to the problem. The idea of searching among a collection of candidate 

solutions for an anticipated solution from a "search space." A population of 

individual is sustained within search space for a GA, each signifying a probable 

solution to a particular problem. All individuals are coded as a limited length vector 

of components, or variables, in terms of the binary alphabet {0, 1}. To continue 

the genetic analogy these individuals are associated to chromosomes and the 

variables are similar to genes. Thus a chromosome (solution) is composed of 

several variables. Each chromosome has one binary string. Each bit in this string 

can represent some characteristic of the solution. The various parameters used in 

genetic algorithms are shown in following table 3.1.  

Table 3.1 Various Parameters Used in Genetic Algorithm (GA) 

Genetic Algorithm 

Parameters Used in GA 

Crossover point 

Mutation Rate 

Population size 

Number of iteration 

Percentage of crossover 

3.2.1 Search Space 

The set of solutions among which the desired solution resides is called search 

space. All points in the search space represents one possible solution. Therefore 

each possible solution can be “marked” by its fitness value, depending on the 
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problem definition. GA are used for the best solution among a number of possible 

solutions represented by one point in the search space  

3.2.2 Individuals or Chromosome or String 

An individual is a single solution of the problem in search space. The individual 

solutions are termed chromosomes. These chromosomes are fixed length        

(figure-3.1). 

3.2.3 Genes 

A chromosome is an arrangement of genes. Genes may describe a probable 

solution to a problem, without actually being the solution. A gene is a bit string of 

arbitrary lengths.  

 

  

              1     1     0     1     1         1     0     0     1     1             1   0   1    0   1 

                       Gene 1                Gene 2      Gene 3 

                                  

       1     1     0     1     1     1     0     0     1     1     1     0     1     0     1 

Chromosome or String 

 

Figure-3.1 Chromosomes in GA 

 

3.2.4 Fitness 

The fitness of an individual in a genetic algorithm is the assessment of an objective 

function. The chromosome has to be first decoded for calculating fitness, and then 
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objective function has to be evaluated. The fitness not only specifies how good the 

solution is, but also relates to how close the chromosome is to the optimal one. 

3.2.5 Populations 

A population is an assembly of individuals. For all problem, the population size 

will depend on the complication of the problem. The size of the population also 

increases few problems. The larger the population is, the easier it is to explore the 

search space but it has established that the time required by a GA to converge is 

high. Goldberg has also shown that GA competence to reach global optimum 

instead of local ones is largely determined by the size of the population. A higher 

population is quite beneficial but it needs much more computational cost, memory 

and time. Basically, a population size of around 100 individuals is quite frequent, 

but this size can be altered according to the time and the memory available on the 

machine compared to the excellence of the result to be reached.  

 

 

    Chromosome 1         1 0 1 1 0 1 0 0 0 1 0 

             Population    Chromosome 2          1 0 1 1 1 0 1 0 0 0 1 

    Chromosome 3         0 0 1 1 1 1 0 1 0 1 0 

   Chromosome 4         1 0 0 1 1 0 1 0 0 0 1  

 

Figure-3.2 Population in GA 

 

3.2.6 Fitness Function  

The fitness function should be a measure of how closely the model prediction 

matches the observed or expected data for a given set of model parameters. It must 
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be devised for each problem to be solved. For numerous problems, mainly function 

optimisation, the fitness function should simply measure the value of the function. 

For a particular chromosome, the fitness function provides a single numerical 

fitness which is supposed to be proportional to the utility of the individual which 

that chromosome represents. GA is an optimisation tool, so generally fitness 

function is a max/min value function consisting of all the variables.  

3.2.7 Coding 

A suitable coding for the problem must be developed before running GA 

programme. It is anticipated that a potential solution to a problem may be signified 

as a set of parameters. These parameters (known as genes) are combined together 

to form a string (often referred to as a chromosome). For example, if our problem 

is to maximize a function of three variables, F (a; b; c), we might signify each 

variable by a 6-bit binary number. Our chromosome would therefore contain three 

genes, and consist of 18 binary digits.  

3.2.8 GA Operators 

The simplest form of genetic algorithm includes three types of operators: selection, 

crossover, and mutation. 

3.2.8.1 Selection  

This operator chooses chromosomes in the population for reproduction. The fitter 

the chromosome, the more times it is possible to be selected to reproduce. 

3.2.8.1.1 Roulette Wheel Selection 

Roulette wheel selection is a very easy form of proportional selection where an 

individual candidate result’s reproductive probability is proportional to its own 

fitness. In Figure- 3.1, four solutions form the group of possible parents are shown 

with a related probability of being selected, these being say 0.6, 0.18, 0.1, and 0.12. 
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The bigger the percentage of the roulette wheel, the higher area it occupies in 

roulette wheel and hence the greater the chance of selection. Theoretically, 

whenever a parent is required, the roulette wheel is rotated. A parent is then 

selected when the pointer pause inside the area denoted by that parent. 

 

 
 

 

Figure-3.3 Roulette Wheel Selection 

There are one possible situation arises within this form of selection. If an applicant 

parent’s fitness is extraordinarily better than any of the rest of the parents in the 

pool of solutions then this single solution will reside in a very large area in the 

roulette wheel. Thus this one parent quickly dictates the offspring of the next 

generation. It is a high chance that the population will converge on only this region 

of the search space.  
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3.2.8.1.2 Tournament Selection 

Tournament selection Miller et al. (1995), is motivated by the competitive mating 

activities found in nature, where a competition show the way the probability of 

mating for a number of potential mates.  

Tournament selection works by arranging a tournament among n competitors, n 

being the tournament size. The individual with the maximum fitness of the n 

tournament competitors is termed the winner and this winner is then injected into 

a “mating pool”. The mating pool has a greater average fitness than the average 

population fitness. Tournament selection carry on until this mating pool become 

identical in size to the population. The individuals in the mating pool undergo 

further genetic operators such as reproduction operators (crossover and mutation) 

to complete the new generation.  

3.2.8.2 Crossover 

This operator arbitrarily chooses a locus and exchanges the subsequences before 

and after that locus between two chromosomes to produce two offspring. For 

example, the strings 10000101 and 11111111 could be crossed over after the third 

locus in each to produce the two offspring 10011111 and 11100101. The crossover 

operator roughly imitates biological recombination between two single 

chromosome organisms. There are different means to make crossover, for example 

one can select more crossover points. Crossover can be rather complex and rest on 

encoding of the chromosome. Specific crossover prepared for a specific problem 

can increase credit of the genetic algorithm (Figure-3.2). 

3.2.8.2.1 Single Point Crossover 

In single point crossover, the two mating chromosomes are cut once at 

corresponding points and the sections after the cuts exchanged. Here, a cross-site 

or crossover point is selected arbitrarily along the length of the mated strings and 

bits next to the cross-sites are exchanged (Figure-3.4(a)). 
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3.2.8.2.2 Two Point Crossover 

In two-point crossover, two crossover points are selected randomly and the 

substances (bits) between these points are exchanged between two mated parents. 

Apart from single point crossover, several different crossover point algorithms 

have been formulated, it should be noted that adding more crossover points 

diminishes the performance of the GA. However, the benefit of having more 

crossover points is that the problem space may be investigated more 

comprehensively.  

 

 

 

                    
   

 
  Parents          Offspring 

1   0   0   1   1   0   1   0   1   1   0   0   1   1   0   0   1   0 

0   1   1   0   1   0   0   1   0   0   1   1   0   1   0   1   0   1 

 (a) One-Point Crossover 
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                        Parents           Offspring 

1   0   0   1   1   0   1   0   1   1   0   0   1   1   0   0   0   1 

0   1   1   0   1   0   0   1   0   0   1   1   0   1   0   1   1   0 

(b) Two-Point Crossover 

 

Figure 3.4. An Example of Different Crossover Schemes 

 

3.2.8.3 Mutation  

Mutation involves randomly flips some of the bits in a chromosome in a 

chromosome. For example, the string 10000100 might be mutated in its second 

position to yield 11000100. Mutation can happen at each bit position in a string 

with some probability, usually very small (e.g., 0.001). 

3.2.9 Penalty Functions 

The penalty functions is the most common method of handling constrained 

optimisation problems in which constrained optimisation problem is transformed 

into an unconstrained one by subtracting (or adding) a certain value from the 

objective function depend upon the amount of constraint violation present in a 

particular solution. Two main kinds of penalty functions have been considered in 

classical optimisation: exterior and interior, though hybrid methods have also been 

suggested by Haftka and Starnes (1976). 

For interior penalty functions, the penalty term is selected such that its value is 

small at points far away from the constraint boundaries and tends to infinity as the 

boundaries are come close to. The main drawback of interior penalties is the 

necessity for initial feasible solutions. Finding a feasible solution is very hard in 

many applications.  
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For exterior penalty functions, an initial feasible solution is not essential, as the 

penalty term is zero for feasible solutions and increases as the constraint violations 

increase. Exterior penalty approaches can be further divided into static and 

dynamic penalty functions. Static penalty function provides the same value of the 

penalty term for a given solution over the whole selection process, whereas the 

dynamic penalty function provides an increase in the penalty term, during the 

evolution progress. Some researchers have also considered adaptive penalty factors 

in which the magnitude of the penalty term is dynamically modified (Coello 

2002a). The meaning of a good penalty function is very difficult and is problem 

reliant. Preferably, the penalty should be kept as low as possible, just above the 

limit, below which infeasible solutions are optimal, according to the minimum 

penalty rule by Davis (1987). A high penalty may drive the GA inside the feasible 

region very fast, and this could be a serious disadvantage in the case where the 

optimum lies at the boundary of the feasible solution. Conversely, if the penalty is 

too low, then lot of search time is spent exploring the infeasible region because the 

penalty becomes too small compared to the objective function by Smith and Coit 

(1997). Therefore, finding an appropriate value for the penalty is a difficult task, 

which is very often problem dependent. Numerous penalty function methods 

require the users to define suitable penalty parameter values.  

3.3 Outline of the Basic Genetic Algorithm 

1. [Start] Produce random population of N chromosomes (suitable solutions 

for the problem)  

2. [Fitness] Assess the fitness f(x) of each chromosome x in the population  

3. [New population] Produce a new population by reiterating following steps 

until the new population is complete 
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3.1 [Selection] Chose two parent chromosomes from a population on the 

basis of their fitness (the better fitness, the bigger chance to be 

selected). 

3.2 [Crossover] with a crossover possibility cross over the parents to form 

a new offspring (children). If no crossover was performed, offspring 

is an exact copy of parents. 

3.3 [Mutation] with a mutation probability mutate new offspring at each 

locus (position in chromosome).  

3.4 [Accepting] Place new offspring in a new population.  

4. [Replace] Practice new generated population for a further run of algorithm.  

5. [Test] if the termination condition (for example number of populations or 

improvement of the best solution) is fulfilled, stop, and return the best 

solution in current population. 

6. [Loop] Go to step 2 
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The flow chart of the Genetic algorithm is shown in figure-3.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
 
 
 

 

 

 

 

Figure-3.5    Flowchart of a Binary GA 
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3.4 Implementation of GA on Pipe Network 

The following steps briefly described the execution of a genetic algorithm to 

optimize a pipe network of Simpson and Goldberg (1994), Simpson et al. (1993), 

Simpson et al. (1994). 

1. Generate the initial population arbitrarily. The initial population of 

solutions are created using a random number generator. Each bit location 

in the string takes on a value of either 1 or 0. Each string represents a 

different arrangement of a pipe network.  

2. Decode every string to the corresponding decision variables. 

3. The capital cost of each network component in the generation is calculated. 

The GA calculates the total cost, including construction, maintenance and 

operation costs. This step governs the costs of network in the initial 

population. 

4. The network in the population is analysed for heads and discharges under 

the specified demand(s). The actual heads are compared with the minimum 

(or maximum) permissible pressure heads.  

5. Penalty cost of network is computed. The optimum solution often lies on 

the boundary between feasible and infeasible solutions by Richardson et 

al. (1989). Customarily, the penalty multiplier is specified an absolute 

penalty to each infeasible network connection equal to the maximum value 

allowed.  

6. The total cost of pipe network is computed. The total cost of network is 

the sum of the network cost (3) and the penalty cost (5).  

7. Compute the fitness. For each network in the population, the fitness is 

taken to be minimum value of the total cost in (6), for example,  
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8. A new population of network, for the next generation is generated using 

genetic algorithm operators including: - selection, crossover, mutation, as 

stated in section 3.5. 

9. The steps (2) to (8) is repeated to produce successive generations.  

3.5 Suitability  

Genetic Algorithms are easy to apply to a wide range of problems. All the operators 

of GA are important in getting solution of the problem. GA have been shown to be 

capable to outperform conventional optimisation techniques on complex, 

discontinuous, multimodal functions. These features are typical of market data, so 

this technique appears well suited for our objective of market modelling and asset 

allocation. Its effectiveness of solving problems has made it more favourite choice 

among the traditional methods, namely gradient search, random search and others. 

GA are very supportive when the developer does not have precise domain 

proficiency, because GA possess the ability to explore and learn from their domain.  

 

 


