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a b s t r a c t

The present paper is aimed at the investigation of thermo-mechanical interactions inside a
functionally graded hollow disk under different thermoelasticity theories in a unified way.
The material of the disk is assumed to be graded along its radial direction such that the
profiles of thematerial properties are assumed to follow a volume-fraction based rule with
a power law. The inner and outer surfaces of the disk are subjected to different thermal and
mechanical boundary conditions. Galerkin type finite element method is used to solve the
coupled equations arising out in the present problem in Laplace transformdomain. Solution
in space–time domain is obtained by employing a numerical inversion method. A detailed
analysis highlighting the effects of phase-lags at different times upon the different fields
like displacement, temperature, radial stress and hoop stress for different values of the
non-homogeneity index is presented by various graphical plots of our numerical results.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In the field of heat conduction in deformable bodies, several non-classical theories have been proposed in recent years
in order to advocate a theory where the propagation of heat is modeled with a finite speed and thereby removing the so
called paradox of infinite speed of propagation for thermoelastic disturbances in the classical ‘‘coupled dynamical theory of
thermoelasticity’’, derived by Biot [1]. It should be mentioned here that in addition to the paradox of infinite heat propa-
gation speed, the classical dynamic thermoelasticity theory also suffers from the drawback of either unsatisfactory or poor
description of a solid’s response at low temperature and to a fast transient effects like short laser pulses. These drawbacks
mainly arise due to the fact that this theory is based on Fourier law of heat conduction. The non-classical theories of ther-
moelasticity are therefore developed with the introduction of modified form of Fourier law. Lord and Shulman [2] proposed
an extended thermoelasticity theory (ETE) by incorporating a thermal relaxation time in the Fourier law. The temperature-
rate dependent thermoelasticity theory (TRDTE) is later on developed by Green and Lindsay [3] with the introduction of
two thermal relaxation parameters in the theory although the Fourier law is kept unchanged in this theory. A completely
alternative theoretical development in this subject is made by Green and Naghdi [4–6] which have been the center of active
research during the last few decades. In this development Green and Naghdi provided sufficient basic modifications in the
constitutive equations and proposed three different models of thermoelasticity, labeled as thermoelasticity of types I, II, and
III, that cover a much wider class of heat conduction problems.

Recently, Ozisik and Tzou [7] and Tzou [8] proposed a dual phase-lag (DPL) heat conduction lawwith the introduction of
two delay times. One delay time is caused by themicro-structural interactions (small scale effects of heat transport in space,
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such as phonon–electron interaction or phonon scattering) and is termed as phase-lag of temperature gradient. Another
delay time τq is caused due to the fast-transient effects of thermal inertia (or small scale effect of heat transport in time)
and called as phase-lag of heat flux. Both the phase lags are small, positive and assumed to be the intrinsic properties of the
medium [8]. The recent models of thermoelasticity are thermoelasticity with dual phase-lags (DPLTE) and the thermoelas-
ticity with three phase-lags (TPLTE). The former model is introduced by Chandrasekharaiah [9] by considering the DPL heat
conduction law and the other model is given by Roychoudhuri [10] as a generalized version of type III thermoelasticity [5].

Functionally graded materials (FGMs) are composite media that have continuously changing material properties. FGMs
are a new branch of materials developed with the purpose of design of structures to withstand suddenly applied loads.
The properties of FGMs vary by a gradual change in composition of the constituent materials through the geometry of the
structure. This gradual change in material properties of FGMs offers the use of them in abrupt high exposed loads. The
smooth variation of propertieswithin FGMs results in lower stress concentration, intensity factors, higher fracture toughness
and improved residual stress distribution as compared with traditional laminated composites. Therefore, FGMs have been
widely used as thermal shields, wear-resistant linings, heat exchanger tubes, heat engine components and even prostheses
(see Birman and Byrd [11] and Bagri and Eslami [12]). In the last decade a great interest is paid to analyze the response of
FGMs under different applied mechanical and thermal loads. Tanigawa [13] analyzed the closed-form solutions of problems
with the steady-state condition for the heat conduction problems and thermal stresses that occur in a structuremade of non-
homogeneous materials. Obata and Noda studied steady thermal stresses in a hollow circular cylinder and a hollow sphere
of FGMs using the perturbation method [14] and explained the minimization of the thermal stresses. Lutz and Zimmerman
reported the analytical solution for the stresses in FG spheres and cylinders [15,16]. Reddy and Chin reported a thermo-
mechanical analysis of FG cylinders and plates [17]. Jeon et al. [18] developed an analytical method to tackle thermoelastic
problems for amediumwith non-homogeneous properties for shearmodulus of elasticity, the thermal conductivity and the
coefficient of linear thermal expansion. Vel and Betra [19] obtained an exact solution for three-dimensional deformations
of a FG rectangular plate subjected to mechanical and thermal loads. Qian and Betra [20] studied transient thermoelastic
deformations of a thick FG plate. Ye et al. [21] investigated the axisymmetric thermoelastic problem of a FG transversely
isotropic cylindrical shell. El-Naggar et al. [22] studied the radial deformation and the corresponding stresses in a non-
homogeneous orthotropic hollow elastic cylinder. An analytical solution for the FG thick spheres under combined steady
mechanical and thermal loads is presented by Eslami et al. [23]. Bakhshi et al. [24] studied the response of FG hollow disk
based on the classical theory of thermoelasticity under thermal shock loads. Bahtui and Eslami [25,26] investigated the
coupled thermoelasticity and generalized coupled thermoelasticity of FG cylindrical shells subjected to a thermal shock
load, respectively. Later on, the response of a FG disk is studied by Bagri and Eslami [27] under the ETE theory. Recently,
Carrera et al. [28] investigated the effect of thickness stretching in plate/shell structures made by FGMmaterials. Golmakani
andKadkhodayan [29] studied large deflection analysis of shear deformable FGplates subjected to thermo-mechanical loads.
Sun and Luo [30] presented wave propagation and transient response of an infinite FG circular plate under a point impact
load. Ezzat and Atef [31] analyzed a problem of generalizedmagneto–thermoelasticity interactions in a FG viscoelastic layer
(Kelvin–Voigt type) due to the presence of thermal shock in the context of the linear theory of generalized thermoelasticity
without energy dissipation. For some recent studies upon FGMs in thermoelasticity theories, the Refs. [32–36] and a recent
book by Hetnarski and Eslami [37] may also be mentioned.

This article analyzed the thermoelastic interactions inside a FG hollow disk in the context of the recent thermoelasticity
theories. The material of the disk is assumed to be graded through its radial direction such that the profiles of all material
properties, except the phase-lags, are assumed to follow a volume-fraction based rule with different non-homogeneity
indices. The inner surface of the disk is assumed to be traction free with a thermal exposure while the outer surface is
fixed and insulated. The governing equations to tackle are obtained in a coupled form. To solve them numerically, Laplace
transform technique with Galerkin finite element method is used. To invert the solution in space–time domain a numerical
inversionmethod proposed by Bellman et al. [38] is employed. The effects of non-homogeneity index, phase-lags at different
time upon distributions of different physical fields are investigated by various graphical results.

2. Statement of the problem

We consider a functionally graded hollow disk. The functional material properties of FGMs are generally defined by
a relation that correlates the effective material properties of FGM to the constituent material properties. Considering a
ceramic–metal FGM inwhich the composition of themetal and ceramic is introduced by a simple law of mixture of material
constituents, the effective material properties of FGMmay be defined as

P = Vm (Pm − Pc) + Pc, (1)

where Vm is the volume fraction of the metal, P is the effective property of FGM and the subscripts m and c indicate the
metal and ceramic features, respectively. Therefore, Pm and Pc are the properties of metal and ceramic, respectively.

3. Basic governing equations

The governing equations in usual indicial notation for isotropic FGMs in the absence of heat sources and body forces are
considered as follows:
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Equations of motion:

σij,j = ρüi. (2)

Energy balance equation:

qi,i = −T0Ṡ. (3)

Entropy equation:

S =
ρc
T0

θ + βδijeij. (4)

Stress–strain–temperature relation:

σij = 2µeij + (λekk − βθ) δij. (5)

Strain–displacement relation:

2eij = ui,j + uj,i. (6)

Law of heat conduction in the context of thermoelasticity theory of type III (GN-III) [5]:

q̇i = −


K ∗

+ K
∂

∂t


θ,i. (7)

Law of heat conduction under dual phase-lag theory (DPLTE) [8]:
1 + τq

∂

∂t
+

τ 2
q

2
∂2

∂t2


qi = −K


1 + τT

∂

∂t


θ,i. (8)

Law of heat conduction based on three phase-lag theory (TPLTE) [10]:
1 + τq

∂

∂t
+

τ 2
q

2
∂2

∂t2


qi = −


K ∗


1 + τv

∂

∂t


+ K

∂

∂t


1 + τT

∂

∂t


θ,i. (9)

In the above equations ui, σij, eij and qi are the components of displacement vector, stress tensor, strain tensor and heat
flux vector, respectively. θ = T −T0, where T is the absolute temperature and T0 is the reference temperature of themedium
in its natural state. S represents entropy per unit volume.ρ is themass density and c is the specific heat per unitmass.K is the
thermal conductivity and K ∗ is the rate of thermal conductivity. λ, µ are Lamè’s elastic constants and β is the thermoelastic
material constant given by β = (3λ + 2µ)αt where αt is the coefficient of linear thermal expansion. τq, τT and τv are the
phase-lags due to the heat flux, temperature gradient and the thermal displacement gradient, respectively. A superposed
dot denotes partial differentiation with respect to time t and δij is the Kronecker’s delta.

From Eqs. (2), (5) and (6), we can obtain the coupled equations of motion in terms of displacement and temperature as
λuk,kδij + µ


ui,j + uj,i


− βθδij


,j = ρüi. (10)

Heat conduction equation under GN-III is obtained from Eqs. (3), (4) and (7) as
K ∗θ,i + K

∂

∂t
θ,i


,i

=
∂

∂t


ρc

∂θ

∂t
+ βT0

∂ui,i

∂t


. (11)

Using (3), (4) and (8), the heat conduction equation under DPLTE is given by
K

1 + τT

∂

∂t


θ,i


,i

=


1 + τq

∂

∂t
+

τ 2
q

2
∂2

∂t2


ρc

∂θ

∂t
+ βT0

∂ui,i

∂t


. (12)

Heat conduction equation under TPLTE is obtained from (3), (4) and (9) as
K ∗


1 + τν

∂

∂t


θ,i + K

∂

∂t


1 + τT

∂

∂t


θ,i


,i

=


1 + τq

∂

∂t
+

τ 2
q

2
∂2

∂t2


∂

∂t


ρc

∂θ

∂t
+ βT0

∂ui,i

∂t


. (13)

The material properties, except the phase-lags, which appeared in the preceding equations (2)–(13) for the FGMs are the
effective material properties and are position dependent functions.
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4. Problem formulation

In the present problem, we consider a hollow disk with inner and outer radius rin and rout , respectively, initially at rest
and reference temperature T0, under axis-symmetric thermal shock load applied into its inner boundary. The generalized
coupled thermoelastic equations of the disk, with plane stress assumption, based on the above discussed thermoelasticity
theories are obtained from Eqs. (5) and (10)–(13) as

σrr = 2µ
∂u
∂r

+ λ̄


∂u
∂r

+
u
r


− β̄θ (14)

σθθ = 2µ
u
r

+ λ̄


∂u
∂r

+
u
r


− β̄θ (15)


λ̄ + 2µ

 ∂2u
∂r2

+
1
r

∂u
∂r

−
u
r2


+

∂u
∂r

∂

λ̄ + 2µ


∂r

+
u
r

∂λ̄

∂r
−


β̄

∂θ

∂r
+ θ

∂β̄

∂r


= ρ

∂2u
∂t2

(16)

1
r


K ∗

+ K
∂

∂t


∂θ

∂r
+


∂K ∗

∂r
+

∂K
∂r

∂

∂t


∂θ

∂r
+


K ∗

+ K
∂

∂t


∂2θ

∂r2
=

∂

∂t


ρc

∂θ

∂t
+ β̄T0

∂

∂t


∂u
∂r

+
u
r


(17)

1 + τT
∂

∂t


∂2θ

∂r2
+

1
r

∂θ

∂r


K +

∂θ

∂r
∂K
∂r


−


1 + τq

∂

∂t
+

τ 2
q

2
∂2

∂t2


ρc

∂θ

∂t

−


1 + τq

∂

∂t
+

τ 2
q

2
∂2

∂t2


β̄T0

∂

∂t


∂u
∂r

+
u
r


= 0 (18)

1 + τv

∂

∂t


K ∗

+


1 + τT

∂

∂t


K

∂

∂t


∂2θ

∂r2
+

1
r

∂θ

∂r


+


1 + τv

∂

∂t


∂K ∗

∂r
+


1 + τT

∂

∂t


∂K
∂r

∂

∂t


∂θ

∂r

=


1 + τq

∂

∂t
+

τ 2
q

2
∂2

∂t2


∂

∂t


ρc

∂θ

∂t
+ β̄T0

∂

∂t


∂u
∂r

+
u
r


(19)

where λ̄ =
2µ

λ+2µλ and β̄ =
2µ

λ+2µβ due to the assumption of plane stress condition.
Now, we consider that the inner surface and outer surface of the disk are made of ceramic and metal, respectively and

the gradual change in composition of the constituent materials in the radial direction is assumed to vary in the form as

Vm =


r − rin

rout − rin

n

where r is the radial coordinate and n is the non-homogeneity index that govern the distribution of the constituentmaterials
through the geometry of the disk. Fig. 1 shows the distribution of thematerial composition in the functionally graded hollow
disk along the radial direction. The non-homogeneity index, nmay be varied to obtain different profiles for the distribution
of constituent materials. When n → 0 the effective properties of hollow disk are followed by metal and when n → ∞ they
are followed by ceramic.

For simplicity of the problem, we introduce the following non-dimensional variables and notations:

r ′
= c1η0r, θ ′

=
θ

Td
, t ′ = c21η0t, τ ′

q = c21η0τq, τ ′

T = c21η0τT , τ ′

v = c21η0τv

u′
=

c1η0

λ̄m + 2µm


β̄mTd

u, σ ′

ij =
σij

β̄mTd
, c21 =


λ̄m + 2µm


ρm

, η0 =
ρmcm
Km

 (20)

where Td is a dimensionless characteristic temperature.
By using above dimensionless quantities and dropping the prime notation for sake of convenience, Eqs. (14)–(19) reduce

to the form

σrr =
2µ

λ̄m + 2µm

∂u
∂r

+
λ̄

λ̄m + 2µm


∂u
∂r

+
u
r


−

β̄

β̄m
θ (21)

σθθ =
2µ

λ̄m + 2µm

u
r

+
λ̄

λ̄m + 2µm


∂u
∂r

+
u
r


−

β̄

β̄m
θ (22)


λ̄ + 2µ

 ∂2u
∂r2

+
1
r

∂u
∂r

−
u
r2


+

∂u
∂r

∂

λ̄ + 2µ


∂r

+
u
r

∂λ̄

∂r
− ρc21

∂2u
∂t2

−


λ̄m + 2µm


β̄m


β̄

∂θ

∂r
+ θ

∂β̄

∂r


= 0 (23)
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Fig. 1. Distribution of metal volume fraction with rin = 1 and rout = 2.


K ∗

a0
+

K
Km

∂

∂t


∂2θ

∂r2
+

1
r

∂θ

∂r


+


1
a0

∂K ∗

∂r
+

1
Km

∂K
∂r

∂

∂t


∂θ

∂r
=

∂

∂t


ρc

ρmcm

∂θ

∂t
+ ε

β̄

β̄m

∂

∂t


∂u
∂r

+
u
r


(24)


1 + τT

∂

∂t


∂2θ

∂r2
+

1
r

∂θ

∂r


K
Km

+
1
Km

∂θ

∂r
∂K
∂r


−


1 + τq

∂

∂t
+

τ 2
q

2
∂2

∂t2


ρc

ρmcm

∂θ

∂t

− ε


1 + τq

∂

∂t
+

τ 2
q

2
∂2

∂t2


β̄

β̄m

∂

∂t


∂u
∂r

+
u
r


= 0 (25)


K ∗

a0


1 + τv

∂

∂t


+

K
Km


1 + τT

∂

∂t


∂

∂t


∂2θ

∂r2
+

1
r

∂θ

∂r


+


1
a0

∂K ∗

∂r


1 + τv

∂

∂t


+

1
Km

∂K
∂r


1 + τT

∂

∂t


∂

∂t


∂θ

∂r

=


1 + τq

∂

∂t
+

τ 2
q

2
∂2

∂t2


∂

∂t


ρc

ρmcm

∂θ

∂t
+ ε

β̄

β̄m

∂

∂t


∂u
∂r

+
u
r


(26)

where ε =
β̄2
mT0

(λ̄m+2µm)ρmcm
and a0 = c21η0Km.

The dimensionless heat conduction equations given by (24)–(26) can now be written in a unified form as
1 + τv

∂

∂t


K ∗

a0


∂2θ

∂r2
+

1
r

∂θ

∂r


+

1
a0

∂K ∗

∂r
∂θ

∂r



+


δ2z + δ1z

∂

∂t


1 + τT

∂

∂t


K
Km


∂2θ

∂r2
+

1
r

∂θ

∂r


+

1
Km

∂K
∂r

∂θ

∂r


−

ρc
ρmcm


1 + τq

∂

∂t
+

τ 2
q

2
∂2

∂t2


∂θ

∂t



−


δ2z + δ1z

∂

∂t


1 + τq

∂

∂t
+

τ 2
q

2
∂2

∂t2


ε

β̄

β̄m

∂

∂t


∂u
∂r

+
u
r


= 0. (27)

We can obtain each heat conduction equation by setting different values of phase-lags and the values of z in Kronecker delta
δiz, (i = 1, 2) as follows:

I. thermoelasticity of type GN-III: z = 1, τv = τT = τq = 0, K ∗ > 0;
II. thermoelasticity with one relaxation time (ETE): z = 2, τv = 0, τT = 0, τq > 0, τ 2

q = 0, K ∗
= 0;

III. thermoelasticity with dual phase-lags (DPLTE): z = 2, τv = 0, τT > 0, τq > 0, 2τT > τq, K ∗
= 0;

IV. thermoelasticity with three phase-lags (TPLTE): z = 1, τv > 0, τT > 0, τq > 0, τq > τT > τv, K ∗ > 0.
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Therefore, we can now study the coupled field equations of GN-III, ETE, DPLTE and TPLTE simultaneously by considering
Eqs. (23) and (27) for displacement and temperature.

In order to define the boundary conditions at the inner and outer surfaces, the inner surface is assumed to be traction free
but exposed to a thermal shock while the outer surface is fixed and thermally insulated. Thus the mechanical and thermal
boundary conditions at the inner and outer surfaces of the disk are defined as

θ = 1 − e−10000t , σrr = 0, at r = a
∂θ

∂r
= 0, u = 0, at r = b

(28)

where t is the dimensionless time a and b are the dimensionless inner and outer radii, respectively.

5. Solution by using Laplace transforms technique and Galerkin finite element method

The Eqs. (23) and (27) are coupled differential equations. The general closed form solution for the present problem
is therefore a formidable task. A suitable transfinite element method [27] via Laplace transform technique is therefore
employed here to find the solution of the displacement and temperature field in the space domain. Finally, the temperature,
displacement and stresses in the physical domain can be obtained by applying a suitable numerical method of Laplace
inversion.

The Laplace transform of any function f (t) is defined as

f̄ (s) =


∞

0
e−st f (t) dt, s > 0

where s is the Laplace transform parameter.
Therefore, applying Laplace transform to Eqs. (21)–(23) and (27) and using homogeneous initial conditions, we obtain

σ̄rr =
2µ

λ̄m + 2µm

∂ ū
∂r

+
λ̄

λ̄m + 2µm


∂ ū
∂r

+
ū
r


−

β̄

β̄m
θ̄ (29)

σ̄θθ =
2µ

λ̄m + 2µm

ū
r

+
λ̄

λ̄m + 2µm


∂ ū
∂r

+
ū
r


−

β̄

β̄m
θ̄ (30)


λ̄ + 2µ

 ∂2ū
∂r2

+
1
r

∂ ū
∂r

−
ū
r2


+

∂ ū
∂r

∂

λ̄ + 2µ


∂r

+
ū
r

∂λ̄

∂r
− ρc21 s

2ū −


λ̄m + 2µm


β̄m


β̄

∂θ̄

∂r
+ θ̄

∂β̄

∂r


= 0 (31)

(1 + τνs)

K ∗

a0


∂2θ̄

∂r2
+

1
r

∂θ̄

∂r


+

1
a0

∂K ∗

∂r
∂θ̄

∂r


+ (δ2z + δ1zs)


(1 + τT s)


K
Km


∂2θ̄

∂r2
+

1
r

∂θ̄

∂r


+

1
Km

∂K
∂r

∂θ̄

∂r


−

ρcs
ρmcm


1 + τqs +

τ 2
q

2
s2


θ̄



− (δ2z + δ1zs)


1 + τqs +

τ 2
q

2
s2


ε
β̄

β̄m
s


∂ ū
∂r

+
ū
r


= 0. (32)

Also the Laplace transform of the boundary conditions given by (28) yields

θ̄ = 10000/(s2 + 10000s) σ̄rr = 0 at r = a
∂θ̄

∂r
= 0 ū = 0 at r = b.

(33)

Now, we employ finite element method to solve the coupled equations (31) and (32). For this, the geometry of the disk
is divided into some discrete elements along the radius of the disk. Considering the base element (e), the displacement and
temperature fields over the base element are approximated as

ū(e)
=

l
i=1

NiŪi and θ̄ (e)
=

l
i=1

Niθ̄i (34)

where the Ni denotes the shape function that approximates the displacement and temperature fields in the base element
and l is the number of nodes in the base element. Ūi and θ̄i are therefore the nodal values of displacement and temperature,
respectively.
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Employing the approximated fields for the displacement and temperature in the base element (e) and applying the
Galerkin finite element method over the volume of the base element V (e), Eqs. (31) and (32) become

V (e)


λ̄ + 2µ

  ∂2

∂r2
+

1
r

∂

∂r
−

1
r2


+

∂

λ̄ + 2µ


∂r

∂

∂r
+

1
r

∂λ̄

∂r
− ρc21 s

2


ū(e)

−


λ̄m + 2µm


β̄m


β̄

∂

∂r
+

∂β̄

∂r


θ̄ (e)


Nidv = 0 (35)


V (e)


(1 + τνs)


K ∗

a0


∂2

∂r2
+

1
r

∂

∂r


+

1
a0

∂K ∗

∂r
∂

∂r



+ (δ2z + δ1zs)


(1 + τT s)


K
Km


∂2

∂r2
+

1
r

∂

∂r


+

1
Km

∂K
∂r

∂

∂r


−

ρcs
ρmcm


1 + τqs +

τ 2
q

2
s2


θ̄ (e)

− (δ2z + δ1zs)


1 + τqs +

τ 2
q

2
s2


ε
β̄

β̄m
s


∂

∂r
+

1
r


ū(e)


Ni dv = 0 (36)

where i = 1, 2, . . . , l.
Now, the weak formulation is applied to the terms involving the derivatives of the second order to lower their orders

and to extract mixed boundary conditions with respect to the radial variable. Using the local coordinates η = r − ri, where
ri is the radius of the first node of the base element in radial direction, Eqs. (35) and (36) reduce to the following equations: L

0


−


−


λ̄ + 2µ


(η + ri)2

+
1

η + ri

∂λ̄

∂η
− ρc21 s

2


ū(e)

−


λ̄m + 2µm


β̄m


β̄

∂

∂η
+

∂β̄

∂η


θ̄ (e)


Ni (η + ri)

+

λ̄ + 2µ


(η + ri)

∂Ni

∂η

∂ ū(e)

∂η


dη =


λ̄ + 2µ


(η + ri)Ni

∂ ū(e)

∂η

L
0

(37)

 L

0


(δ2z + δ1zs)


1 + τqs +

τ 2
q

2
s2


ρcs
ρmcm

θ̄ (e)
+

εβ̄

β̄m
s


∂

∂η
+

1
η + ri


ū(e)

Ni (η + ri)

+ (1 + τνs)
K ∗

a0

∂Ni

∂η
(η + ri)

∂θ̄ (e)

∂η
+ (δ2z + δ1zs) (1 + τT s)

K
Km

∂Ni

∂η
(η + ri)

∂θ̄ (e)

∂η


dη

= (1 + τνs)
K ∗

a0
Ni (η + ri)

∂θ̄ (e)

∂η

L
0
+ (δ2z + δ1zs) (1 + τT s)

K
Km

Ni (η + ri)
∂θ̄ (e)

∂η

L
0

(38)

where L is the length of the base element (e) along the radius.
Therefore, substituting from Eq. (34) into Eqs. (37) and (38), the transfinite element formulation in matrix form is ob-

tained as
[K11] [K12]
[K21] [K22]

 
Ū (e)
θ̄ (e) =


F (e)
Q (e) (39)

where the sub matrices [K11], [K12], [K21], [K22],

F (e)


and


Q (e)


for the base element (e) are obtained as

K ij
11


=

 L

0


λ̄ + 2µ

 1
(η + ri)

NiNj − NiNj
∂λ̄

∂η
+ ρc21 s

2NiNj (η + ri) +

λ̄ + 2µ


(η + ri)

∂Ni

∂η

∂Nj

∂η


dη (40)


K ij
12


=


λ̄m + 2µm


β̄m

 L

0
Ni (η + ri)


β̄

∂Nj

∂η
+ Nj

∂β̄

∂η


dη (41)


K ij
21


=

εs
β̄m


1 + τqs +

τ 2
q

2
s2


(δ2z + δ1zs)
 L

0
β̄Ni (η + ri)


∂Nj

∂η
+

Nj

η + ri


dη (42)


K ij
22


=

 L

0


(δ2z + δ1zs)


1 + τqs +

τ 2
q

2
s2


ρcs
ρmcm

NjNi (η + ri) +
(1 + τνs)

a0
K ∗ (η + ri)

∂Ni

∂η

∂Nj

∂η

+ (δ2z + δ1zs)
(1 + τT s)

Km
K (η + ri)

∂Ni

∂η

∂Nj

∂η


dη (43)
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
F (e)

=


f11
f21

 
Q (e)

=


q11
q21


(44)

where f11 =

λ̄ + 2µ

 
Ni (η + ri) ∂ ū(e)

∂η


η=ri

, f21 = −

λ̄ + 2µ

 
Ni (η + ri)2 ∂ ū(e)

∂η


η=ri+1

q11 =
(1 + τνs)

a0
K ∗


Ni (η + ri)

∂θ̄ (e)

∂η


η=ri

+ (δ2z + δ1zs)
(1 + τT s)

Km
K

Ni (η + ri)

∂θ̄ (e)

∂η


η=ri

,

and

q21 = −


(1 + τνs)

a0
K ∗


Ni (η + ri)

∂θ̄ (e)

∂η


η=ri+1

+ (δ2z + δ1zs)
(1 + τT s)

Km
K

Ni (η + ri)

∂θ̄ (e)

∂η


η=ri+1


.

The unknown nodal values of displacement and temperature for the base element are given by the sub matrices
Ū (e)


,

θ̄ (e)


, respectively.

Now, the elementmatrices given by Eqs. (40)–(43) are generatedwithin a loop to construct the generalmatrix of Eq. (39),
where after the assembly of all elements in the solution domain we can construct a system of linear algebraic equations for
the solution of unknown nodal values of displacement and temperature. While assembling, it is noted that the right-hand
side terms of Eqs. (37) and (38) cancel each other between any two adjacent elements, except the first node of the first
element and the last node of the last element. These are the nodes located on the inside and outside boundaries of the disk
and, therefore, may be related to the boundary conditions of the disk given by Eq. (33).

Eq. (33) together with Eq. (29) yield

θ̄1 = 10000/

s2 + 10000s


, −a


λ̄c + 2µc

 ∂ ū(e)

∂η


1

= λc Ū1 −
a

λ̄m + 2µm


β̄c

β̄m
θ̄1

∂θ̄ (e)

∂η


M

= 0, ŪM = 0
(45)

where Ū1 and ŪM are the radial displacements of the inner and outer boundaries of the disk, respectively. Also 1 and M are
referred to the first and last nodes of the solution domain that are located at the inner and outer radii of the disk, respectively.
Further, in view of (33) we find that

∂θ̄ (e)

∂η


1

= 0 and
∂ ū(e)

∂η


M

= 0.

Therefore, the global force matrix is obtained as


{F}

{Q }


, where the sub matrices {F} and {Q } are given by

{F} =


λ̄c Ū1 −

a

λ̄m + 2µm


β̄c

β̄m
θ̄1

0
:

0

 , {Q } =


0
0
:

0

 . (46)

All the unknowns can therefore be obtained by solving the above mentioned system of equations. This will yield the
solution for the nodal values of displacement and temperature in the Laplace transform domain. For the inversion of Laplace
transform, we can finally employ the numerical method of Laplace inversion introduced by Bellman et al. [38]. The method
is outlined in the Appendix. This will provide the final solution of the problem in space–time domain.

6. Numerical results and discussion

Now, we develop an efficient computer program using Mathematica to solve the problem numerically as mentioned in
the Section 5. We make an attempt to analyze the effects of time, non-homogeneity index and phase-lag parameters on
the distributions of displacement, temperature and stresses inside the hollow disk which is considered to be initially at
reference temperature T0 = 298 K and subjected to the boundary conditions (28). For the metal and ceramic constituents
of the functionally graded disk, titanium and zirconia are considered. Therefore, the inner and outer surfaces of the disk are
made of titanium and zirconia, whose properties are taken in SI units as follows [25]:
For titanium:

Em = 66.2 GPa, ν = 0.321, αm = 10.3 × 10−6 K−1,

cm = 808.3 J kg−1 K−1, ρm = 4410 kg m−3, Km = 18.1 (K s)−1.
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Fig. 2a. Displacement distribution at time t = 0.026. (Dashed line: n = 1; Solid line: n = 2; Dotted line: n = 3; Purple color: GN-III; Black Color: ETE;
Blue Color: DPLTE; Red color: TPLTE). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

For zirconia:

Ec = 117.0 GPa, ν = 0.333 αc = 7.11 × 10−6 K−1,

cc = 615.6 J kg−1 K−1, ρc = 5600 kg m−3, Kc = 2.036 (K s)−1.

The dimensionless values of ‘a’ and ‘b’, i.e., the inner and outer radii of the disk are taken to be 1 and 2, respectively.
The phase-lag parameters are taken as τv = 0.2, τT = 0.5 and τq = 0.7. The rate of thermal conductivity is taken as
K ∗

= c (λ + 2µ) /4 [34]. Although the presented formulation is general, but for computational work, the linear Lagrangian
polynomials are used as shape functions in the base element and the geometry of the hollowdisk is divided into 100 elements
along the radial direction.We computed the values of the desired field variables like, displacement, temperature and stresses
in the physical domain inside the disk at different times with different non-homogeneity index n for various thermoelastic
theories. Dashed lines, solid lines and dotted lines represent the plots for n = 1, n = 2 and n = 3, respectively. Purple color,
black color, blue color and red color indicate the plots for GN-III, ETE, DPLTE and TPLTE, respectively. The solutions displayed
in different figures are clearly in agreement with the boundary conditions.

Figs. 2–5 show the variation of displacement, temperature, radial stress and hoop stress along the radial distance ‘r ’ of the
disk at different times with different non-homogeneity index ‘n’ in the contexts of various thermoelasticity theories. Figs. 2a
and 2b display the displacement distribution at times t = 0.026 and t = 0.35, respectively. The temperature distribution
at times t = 0.026 and t = 0.35 are plotted in Figs. 3a and 3b, respectively. In a similar manner the graphs of radial and
hoop stress at time t = 0.026 are plotted in Figs. 4a and 5a and at time t = 0.35 are plotted in Figs. 4b and 5b, respectively.
It is clear from these Figures that ETE and DPLTE predict a similar pattern of behavior, however DPLTE predict bit larger
numerical values and high amplitudes as compared to ETE for all the profiles. This effect is significant upon displacement
and radial stress at all times but at higher times it is also prominent for temperature and hoop stress. Whenwe compare the
theories having phase-lags (i.e., DPLTE and TPLTE) with ETE, we observe that the qualitative nature of these three theories
are nearly similar at initial time however with the passage of time TPLTE predicts significantly high numerical values and
amplitudes for all the fields as compared to two other models. Due to the absence of phase-lags and presence of K ∗, GN-III
predicts quite different nature specially in the cases of temperature and hoop stress. GN-III shows larger effective region as
compared to other three models for all the profiles. At lower times the effect of thermal exposure is visible near the inner
surface of disk but as time passes this effect covers more area of disk and also visible towards the outer surface of disk which
means the region of influence increases with the increase of time i.e. all the fields vanish at a later distance from the inner
surface of the disk when time is increased.

The effect of non-homogeneity index ‘n’ is most significant upon TPLTE and it decreases in an order as DPLTE, ETE and
GN-III i.e. the effect of n is least under GN-III theory. It is noted that as n increases the effective region is decreased and also as
n increases the difference between the thermoelasticity theories with phase-lags increases inside the disk. It is evident from
Figs. 2–5 that under all four theories although at lower time the effect of ‘n’ is not significant on temperature and hoop stress
but as time passes the effect of ‘n’ becomes significant on all the profiles. The effect of non-homogeneity index is observed
to be the most on the radial stress. Furthermore, it is revealed that in the effected region, the amplitudes of displacement,
temperature and stress waves increase with the increase of the non-homogeneity index, n.

Figs. 6–9 display the distributions of displacement, temperature, radial stress and hoop stress with variation of time
at the middle of the disk for different values of power law index in the contexts of various thermoelasticity theories. The
nature of variation of the fields clearly changes with time and a prominent effect of time upon all profiles under all the
theories is indicated. It may be seen from these figures that at the initial time of interaction, i.e. at lower times TPLTE, DPLTE
and ETE follow almost a qualitatively similar variations but as time increases the amplitude of oscillations of displacement,
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Fig. 2b. Displacement distribution at time t = 0.35. (Dashed line: n = 1; Solid line: n = 2; Dotted line: n = 3; Purple color: GN-III; Black Color: ETE;
Blue Color: DPLTE; Red color: TPLTE). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 3a. Temperature distribution at time t = 0.026. (Dashed line: n = 1; Solid line: n = 2; Dotted line: n = 3; Purple color: GN-III; Black Color: ETE;
Blue Color: DPLTE; Red color: TPLTE). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 3b. Temperature distribution at time t = 0.35. (Dashed line: n = 1; Solid line: n = 2; Dotted line: n = 3; Purple color: GN-III; Black Color: ETE;
Blue Color: DPLTE; Red color: TPLTE). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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Fig. 4a. Radial stress distribution at time t = 0.026. (Dashed line: n = 1; Solid line: n = 2; Dotted line: n = 3; Purple color: GN-III; Black Color: ETE;
Blue Color: DPLTE; Red color: TPLTE). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 4b. Radial stress distribution at time t = 0.35. (Dashed line: n = 1; Solid line: n = 2; Dotted line: n = 3; Purple color: GN-III; Black Color: ETE; Blue
Color: DPLTE; Red color: TPLTE). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5a. Hoop stress distribution at time t = 0.026. (Dashed line: n = 1; Solid line: n = 2; Dotted line: n = 3; Purple color: GN-III; Black Color: ETE;
Blue Color: DPLTE; Red color: TPLTE). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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Fig. 5b. Hoop stress distribution at time t = 0.35. (Dashed line: n = 1; Solid line: n = 2; Dotted line: n = 3; Purple color: GN-III; Black Color: ETE; Blue
Color: DPLTE; Red color: TPLTE). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Time variation of displacement at middle of the disk. (Dashed line: n = 1; Solid line: n = 2; Dotted line: n = 3; Purple color: GN-III; Black Color:
ETE; Blue Color: DPLTE; Red color: TPLTE). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

temperature and stresses increase significantly under TPLTE as compared to DPLTE and ETE. However, a distinctly different
behavior is observed in the case of GN-III model as compared to other three models. The maximum of displacement,
temperature, radial stress and hoop stress variations reduce when n is increased. Also the amplitude of oscillations of these
waves is reduced when n has larger values. This effect is more prominent upon TPLTE, DPLTE and ETE as compared to GN-III.
Thus when a thermal shock is applied to the boundary of the disk, functionally graded disk may be used as thermal barrier
to reduce the thermal shock effects and thermoelasticity theories with phase-lags may be employed as compared to GN-III
model in this respect.

7. Validity of formulation

To verify the present formulation and numerical results, we need to compare the results between the present work and
known data in the literature. For this purpose, we establish a comparison through Fig. 10 between the results of the present
work and the results of [27] by considering the same boundary conditions as given in [27] and for the same functionally
gradedmaterial with non-homogeneity index considered as n = 1. We observe a similar pattern between the results which
verifies the present formulation to be correct.

8. Conclusions

We study a problem of functionally graded annular disk of thermoelastic medium in the context of four thermoelasticity
theories namely, GN-III, ETE, DPLTE and TPLTE by considering a unified coupled heat conduction equation. The solution of
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Fig. 7. Time variation of temperature at middle of the disk. (Dashed line: n = 1; Solid line: n = 2; Dotted line: n = 3; Purple color: GN-III; Black Color:
ETE; Blue Color: DPLTE; Red color: TPLTE). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

Fig. 8. Time variation of radial stress at middle of the disk. (Dashed line: n = 1; Solid line: n = 2; Dotted line: n = 3; Purple color: GN-III; Black Color:
ETE; Blue Color: DPLTE; Red color: TPLTE). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

Fig. 9. Time variation of hoop stress at middle of the disk. (Dashed line: n = 1; Solid line: n = 2; Dotted line: n = 3; Purple color: GN-III; Black Color:
ETE; Blue Color: DPLTE; Red color: TPLTE). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)



S. Kothari, S. Mukhopadhyay / Computers and Mathematics with Applications 66 (2013) 1306–1321 1319

Fig. 10. Displacement distribution at four different times for same functionally graded material (n = 1) with similar boundary conditions as in [27].

coupled field equations for displacement and temperature is obtained by using Galerkin finite elementmethod. Distribution
of displacement, temperature, radial stress andhoop stress are plotted along the radius at different times. The time variations
of all profiles at middle of the hollow disk are also shown. The effects of phase-lags, non-homogeneity index and time
are investigated through the figures. It is observed that among the theories involving phase-lags, at lower time qualitative
behavior of these theories are similar although at higher times GN-III and TPLTE predict significantly high numerical values
and amplitudes for all the profiles as compared to two other models. GN-III shows larger effective region as compared to
TPLTE, DPLTE and ETE for all the profiles. It is seen that when n increases the amplitude of oscillations of displacement,
temperature, radial stress and hoop stress variations reduce.
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Appendix. Numerical method for inversion of Laplace transforms (Bellman et al. [38])

Let the Laplace transform of a function u(t) be defined by

F̄(p) =


∞

0
u(t)e−ptdt, p > 0. (A.1)

We assume that u(t) is sufficiently smooth to permit the approximate method we apply [38]. Putting x = e−t in Eq. (A.1)
we obtain

F̄(p) =

 1

0
xp−1G(x)dx, (A.2)

where G(x) = u(− ln(x)).
Applying the Gaussian quadrature formula to Eq. (A.2) yields

N
i−1

Wix
p−1
i G(xi) = F̄(p) (A.3)

where xi (i = 1, 2, 3, . . . ,N) are the roots of the shifted Legendre polynomial PN(x) = 0 andWi (i = 1, 2, 3, . . . ,N) are the
corresponding weights.

Eq. (A.3) can be written as

W1x
p−1
1 G(x1) + W2x

p−1
2 G(x2) + W3x

p−1
3 G(x3) + · · · + WNx

p−1
N G(xN) = F̄(p). (A.4)

Now, we put p = 1, 2, . . . ,N in Eq. (A.4) and obtain the following system of equations

W1G(x1) + W2G(x2) + W3G(x3) + · · · + WNG(xN) = F̄(1)
W1x1G(x1) + W2x2G(x2) + W3x3G(x3) + · · · + WNxNG(xN) = F̄(2)
. . .

W1xN−1
1 G(x1) + W2xN−1

2 G(x2) + W3xN−1
3 G(x3) + · · · + WNxN−1

N G(xN) = F̄(N). (A.5)
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Therefore, from Eq. (A.5) we obtain G(xi) in the formG(x1)
G(x2)
...

G(xN)

 =

 W1 W2 . . . WN
W1x1 W2x2 . . . WNxN
. . . . . . . . . . . .

W1xN−1
1 W2xN−1

2 . . . WNxN−1
N


−1

F̄(1)
F̄(2)
. . .

F̄(N)

 . (A.6)

For N = 7, we have the following set of values for xi and Wi:

The roots of the shifted
Legendre polynomial

Corresponding
weights (Wi)

x1 = 0.02555604382862 0.06474248308443
x2 = 0.12923440720030 0.13985269574463
x3 = 0.29707742431130 0.19091502525255
x4 = 0.500000000000000 0.20897959183673
x5 = 0.702922575688698 0.190915025252559
x6 = 0.870765592799697 0.139852695744638
x7 = 0.974553956171379 0.064742483084435

From Eq. (A.6) we can calculate the discrete values of G(xi), i.e., u(ti) where ti = − ln(xi) = 3.67119, 2.04612, 1.21376,
0.693147, 0.352509, 0.138382, 0.0257750. Finally using interpolation, we obtain the function u(t).
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