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Abstract The aim of present paper is to obtain the approximate analytical solution of time frac-

tional Harry Dym equation by using homotopy perturbation method (HPM). The beauty of the

paper is error analysis which shows that our approximate solution converges very rapidly to the

exact solution and the numerical solution is compared with the known analytical solution which

is nearly identical with the exact solution. The results show that the solution of HPM is good agree-

ment with the exact solution. The fractional derivatives are described in the Caputo sense. The

results reveal that the method is very effective and simple.
� 2012 Ain Shams University. Production and hosting by Elsevier B.V.

All rights reserved.
1. Introduction

The Harry Dym equation is an important dynamical equation

which is integrable and finds applications in several physical
systems. The Harry Dym equation first appeared in Kruskal
and Moser [1] and is attributed to an unpublished paper by

Harry Dym in 1973–1974. The Dym equation represents a sys-
tem in which dispersion and non-linearity are coupled to-
gether. Harry Dym is a completely integrable nonlinear
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evolution equation. It is interesting because it obeys an infinite
number of conservation laws; it does not possess the Painleve

property. The Harry Dym equation has strong links to the
KdV equation and applications of this equation were found
to the problems of hydrodynamics [2]. The Lax pair of the
Harry Dym equation is associated with the Sturm–Liouville

operator. The Liouville transformation transforms this opera-
tor spectrally into the Schrödinger operator [3]. The Harry
Dym equation can be written as

@uðx; tÞ
@t

¼ u3ðx; tÞ @
3uðx; tÞ
@x3

: ð1Þ

The exact solution of the Harry Dym equation is

uðx; tÞ ¼ a� 3
ffiffi
b
p

2
ðxþ ctÞ

� �2=3
[4], where a and b are suitable

constants.
Recently, many researchers studied the existence of solu-

tions of the Harry Dym equation as exact solution of Harry
ier B.V. All rights reserved.

mailto:skumar.rs.apm@itbhu.ac.in
mailto:skiitbhu28@gmail.com
http://dx.doi.org/10.1016/j.asej.2012.07.001
http://www.sciencedirect.com/science/journal/20904479
http://dx.doi.org/10.1016/j.asej.2012.07.001


112 S. Kumar et al.
Dym equation by Mokhtari [4]. A general formula of flow
equations for Harry Dym Hierarchy by Peng et al. [5], alge-
braic geometric solution of the Harry Dym equation by Novi-

kov [6], construction of coupled Harry Dym equation
hierarchy by Marciniak and Blaszak [7], multi-Soliton solu-
tions of (2 + 1)-dimensional Harry Dym equation by Dmitri-

eva and Khlabystova [8], explicit solution for Harry Dym
equation by Fuchssteinert et al. [9], on Harry Dym equation
and its solution by Ben-Yu and Roges [10], Solitons solutions

of the (2 + 1) dimensional Harry Dym equation by Halim
[11], scheme of constructing Solitons type solutions of the
(2 + 1) dimensional Harry Dym equation by Dmitrieva and
Khlabystova [12], an extended Harry Dym hierarchy by Ma

[13], in this paper, an extended Harry Dym hierarchy is con-
structed by using eigen functions and adjoint eigen functions
of the spectral problems of the Harry Dym hierarchy associ-

ated with the pseudo-differential operator. The corresponding
Lax presentation possesses a self-consistent source involving
squared eigen functions.

Mathematical modeling of many physical systems leads to
linear and nonlinear fractional differential equations in various
fields of physics and engineering. The use of fractional differ-

entiation for the mathematical modeling of real world physical
problems has been widespread in recent years, e.g. the model-
ing of earthquake, the fluid dynamic traffic model with frac-
tional derivatives, measurement of viscoelastic material

properties, etc. The book by Oldham and Spanier [14] has
played a key role in the development of the subject. The fun-
damental results related with solution of fractional differential

equations may be found in books [15–17].
It is significantly important in mathematical physics to

search for exact solutions of nonlinear differential equations.

Exact solutions play a vital role in understanding various qual-
itative and quantitative features of nonlinear phenomena. Ex-
act solutions due to non-linearity present in dynamics of these

physical problems are constructed by specific mathematical
techniques. Among the existing theories Hirota- and bilinear
technique provide a direct powerful approach [18] to nonlinear
integrable equation. However, classes of Hirota-bilinear equa-

tion have also been successfully dealt by linear superposition
principle [19]. A multiple exp-function method for exact multi-
ple wave solutions of nonlinear partial differential equations is

proposed by Ma et al. [20]. The main aim of this article is pre-
sents a mathematical model of nonlinear Harry Dym with
fractional time derivative a (0 < a 6 1) in the form of a rapidly

convergent series with easily computable components. The
homotopy perturbation method was proposed first by the Chi-
nese researcher J.H. He in 1998 and was further developed and
improved by him [21–24] and was successfully applied to solve

fractional advection dispersion equation by Yildirim and Ko-
cak [25], fractional Zakharov–Kuznetsov by Yildirim and
Gulkanat [26], space and time fractional Fokker Planck equa-

tion by Yildirim [27], series solution of the Smoluchowski’s
coagulation equation by Yildirim and Kocak [28], generalized
Berger and Bergers–Fisher equations by Rashidi et al. [29], two

dimensional viscous flows in the extrusion process by Rashidi
and Ganji [30], inversion of Abel integral equation by Kumar
and Singh [31], analytical methods for solving the time frac-

tional Swift–Hohenberg equation by Khan et al. [32]. The ele-
gance of this article can be attributed to the simplistic
approach in seeking the approximate analytical solution of
the problem.
2. Basic definitions of fractional calculus

In this section, we give some basic definitions and properties of
fractional calculus theory which shall be used in this paper:

Definition 2.1. A real function f(t), t> 0 is said to be in the
space Cl, l e R if there exists a real number p> l, such that
f(t) = tpf1(t) where f1(t) e C(0,1) and it is said to be in the
space Cn if and only if f(n) e Cl, n e N.

Definition 2.2. The Riemann–Liouville fractional integral
operator ðJa

t Þ of order a is defined as

Ja
t fðtÞ ¼ 1

CðaÞ
R t

0
ðt� sÞa�1fðsÞds; ða > 0; t > 0Þ;

Ja
t fðtÞ ¼ fðtÞ:

ð2Þ

Where f e Cl, l P �1, and C(Æ) is the Gamma function.

Some of the properties of the operator ðjat Þ, can be found in
[13–16], we mention only the following. For f e Cl, l P �1,
a, b P 0 and c P �1:

(1) J a
t Jb

t f ðtÞ ¼ J aþb
t f ðtÞ;

(2) ðJ a
t Jb

t Þf ðtÞ ¼ ðJb
t J a

t Þf ðtÞ;
(3) J a

t tc ¼ Cðcþ1Þ
Cðcþaþ1Þ t

cþa:

It is remarkable here that Riemann–Liouville derivative has
certain disadvantages when we try to model real world phe-

nomena as fractional differential equation to overcome the
problem, the fractional derivative in Caputo sense came into
the picture which is defined as follows:

Definition 2.3. The fractional derivative Da
t of f(t) in Caputo

sense defined as

Da
t fðtÞ ¼

1

Cðm� aÞ

Z t

0

fðmÞðsÞ
ðt� sÞaþ1�m

ds; ð3Þ

where m� 1 < a 6 m; m 2 N; t > 0; f 2 Cm
�1.

The following are two basic properties of the Caputo’s frac-
tional derivative:

Lemma 2.1. If m � 1 < a 6 m, m e N and f 2 Cn
l; l P �1;

then

ðDa
t J

a
t ÞfðtÞ ¼ fðtÞ;

ðJa
t D

a
t ÞfðtÞ ¼ fðtÞ �

Xm�1
i¼0

fið0þÞ ti
i!
;

ð4Þ
3. Basic idea of homotopy perturbation method

To illustrate the basic ideas of the HPM for fractional differ-
ential equations, we consider the following problem:

Da
�tuðx; tÞ ¼ vðx; tÞ � Luðx; tÞ �Nuðx; tÞ; m� 1 < a

6 m; m 2 N; t P 0; x 2 Rn ð5Þ

Subject to the initial and boundary conditions

uðiÞð0; 0Þ ¼ ci; B u;
@u

@xj

;
@u

@t

� �
¼ 0; i

¼ 0; 1; 2; . . . ;m� 1; j ¼ 1; 2; 3; . . . ; n ð6Þ
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where L is a linear operator, while N is a nonlinear operator, is

a known analytical function and Da
�t denotes the fractional

derivative in the Caputo sense [15]. u is assumed to be a causal
function of time, i.e., vanishing for t < 0. Also u(i)(x, t) is the

ith derivative of u, ci, i= 0, 1, 2, . . . ,m � 1 are the specified ini-
tial conditions and B is a boundary operator.

We construct the following homotopy

ð1� pÞDa
�tuðx; tÞ

þ p Da
�tuðx; tÞ þ Luðx; tÞ þNuðx; tÞ � vðx; tÞ

� �
¼ 0; p 2 ½0; 1� ð7Þ

which is equivalent to

Da
�tuðx; tÞ þ pðLuðx; tÞ þNuðx; tÞ � vðx; tÞÞ ¼ 0;

p 2 ½0; 1� ð8Þ

The homotopy parameter p always changes from zero to
unity. In case p= 0, Eq. (8) becomes

Da
�tuðx; tÞ ¼ 0; ð9Þ

when p= 1, Eq. (8) turns out to be the original fractional dif-
ferential equation. The homotopy parameter p is used to ex-

pand the solution in the following form:

uðx; tÞ ¼ u0ðx; tÞ þ pu1ðx; tÞ þ p2u2ðx; tÞ þ pu3ðx; tÞ
þ � � � : ð10Þ

For nonlinear problems, we set Nu(x, t) = S(x, t). Substi-
tuting Eq. (10) into Eq. (8) and equating the terms with iden-

tical power of p, we obtain a sequence of equations of the form

p0 : Da
�tu0ðx; tÞ ¼ 0;

p1 : Da
�tu1ðx; tÞ ¼ �Lu0ðx; tÞ � S0ðu0ðx; tÞÞ þ vðx; tÞ;

p2 : Da
�tu2ðx; tÞ ¼ �Lu1ðx; tÞ � S1ðu0ðx; tÞ; u1ðx; tÞÞ;

pj : Da
�tujðx; tÞ ¼ �Luj�1ðx; tÞ � Sj�1ðu0ðx; tÞ;

u1ðx; tÞ; u2ðx; tÞ; . . . ; uj�1ðx; tÞÞ; j ¼ 2; 3; 4; . . .

ð11Þ

The functions S0, S1, S2, . . . satisfy the following equation:

S u0ðx; tÞ þ pu1ðx; tÞ þ p2u2ðx; tÞ þ p3u3ðx; tÞ þ � � �
� �
¼ S0ðu0ðx; tÞÞ þ pS1ðu0ðx; tÞ; u1ðx; tÞÞ
þ p2S2ðu0ðx; tÞ; u1ðx; tÞ; u2ðx; tÞÞ þ � � � : ð12Þ

Applying the inverse operator Ja
t on both sides of the Eq.

(9) and considering the initial and boundary conditions, the

various components of the series solution are given by

u0ðx; tÞ ¼
Xn�1
i¼0

ci
ti

i!
;

u1ðx; tÞ ¼ �Ja
t ðLu0ðx; tÞÞ � Ja

t S0ðu0ðx; tÞÞ þ Ja
t ðx; tÞ;

ujðx; tÞ ¼ �Ja
t ðLuj�1ðx; tÞÞ � Ja

t Sj�1ðu0ðx; tÞ; u1ðx; tÞ;
u2ðx; tÞ; . . . ; uj�1ðx; tÞÞ; j ¼ 2; 3; 4; . . . :

ð13Þ

Hence, the HPM solution u(x, t) is given by

uðx; tÞ ¼
X1
i¼0

uiðx; tÞ: ð14Þ
4. Solution of the problem by HPM

We first consider the following time fractional Harry Dym

equation
Da
t uðx; tÞ ¼ u3ðx; tÞD3

xuðx; tÞ; ð15Þ

with initial conditions uðx; 0Þ ¼ a� 3
ffiffi
b
p

2
x

� �2=3
.

According to the HPM [17–20], we construct the following

homotopy

ð1� pÞDa
t uþ pðDa

t u� u3D3
xuÞ ¼ 0; 0 < a 6 1; ð16Þ

Substituting (10) into (16) and equating the coefficients of
like powers of p, we get the following sets of differential

equations:

p0 : Da
t u0ðx; tÞ ¼ 0;

p1 : Da
t u1ðx; tÞ ¼ u30D

3
xu0;

p2 : Da
t u2ðx; tÞ ¼ u30D

3
xu1 þ 3u20u1D

3
xu0;

p3 : Da
t u3ðx; tÞ ¼ u30D

3
xu2 þ 3u20u1D

3
xu1 þ ð3u0u21 þ 3u20u2ÞD3

xu0;

p4 : Da
t u4ðx; tÞ

¼ u30D
3
xu3 þ 3u20u1D

3
xu2 þ ð3u0u21 þ 3u20u2ÞD3

xu1 þ ðu31 þ 3u20u3

þ 6u0u1u2ÞD3
xu0;

p5 : Da
t u5ðx; tÞ

¼ u30D
3
xu4 þ 3u20u1D

3
xu3 þ ð3u0u21 þ 3u20u2ÞD3

xu2 þ ðu31 þ 3u20u3

þ 6u0u1u2ÞD3
xu1 þ ð3u0u22 þ 3u20u4 þ 3u21u2

þ 6u0u1u3ÞD3
xu0;

The above system of nonlinear equations can be easily

solved by applying the operator Ja
t to obtain the various com-

ponents un(x, t), thus enabling the series solution to be entirely
determined. The first few components of the homotopy pertur-

bation solutions for the Eq. (10) are given as follows:

u0ðx; tÞ ¼ u0ðx;0Þ ¼ a� 3
ffiffiffi
b
p

2
x

 !2=3

;

u1ðx; tÞ ¼ �b3=2 ða�
3
ffiffiffi
b
p

2
x

 !�1=3
ta

Cðaþ 1Þ ;

u2ðx; tÞ ¼ �
b3

2
a� 3

ffiffiffi
b
p

2
x

 !�4=3
t2a

Cð2aþ 1Þ ;

u3ðx; tÞ ¼ b9=2 a� 3
ffiffiffi
b
p

2
x

 !�7=3
15Cð2aþ 1Þ
2ðCðaþ 1ÞÞ2

� 16

 !
t3a

Cð3aþ 1Þ ;

In this manner the rest of components of the homotopy per-
turbation solution can be obtained. Thus the solution u(x, t) of

the Eq. (15) is given as

uðx; tÞ ¼ lim
N!1

XN
n¼0

unðx; tÞ: ð17Þ

The series solution converges very rapidly. The rapid con-
vergence means only few terms are required to get analytic

function.
Fig. 1 shows the exact solution u(x, t) of the Harry Dym

equation given by Mokhtari [4] for constants value of a = 4

and b= 1. Fig. 2 shows the approximate solution for the stan-
dard Harry Dym equation i.e. for a = 1 by HPM. It can be



Figure 2 The approximate solution ~u6ðx; tÞ for a = 1.

Figure 3 The absolute error Eu6 ðx; tÞ.
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seen from Fig. 2 that the solution obtained by the present
method is nearly identical to the exact solution with high
accuracy.

5. Numerical result and discussion

In this section, we have discussed the error analysis between

the exact solution and approximate solution which is depicted
through Fig. 3 with high accuracy.

The simplicity and accuracy of the proposed method is

illustrated by computing the absolute error Eðu6Þ ¼
juðx; tÞ � ~uðx; tÞj at the constants value of a = 4 and b = 1,
where u(x, t) and ~uðx; tÞ are exact and approximate solutions

of (1) respectively. Fig. 3 shows the absolute error between
the exact and approximate solution at level N= 6, which is
significantly small thus indicates the convergence of series solu-

tion very rapidly. Here, during the all numerical computation
only six order term of the series solution is considered. The
accuracy of the result can be improved by introducing more
terms of the approximate solutions. It achieves a high level

of accuracy in only six order term of approximations. The
behavior of the approximate solutions depicted through
graphically.

Fig. 4 shows the behavior of the approximate solution
~u6ðx; tÞ for different value of a = 0.97, 0.98, 0.99 and for stan-
dard Harry Dym equation i.e. a = 1 at the value of t= 1. It is

seen from Fig. 4 that the u(x, t) decreases very rapidly with the
increases in t.

6. Conclusion

In this paper, the homotopy perturbation method is applied to
obtain approximate solution of the time fractional Harry Dym

equation. In HPM, a homotopy with an embedding parameter
p e [0, 1] is constructed, and the embedding parameter is con-
sidered as a ‘‘small parameter’’, which can take full advantages
of the traditional perturbation methods and homotopy tech-

niques. This method contains the homotopy parameter p,
which provides us with a simple way to control the conver-
gence region of solution series for large values of t. The ob-

tained results demonstrate the reliability of the algorithm
Figure 1 The exact solution u(x, t) for a = 1.

0.0 0.2 0.4 0.6 0.8 1.0

-60

-50

-40

-30

x

A
pp

ro
xi

m
at

e

0. 79

0. 89

=
=

α
α

Figure 4 The ~u6ðx; tÞ for different value of a at b = 1.
and its wider applicability to nonlinear fractional partial differ-
ential equations.
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