LIST OF FIGURES

Fig.1.1. Schematic diagram of phase control in ferroics and coupling of different types of ferroic orders in multiferroic materials. [2]

Fig.1.2. Ideal ABO₃ perovskite unit cell depicting 'A' ions at (0, 0, 0), the 'B' ion (1/2, 1/2, 1/2) and 'O' ions at (0, 1/2, 1/2) positions in cubic lattice. [6]

Fig.1.3. Polarization-electric field (P-E) hysteresis loop for (a) ferroelectric materials. (b) P-E hysteresis loop antiferroelectric materials. [8]

Fig.1.4. (a) Temperature variation of the real (ϵ') and imaginary (ϵ'') parts of the permittivity for BMZ-PT with x=0.56 at various frequencies 10kHz, 30kHz, 50kHz, 100kHz, 300kHz and 500kHz. (b) Linear fit of the relaxation time (s) for the Vogel-Fulcher freezing. The inset shows the nonlinear nature of the ln(τ) vs. 1/T plot for the Arrhenius relationship. [13]

Fig.1.5. (a) Domain orientations at several stages of magnetization with applied field for ferromagnetic materials (b) M-H hysteresis loop for ferromagnetic materials. [15]

Fig.1.6. Crystal structure of YMnO₃ in centrosymmetric paraelectric phase. Buckling of MnO_5 pyramid in the ferroelectric phase of YMnO₃ with arrows indicating the position of atoms with respect to the centrosymmetric paraelectric phase. [20]

Fig.1.7. Observed (red dot), calculated (solid line) and difference (solid blue line) obtained by Rietveld analysis of the powder X-ray diffraction data of Bi_2NiTiO_6 at room temperature. Vertical tick-marks show the pick position. Crystal structure corresponds to orthorhombic structure in the space group $Pn2_1a$ of Bi_2NiTiO_6 . [24]

Fig.1.8. (a) Temperature variation of dielectric constant and dielectric loss (tan δ) at 100kHz for 2Bi(Ni_{1/2}Ti_{1/2})O₃ at room temperature. (b) ZFC and FC magnetic susceptibilities of 2Bi(Ni_{1/2}Ti_{1/2})O₃ measured at the magnetic field

strength of 100Oe. Inset shows the inverse of susceptibility at ZFC and FC. [26]

Fig.1.9. Powder XRD pattern of $(1-x)(K_{0.5}Bi_{0.5})TiO_3-xBi(Ni_{1/2}Ti_{1/2})O_3$ solid solution at room temperature for various compositions. Asterisk corresponds to the impurity phases $K_4Ti_3O_8$. [28]

Fig.1.10. (a) Phase diagram for PZT (b) Permittivity (ϵ') and planer electromechanical coupling coefficient (k_p) for PZT (c) New phase diagram for PZT. [30]

Fig.1.11. (a) Powder XRD pattern of $(1-x)Bi(Ni_{1/2}Ti_{1/2})O_3$ -xPbTiO₃ solid solution in the composition range x=0.42-0.52. (b) (200) pseudocubic reflections of $(1-x)Bi(Ni_{1/2}Ti_{1/2})O_3$ -xPbTiO₃ solid solution. [33]

Fig.1.12. Phase diagram of $(1-x)Bi(Ni_{1/2}Ti_{1/2})O_3$ -xPbTiO₃ solid solution using calorimetric and dielectric data for x=0- 1.0. (b) Room temperature structure and variation of lattice parameters of $(1-x)Bi(Ni_{1/2}Ti_{1/2})O_3$ -xPbTiO₃ with increasing Bi $(Ni_{1/2}Ti_{1/2})O_3$ concentration. [35]

Fig.1.13. (a) P-E hysteresis loop (b) piezoelectric coefficient d_{33} for (1-x)Bi(Ni_{1/2}Ti_{1/2})O₃-xPbTiO₃ solid solution. (b) M-H hysteresis for (1-x)Bi(Ni_{1/2}Ti_{1/2})O₃-xPbTiO₃ solid solution. [36]

Fig.1.14. Variations of lattice parameter for Ni_{1-x}Zn_xFe₂O₄ with x. [42]

Fig.1.15. Net magnetic moments (circle) of $Ni_{1-x}Zn_xFe_2O_4$ at room obtained after magnetic refinement of neutron data [after Satyaurthy et al. (1969)]. Black dots are the net magnetic moments obtained by Smit and Wijn. [42]

Fig.1.16. Various types of spin arrangements and resultant magnetic interactions in $Ni_{1-x}Zn_xFe_2O_4$ with increasing the concentration of Zn (a) Ferrimagnetic for the compositions with x<0.4 (b) Triangular or Yafet-Kittel

type for the compositions with x>0.5 and (c) antiferromagnetic for the compositions close to x=1.0. [43]

Fig.1.17. Variations of Curie temperature with composition (x) for the Ni_{1-x}Zn_xFe₂O₄ solid solution. [43]

Fig.1.18. Variations of ME-coefficient (α =dE/dH) in Na_{0.5}Bi_{0.5}TiO/MnFe₂O₄ composites at applied AC field of 3Oe. [47]

Fig.1.19. Variations of ME-coefficient (α =dE/dH) for (x)NiFe₂O₄/(1-x)Ba_{0.8}Sr_{0.2}TiO₃ composites sintered at 1200⁰C for 12 hours. [47]

Fig.2.1. XRD patterns of reactant powders used for synthesis of (1-x)BNT-xPT: (a) Bi_2O_3 (b) TiO_2 (c) PbO and (d) NiO. [52]

Fig.2.2. XRD patterns of 0.48BNT-0.52PT powder obtained after calcination at 750° C and 850° C using Bi₂O₃, TiO₂, PbO and NiO as starting ingredients. XRD peaks corresponding to perovskite phase are marked with 'P'. Peaks marked with asterisk (*) correspond to intermediate phase peaks. [54]

Fig.2.3. Powder XRD patterns of BNT prepared using AR grade Bi_2O_3 , NiO and TiO₂ powders. Peaks are marked with $Bi_4Ti_3O_{12}$ phase by JCPDS card no. 897502. (*) and (+) correspond to Bi_2O_3 and NiO precursors. [56]

Fig.2.4. Optimization of load for the green pellets of 0.53BNT-0.47PT calcined at 850^oC. [58]

Fig.2.5. Powder XRD patterns of various compositions of (1-x)BNT-xPT solid solution sintered at 950^oC. [60]

Fig.2.6. SEM image of 0.51BNT-0.49PT (a) calcined at 850^oC for 6 hours and (b) sintered at 950^oC for 3 hours. [62]

Fig.2.7. SEM and EDS spectra of 0.51BNT-0.49PT samples (a) calcined (at 850^oC) and (b) sintered (at 950^oC). [64]

Fig.2.8. Scanning electron micrographs of (1-x)BNT-xPT ceramics (a) x=0.38 and (b) x=0.45 sintered at 950^oC. [65]

Fig.3.1. Evolution of (200), (220) and (222) pseudocubic XRD profiles for various compositions of BNT-PT at room temperature. [75]

Fig.3.2. Composition dependent variation of full width at half maxima of (222) pseudocubic reflection for (1-x)BNT-xPT solid solution with x=0.35, 0.38, 0.40, 0.41, 0.43, 0.45, 0.46, 0.47, 0.49, 0.50, 0.52 and 0.55. [77]

Fig.3.3. Experimentally observed (dots), theoretically calculated (continuous line) and their difference (continuous bottom line) profiles for $(1-x)Bi(Ni_{1/2}Ti_{1/2})O_3-xPbTiO_3$ with x=0.40 obtained after Rietveld analysis of the powder XRD data using cubic (Pm $\overline{3}$ m) structure. The vertical tick-marks above the difference plot show the peak positions. The inset illustrates the goodness of fit for (111) profile. [77]

Fig.3.4. Experimentally observed (dots), theoretically calculated (continuous line) and their difference (continuous bottom line) profiles for (1-x)Bi(Ni_{1/2}Ti_{1/2})O₃-xPbTiO₃ with x=0.41 obtained after Rietveld analysis of the powder XRD data using monoclinic (Pm), monoclinic (Cm) and Rhombohedral (R $\overline{3}$ m) structures. The vertical tick-marks above the difference plot show the peak positions. [80]

Fig.3.5. Experimentally observed (dots), theoretically calculated (continuous line) and their difference (continuous bottom line) profiles for (1-x)Bi(Ni_{1/2}Ti_{1/2})O₃-xPbTiO₃ with x=0.46 obtained after Rietveld analysis of the powder XRD data using (Cm+P4mm), (Pm+P4mm) and (R $\overline{3}$ m+P4mm) structures. The vertical tick-marks above the difference plot show the peak positions. [81]

Fig.3.6. Experimentally observed (dots), theoretically calculated (continuous line) and their difference (continuous bottom line) profiles for $(1-x)Bi(Ni_{1/2}Ti_{1/2})O_3-xPbTiO_3$ with x=0.55 obtained after Rietveld analysis of

the powder XRD data using tetragonal (P4mm) structure. The vertical tickmarks above the difference plot show the peak positions. [84]

Fig.3.7. Variation of lattice parameters with composition for $(1-x)Bi(Ni_{1/2}Ti_{1/2})O_3-xPbTiO_3$ ceramics. The vertical dotted lines demarcate the stability region of various phases. [85]

Fig.3.8. Variations of Ni/Ti–O (i.e., B-O) bond lengths for (a) cubic ($x \le 0.40$), (b) monoclinic ($0.41 \le x \le 0.49$) and (c) tetragonal ($x \le 0.50$) phases with composition obtained after Rietveld refinement. Solid (blue) line shows the bond lengths calculated using Shannon-Prewitt ionic radii. [91]

Fig.4.1. Variation of planer electromechanical coupling coefficient (k_P) with composition for (1-x)BNT-xPT solid solution. [102]

Fig.4.2 Experimentally observed (dots), theoretically calculated (continuous line) and their difference XRD profiles (continuous bottom line) obtained by Rietveld fit for unpoled 0.65BNT-0.35PT ceramics using cubic space group $Pm\overline{3}m$. The vertical tick-marks above the difference plot show the peak positions. Inset illustrates the quality of fit for the (200) profile. [102]

Fig.4.3. Evolution of XRD profiles for poled 0.65BNT-0.35PT samples at different poling field. The indices shown above the peaks correspond to pseudocubic structure. [104]

Fig.4.4. A Comparison of (110), (111) and (200) XRD profiles for unpoled and poled at 20kV/cm sample of 0.65BNT-0.35PT. Indices shown above the peaks correspond to pseudocubic structure. [104]

Fig.4.5. Experimentally observed (dots), theoretically calculated (continuous line) and their difference XRD (continuous bottom line) profiles for 0.65BNT-0.35PT ceramic poled at 15kV/cm obtained after Rietveld analysis of the powder XRD data using monoclinic (Pm) structure. The vertical tick-marks

above the difference plot show the peak positions. Inset shows the goodness of fit for (110) and (002) pseudocubic reflections. [105]

Fig.4.6. Variations of lattice parameter with poling field for 0.65BNT-0.35PT ceramic. Figures in the inset show the variation of c-axis microscopic lattice strain (%), and unit cell volume (V), with poling field (E) for 0.65BNT-0.35PT ceramic. [108]

Fig.4.7. A Comparison of (001), (002) and (220) XRD profiles for unpoled and poled (at 20kV/cm) sample of 0.57BNT-0.43PT ceramics. Indices shown above the peaks correspond to pseudocubic structure. [110]

Fig.4.8. Experimentally observed (dots), theoretically calculated (continuous line) and their difference (continuous bottom line) profiles for 0.57BNT-0.43PT ceramic poled at 20kV/cm obtained after Rietveld analysis of the powder XRD data using monoclinic (Pm) and tetragonal (P4mm) Space groups. The vertical tick-marks above the difference plot show the peak positions. [110]

Fig.4.9. A Comparison of XRD profiles for unpoled and poled (at 20kV/cm) samples of 0.50BNT-0.50PT ceramics. Indices shown above the peaks correspond to pseudocubic structure. [112]

Fig.4.10. Experimentally observed (dots), theoretically calculated (continuous line) and their difference (continuous bottom line) profiles for 0.50BNT-0.40PT ceramic poled at 20kV/cm obtained after Rietveld analysis of the powder XRD data using tetragonal (T) P4mm space groups. The vertical tickmarks above the difference plot show the peak positions. [112]

Fig.4.11. P-E hysteresis loop for BNT-xPT compositions with (a) x=0.35 and (b) 0.43. [115]

Fig.4.11. P-E hysteresis loop for BNT-xPT compositions with (c) x=0.49 and (d) 0.55. [116]

Fig.5.1. Temperature dependence of real (ϵ'), imaginary (ϵ'') parts of permittivity and loss tangent (tan δ) in the temperature range 5K to 300K measured at different frequencies from 5Hz to 7x10⁵Hz for the compositions with x=0.35, 0.40, 0.45, 0.49, 0.52 and 0.55. [125]

Fig.5.2. Arrhenius (shown in inset) and Vogel-Fulcher fits for the relaxation time, as obtained from the $\epsilon^{\prime\prime}(T)$ data for the compositions with (a) x=0.35 and (b) 0.49. Linear fit is obtained for the Vogel-Fulcher freezing. [127]

Fig.5.2. (c) Arrhenius (shown in inset) and Vogel-Fulcher fits for the relaxation time, as obtained from the $\epsilon''(T)$ data for the compositions with x=0.55. Linear fit is obtained for the Vogel-Fulcher freezing. [128]

Fig.5.3. Variations of Vogel-Fulcher freezing temperature T_{Vf} with composition for x=0.35, 0.40, 0.45, 0.49, 0.52 and 0.55 below room temperature. [128]

Fig.5.4. Temperature evolution of the pseudocubic (110) and (111) XRD profiles for the compositions with (a) x=0.40 and (b) x=0.43. [130].

Fig.5.4. (c) Temperature evolution of the pseudocubic (110) and (111) XRD profiles for the compositions with x = 0.49 in the temperature range 23K-300K. [131]

Fig.5.5. (a) Variations of the unit cell volume in the temperature range 23K-300K for the compositions with x=0.40. [131]

Fig.5.5. Variation of unit cell volume in the temperature range 23K-300K for the compositions with (b) x=0.43 and (c) x=0.49. [132]

Fig.5.6. Variation of dielectric permittivity (ϵ') with temperature for the BNT-PT compositions (a) x=0.35, in the frequencies range 100Hz-500kHz and (b) x=0.38, in the frequencies range 500Hz-300kHz. [134]

Fig.5.6. Variation of dielectric permittivity (ϵ') with temperature in the frequencies range 500Hz-300kHz for the BNT-PT compositions (c) x=0.44 and (d) x=0.49. [137]

Fig.5.6. (e) Variation of dielectric permittivity (ε') with temperature in the frequency range 100Hz-500kHz for the BNT-PT composition with x=0.55. [138]

Fig.5.7. Variations of dielectric peak temperatures Tm_1 and Tm_2 at the frequencies 1kHz and 300kHz, respectively. Difference (Tm_1-Tm_2) between peak temperatures decreases with increasing PT concentration showing the diminishing relaxor character. [138]

Fig.5.8 (a) Imaginary part of dielectric permittivity for the composition with x=0.49 in the temperature range 300K-750K. [139]

Fig.5.8. (b) Loss tangent for the compositions with x=0.49 in the temperature range 300K-750K. [139]

Fig.5.9. (a-b) Arrhenius (inset) and Vogel-Fulcher fits of the relaxation time, as obtained from the $\varepsilon'(T)$ data for the compositions with x=0.35 and 0.38. Linear fit is obtained for Vogel-Fulcher relation. [141]

Fig.5.9. (c-d) Arrhenius (inset) and Vogel-Fulcher fits of the relaxation time, as obtained from the $\varepsilon'(T)$ data for the compositions with x=0.44 and 0.49. Linear fit is obtained for Vogel-Fulcher relation. [142]

Fig.6.1. Schematic Block diagram of set-up for the dynamic measurement ME coefficient. [151]

Fig.6.2. Powder XRD pattern of (1-y)BNT-PT/yNZFO particulate composites for the composition with y=0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0 sintered at 1000^oC for 3 hours. Peaks corresponding to BNT-PT are marked by 'b' and NZFO by 'n'. [155]

Fig.6.3. Observed (dots), calculated (continuous line), and difference (bottom line) profiles obtained after the Rietveld refinement of the structure of particulate composite for the composition with y=0.5 sintered at 1000 0 C using coexisting [Cubic (Fd3m) + Tetragonal (P4mm)] phases. The vertical tickmarks above the difference plot show the positions of the Bragg-peaks. [158]

Fig.6.4. (002)/(200) XRD profiles of ferroelectric phase BNT-0.49PT extracted from $(1-y)0.51Bi(Ni_{1/2}Ti_{1/2})O_3-0.49PbTiO_3/yNi_{0.6}Zn_{0.4}Fe_2O_4$ composite data using Rietveld fitting for the compositions x=0, 0.2, 0.4, 0.6 0.8 and 0.9. [159]

Fig.6.5. Observed (dots), calculated (continuous line), and difference (bottom line) profiles obtained after the Rietveld refinement of ferroelectric phase BNT-0.49PT of BNT-0.49PT/NZFO composite for the composition with y=0.9 using rhombohedral ($R\bar{3}c$) phase. The vertical tick-marks above the difference plot show the positions of the Bragg-peaks. [161]

Fig.6.6. (a) Variations of lattice parameters (a, c) and tetragonality (c/a) of ferroelectric phase BNT-0.49PT in (1-y)BNT-0.49PT/yNZFO composites for the compositions with x=0 to 0.8. [161]

Fig.6.6. (b) Variation of lattice parameter of magnetic spinel phase NZF in (1y)BNT-0.49PT/yNZFO composites for the compositions with x=0.1 to 1.0. [162]

Fig.6.6. (c) Variation of phase fraction (%) of ferroelectric BNT-0.49PT with spinel NZFO in (1-y)BNT-0.49PT/yNZFO composites for the compositions with x=0 to 0.9. [162]

Fig.6.7. SEM image for $(1-y)0.51Bi(Ni_{1/2}Ti_{1/2})O_3-0.49PbTiO_3/yNi_{0.6}Zn_{0.4}Fe_2O_4$ composite with (a) y=0.3 and (b) x=0.7 where grains with dark appearance correspond to Ni_{0.6}Zn_{0.4}Fe_2O_4 (NZFO) and white appearance correspond to ferroelectric $0.51Bi(Ni_{1/2}Ti_{1/2})O_3-0.49PbTiO_3$ (BNT-0.49PT) phases. [164]

Fig.6.7. EDS spectrum for (c) ferrite NZFO (d) ferroelectric BNT-0.49PT phases for the composition with y=0.3. Diffusion of Ti^{4+} ions in NZFO phase from BNT-PT and Fe³⁺ ions in BNT-PT from NZFO is evident from the EDS spectrum. [165]

Fig.6.7. EDS spectrum for (e) ferrite NZFO (f) ferroelectric BNT-0.49PT phases for the composition with y=0.7. Diffusion of Ti^{4+} ions in NZFO phase from BNT-0.49PT and Fe³⁺ ions in BNT-0.49PT from NZFO is evident from EDS spectrum for the compositions with y=0.3 and 0.7. [166]

Fig.6.8. P-E hysteresis loop for (1-y)BNT-0.49PT/yNZFO composites for the compositions with x=0, 0.3, 0.5, 0.7 and 0.9. [169]

Fig.6.9. Variation of remanent polarization (P_r) and coercive field (1-y)BNT-0.49PT/yNZFO composites for the compositions with x=0, 0.3, 0.5, 0.7 and 0.9. [170]

Fig.6.10. Frequency dependent room temperature permittivity (ϵ') of (1y)BNT-0.49PT/yNZFO composite for the composition with (a) y=0.2 and (b) y=0.9. (c) Variation of room temperature permittivity (ϵ') with composition at 10 kHz. [172]

Fig.6.11. Room temperature magnetic hysteresis loops of BNT-PT/NZFO (y=0.4 and 0.8). Insets show the magnified view of the M-H hysteresis loops. [174]

Fig.6.12. ME-coefficient (mV/cm-Oe) of (1-y)BNT-PT/yNZFO composite for the composition with (a) y=0.2 and (b) 0.3. [175]

Fig.6.12. ME-coefficient (mV/cm-Oe) of (1-y)BNT-PT/yNZFO composite for the composition with (c) y=0.5 and (d) 0.8. [176]

Fig.6.12. (e) ME-coefficient (mV/cm-Oe) of (1-y)BNT-PT/yNZFO composite for the composition with y=0.9. [177]