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Abstract—A simple field analysis was developed for helical slow-
wave structure symmetrically supported by rectangular shaped discrete
dielectric support rods partially embedded in the metal segments
projecting radially inward from a metal envelope for wideband
traveling-wave tubes. The tape helix model was used for the prediction
of the dispersion relation and the interaction impedance characteristics.
The closed form simplified expressions are obtained by combining the
tape model dispersion relation for free-space helix and the dielectric
loading factor obtained for the loaded helix in the sheath model. The
dispersion characteristics and the interaction impedance characteristics
obtained by the present analysis were compared with other more
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involved analytical method reported in the literature for the similar
helical slow-wave structure and found to be in close agreement. The
present analytical results were also validated against HFSS simulation
with an agreement within 5% for both the characteristics for a wide
range of structure parameters. An appropriate choice of the structure
parameters (helix thickness, height of the metal segments, material
of the dielectric support rods, wedge segments angle and helix pitch)
provided the phase velocity varying with frequency corresponding to
flat to negative structure dispersion with an appreciable interaction
impedance values over a wide frequency band. The present analysis
enjoys simplicity and establishes the potential of the proposed helical
interaction structure for its employment in wideband traveling-wave
tubes.

1. INTRODUCTION

Traveling-wave tubes (TWTs) find wide range of applications as
microwave/millimetre-wave power amplifier due to their unique
combination of power gain and bandwidth. Today’s electronic warfare
(EW) systems like electronic counter measure (ECM) and electronic
counter counter measure (ECCM) are dependent on wideband helix
TWTs for their wideband capability. A wideband TWT universally
uses helical slow-wave structure (SWS) as the interaction structure
due to its non-resonant behaviour and consequent wide bandwidth
potential [1–13]. The bandwidth and other performance like gain
efficiency etc. of the helix TWT can be improved further by suitably
tailoring the design of the helical SWS.

In a practical TWT, the helix is supported by a number of
dielectric support rods of circular or rectangular cross section and the
entire assembly is enclosed in a metal envelope. Discrete dielectric
support rods geometry of the SWS, which usually differ from the wedge
shape, causes an inhomogeneous loading of the helix [1–7]. The metal
segments/vanes projecting radially inwards from the metal envelope
causes anisotropic loading of the SWS [8–10]. Both inhomogeneous
and anisotropic loadings can be used to control the dispersion of the
helical SWS [8–16]. Wideband high gain helix TWTs utilize both types
of loading separately as well as simultaneously [9–13]. For wide device
bandwidth one requires flat to negative dispersion in order to realize
wideband synchronism between DC electron beam velocity and RF
phase velocity [2]. Interaction impedance is another device parameter
which has to be monitored simultaneously to have its significantly large
value and has direct relevance to the gain of the device.

The inhomogeneous loading controls the helix dispersion, but
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in order to flatten the shape of the dispersion curve it demands
heavy dielectric loading thereby causing reduction in the value of
the interaction impedance of the helical SWS. Using anisotropic
loading one can control the dispersion without serious reduction of
the interaction impedance values. Incorporating inhomogeneous and
anisotropic loading simultaneously in the structure one can achieve
flat to negative dispersion along with reasonably high interaction
impedance values of the helical SWS.

In this paper, the authors have considered a practical wideband
helical SWS where the helix is supported by three rectangular dielectric
support rods partially embedded in the metal segments and the whole
enclosed in a metal envelope (Fig. 1). This structure has merits not
only from electromagnetic considerations but also from mechanical
considerations in that the structure is thermally rugged, and easy
to be fabricated by inserting the dielectric rod and metal segment
assembly into the metal envelope. The similar structure has been
analyzed by Lei et al. [11] using a tape helix model which, though
it is rigorous, is involved and cumbersome. In the present paper,
a simple analysis for this structure is presented in the tape helix
model (THM) by incorporating into the THM analysis of a free-space
helix [17] the dielectric loading factor (DLF ) obtained by a simpler
sheath helix model (SHM) analysis of a loaded helix [2, 3, 6, 7]. The
effect of segment projecting radially inward from the metal envelope
is taken by considering that the axial electric field gets shielded at
the metal segment tips, where as the azimuthal electric field reaches
upto the overall metal envelope [9]. To take into account the effect
of width and angular thickness of the metal segments, penetration of

(a) (b)

Figure 1. Cross-section of the helical structure with dielectric
supports embedded in the segmented metal envelope (a) and its
physical equivalent structure model for analysis (b).
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axial electric field beyond inter-segment region has been also considered
in terms of SWS parameters. The analysis gives simpler closed
form expressions for the prediction of both the dispersion and the
interaction impedance characteristics of the structure (Section 2). The
structure is also simulated using commercially available simulation
code Ansoft HFSS [18] (Section 3). The results of the present analysis
are compared with those reported by Lei et al. [11] as well as simulation
(Section 4). The dependence of the dispersion characteristics and
interaction impedance on the various structure parameters is also
studied for design optimization.

2. ANALYSIS

The helical slow-wave structure under study (Fig. 1) consists of a
helix supported by three rectangular-shaped discrete dielectric support
rods partially embedded in the metal segments, the whole enclosed
in a metal envelope. The rectangular supports deviating from the
simple wedge geometry and the metal segments make the structure
inhomogeneous and anisotropic, respectively. For the analysis, in the
structure model (Fig. 1(b)), the rectangular-shaped discrete dielectric
support rods are azimuthally smoothed out into a single (or a number
of) continuous dielectric tube regions, between the helix and the
metal segments tip (b ≤ r ≤ c) of an effective permittivity value
ε′r which is found from the relative volume of the dielectric support
rods in the structure [1–3]. For practical helical SWS, the dielectric
support rods are usually made of APBN (anisotropic pyrolytic boron
nitride εr = 5.1), quartz (εr = 3.78), beryllia (εr = 6.65). Their
effective dielectric constant is low and also the radial variation of
effective dielectric constant value is small, consequently its effect on
the electromagnetic performance of the helical SWS is found to be
negligible. Hence, for such dielectric helix supports rods one can
safely replace the discrete dielectric supports into a single continuous
dielectric tube of an equivalent effective dielectric constant. However,
for the case of higher permittivity dielectric supports as well as for
higher accuracy, discrete dielectric support region can be replaced into
a number of effective dielectric tube regions [2, 7]. The number of such
tubes can be increased upto the desired accuracy in the result. Here,
for the helical structure considered, we have taken ‘a’ is the mean helix
radius, ‘b’ is the helix outer radius, ‘c’ is the segment tip radius, ‘d’
is the metal envelope radius, ‘α’ is the metal segment angle, ‘w’ is
the width of the dielectric rod, ‘θa’ is the sector of the angle of the
non-segment region.

The helical SWS (Fig. 1(a)) has been replaced here by an
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equivalent structure model (Fig. 1(b)) for the analysis which essentially
makes the problem as a boundary-value problem involving the
boundaries between four continuous regions: (i) the free-space region
inside the helical sheath of mean helix radius a (0 ≤ r ≤ a), (ii) the free-
space region between the helical sheath (equal to mean helix radius)
and the beginning of the dielectric support (equal to the outer helix
radius) which is usually considered to account for the helix wire/tape
thickness (a ≤ r ≤ b), (iii) the continuous, homogeneous dielectric tube
region of equivalent relative permittivity ε′r to account for the discrete
dielectric support rods (b ≤ r ≤ c), and (iv) the region between the
tips of the metal segment and the overall cylindrical metal envelope
(c ≤ r ≤ d).

For the region (iv) of the structure model (Fig. 1(b)), one may
take resort to two approaches to account for the effect of the metal
segments (Fig. 1). In the first of these approaches [9], for the region
(iv) in which metal segment is present as a free space region where the
axial electric field “sees” the segments and gets shielded at the metal
segment tips (r = c), while the azimuthal electric field does not “see”
the segments and reaches upto the overall metal envelope (r = d) [9].
The model is valid for a large number of thin segments. In the second
approach, the field analysis considering angular harmonics is used to
predict the axial electric field penetration in the inter-segment region
(unless it is reduced by an arbitrarily chosen factor 1/e from its value at
the metal segment tip (r = c)), which in turn is interpreted to predict
a modified value of the metal segment tips radius r = c′ where the
axial electric field could be considered as shielded and then using the
modified radius of metal segment it is analyzed as per first approach.
We have used the second approach in the present analysis.

The effect of permittivity for the portion of dielectric embedded
into the metal segment groove (c ≤ r ≤ l) is neglected in the present
model, since the axial field components became null at the metal
segments tip (r = c) and almost negligible electromagnetic field will
penetrate in this portion of the dielectric (c ≤ r ≤ l) [9]. Hence, effect
of the groove in the metal segments as well as the dielectric present
there is ignored, since it will not affect the electromagnetic behavior
of the structure. Furthermore, the presence of the angular periodicity
in region (iv) (inter-segment region) of the helical SWS would give
rise to the angular harmonics in the structure [8–10]. The structure is
field-analyzed in the tape-helix model to account for the effect of axial
space harmonics, arising from the space periodicity of the helix, which
makes the analysis more rigorous and accurate.
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2.1. Dispersion Relation

The helical structure (Fig. 1) is field analyzed here to find its dispersion
relation and interaction impedance [1–9]. The analysis of a loaded helix
in the conventional tape model is quite encumbered [5]. Hence, in order
to find out the dispersion relation of a loaded helix in tape model, a
simplified approach reported elsewhere as ‘heuristic approach’ [3, 4, 6]
has been followed here. In this approach first the dispersion relation
of a loaded helix in the sheath helix model (SHM) obtained using
the relevant field expressions and boundary conditions [2, 3] and the
dispersion relation of a helix in the tape helix model (THM) in free-
space is obtained using the relevant field expressions and boundary
conditions for this case [5, 6]. Then utilizing both of these dispersion
relations [3–6], dispersion relation of a loaded helix in the tape model is
achieved. Hence, to obtain the dispersion relation of the loaded helical
structure under consideration, first the dielectric loading factor (DLF ),
as a function of structure parameters, is obtained for a loaded helix in
the SHM. Then, the dispersion relation of free-space helix in the THM
is recalled [13]. Finally, inserting the dielectric loading factor DLF ,
obtained from the dispersion relation of a loaded helix in SHM, into
the dispersion relation of a free-space helix in tape model (DLF = 1
for the free-space helix), the dispersion relation for a loaded helix in
the tape-helix model is obtained. This “heuristic approach” repeatedly
yields the same results as those obtained using involved analysis in the
tape-helix model for the loaded helical SWS [3–6].

For the purpose of the field analysis of the structure in the
sheath-helix model, the expressions for the electric and magnetic field
intensities in the four different regions of the structure can be written,
for the azimuthally symmetric (∂/∂θ = 0) mode (in the cylindrical
coordinates), to appreciate that there exist, in general, four field
constants in each of the four regions of the structure [2, 3]. Thus, there
are 16 (= 4 × 4) field constants (considering these four regions) out
of which, however, two become zero to satisfy the condition that the
fields are to be finite at the axis (r = 0) of the structure, giving 14 non-
zero field constants. Further, the relevant electromagnetic 14 boundary
conditions for the problem are: the four tape helix boundary conditions
at the mean helix radius [17] at r = a, four boundary conditions at each
of the two dielectric tube interfaces corresponding to the continuity of
the tangential components of electric and magnetic field intensities,
and two boundary conditions that the tangential components of the
electric field intensity are null at the metal envelope (r = c) [2, 3].
Substituting the field expressions into these 14 boundary conditions,
one obtains 14 equations in 14 field constants. The condition for the
non-trivial solution of these equations will then lead to the following
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dispersion relation of the structure (Fig. 1) in the sheath-helix model
after a little algebraic manipulation:

(γa)2 (I0{γa}K0{γa}) DLF,0 + (ka cotψ)2
(
I ′0{γa}K ′

0{γa}) = 0 (1)

with

DLF,0 =
(

1 +
M0,1I0{γa}
N0,1K0{γa}

)(
1 +

M0,2I
′
0{γa}

N0,2K ′
0{γa}

)−1

as the dielectric loading factor of the structure. Here, M0,1 M0,2 N0,1

and N0,2 are functions of the structure parameters and are obtained by
putting m = 0 in the expressions (2) for Mm,1 Mm,2, Nm,1 and Nm,2

given below:

Mm,1 =− ⌊
K ′

m{γb} (Pm,1,Im{γb} −Km{γb})
+ε′r,3Km{γb} (

Pm,1Im{γb} −K ′
m{γb})⌋

Nm,1 = bIm{γb} (Pm,1Im{γb} −Km{γb})
+ε′r,3Im{γb} (

Pm,1I
′
m{γb} −K ′

m{γb
)⌋

Mm,2 =− bKm{γb} (Km{γb} −Qm,1Im{γb})
+Km{γb} (

Qm,1I
′
m{γb} −K ′

m{γb})⌋

Nm,2 =
⌊
Im{γb} (

Qm,1I
′
m{γb} −K ′

m{γb})

+Km{γb} (Km{γb} −Qm,1Im{γb})c





, (2)

where

Pm,1 =
X2Km{γc} − ε′r,3X1K

′
m{γc}

X2Im{γc} − ε′r,3X1I ′m{γc}

and Qm,1 =
X5Km{γc} −X6K

′
m{γc}

X5Im{γc} −X6I ′m{γc} .

(3)

Now, the dispersion relation of the helix in free-space, in the tape helix
model may be written as [3, 4, 6, 17]:

∞∑
m=−∞

[(
γma− mβm cotψ

γm

)2

Im{γa}Km {γa}

+(ka cotψ)2 I ′m{γa}K ′
m{γa}

] sin (βmδ/2)
(βmδ/2)

= 0. (4)

Combining (1) and (4), the dispersion relation of the loaded structure
under consideration (Fig. 1) in the tape helix model can be written
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as [3, 4, 6]:
∞∑

m=−∞

[(
γma− mβm cotψ

γm

)2

Im{γa}Km {γa}DLF,m

+(ka cotψ)2 I ′m{γa}K ′
m{γa}

] sin (βmδ/2)
(βmδ/2)

= 0 (5)

with DLF,m =
(
1 + Mm,1Im{γa}

Nm,1Km{γa}
)(

1 + Mm,2I′m{γa}
Nm,2K′

m{γa}
)−1

.

Here γm =
(
β2

m − k2
)0.5 is the radial propagation constant, [βm =

β0+m cotψ)/a] is the mth harmonic-mode axial propagation constant,
ψ and δ are the helix pitch angle and the tape width, respectively.
Mm,1, Nm,1, Mm,2, Nm,2,, Pm,1 and Qm,1 are the functions of the
structure parameters. Imn (γr) , Kmn (γr) are the modified Bessel
functions of the first and second kind and I ′mn (γr) , K ′

mn (γr) are
the first order derivative of the Bessel functions. Parameters Xp

(p = 1, 2, . . . , 10) appeared in Pm,1 and Qm,1 are defined in Appendix.
The expression of DLF gets modified due to penetration of field in

the inter-segment regions as given in (1) or (5) in present analysis. As a
first-order approximation, considering only the dominant first angular
harmonic component (m = 1), the axial electric field in the inter-
segment region, normalized with respect to its value at the segment
tips, is given by [9]:

Ezm{c + ζ}
Ezm{c} =

Km{γ(c + ζ)}Im{γd} −Km{γd}Im{γ(c + ζ)}
Km{γc}Im{γd} −Km{γd}Im{γc} =

1
e

The value of ζ obtained is used to replace c now by c′ (= c + ζ) in
the expressions and hence the expression (3) defining Pm,1 and Qm,1

appearing in (2) will get modified as:

Pm,1 =
X2Km{γc′} − ε′r,3X1K

′
m{γc′}

X2Im{γc′} − ε′r,3X1I ′m{γc′}

and Qm,1 =
X5Km{γc′} −X6K

′
m{γc′}

X5Im{γc′} −X6I ′m{γc′} .

(6)

2.2. Interaction Impedance

The Interaction impedance of the structure K, measures the amplitude
of the axial electric field available for interaction with the electron
beam, a parameter important from the standpoint of the gain and
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efficiency of the TWT. K is defined as [1–12]:

K =
E2

z,m{0}
2β2

m

∞∑
m=−∞

Pm

(7)

where E2
z,m{0} is the mth mode axial electric field intensity at the

axis of the helix at r = 0 and can be expressed in terms of the
field constant Am,1. The definition is valid for a thin electron beam
and more precisely one should take the square of the axial electric
field averaged over the cross section of the electron beam instead of
E2

z,m{0} [3].
Pm (= P1+P2+P3+P4+P5) is the total power propagating down

the structure. Pm can be obtained by taking half of the real part of
the integration of the complex Poynting vector over the structure cross
section. Thus:

P1=
πβmωε0

γ2
m

(
1− γ2

m

k2 cot2 ψ

)(
Im{γa}
I ′m{γa}

)2

E2
z{0}

a∫

0

I ′2m{γr}rdr,

P2=
πβmω

γ2
m


(

ε0A
2
2 − µ0C

2
2

) b∫

a

I ′2m{γr}rdr − (
ε0B

2
2 − µ0D

2
2

)

b∫

a

K ′2
m{γr}rdr+2 (ε0A2B2 − µ0C2D2)

b∫

a

I ′m{γr}K ′
m{γr}rdr


,

P3=
πβmω

γ2
m


(

ε0ε
′
r,3A

2
3 − µ0C

2
3

) c∫

b

I ′2m{γr}rdr − (
ε0ε

′
r,3B

2
3 − µ0D

2
3

)

c∫

b

K ′2
m{γr}rdr+2

(
ε0ε

′
r,3A3B3−µ0C3D3

) c∫

b

I ′m{γr}K ′
m{γr}rdr


,

P4=
βm

2γm

2π/3∫

J 2π
3
−θa

l∫

c

[
B41L1

(
ωε0

γm
β41L10 − βmnπ

γ2
mrθa

D41L3

)
sin2 χ+D41L3

{(
βmnπ

γ2
mrθa

B41L5 − ωµ0

γm
D41L6

)
cosχ− ωµ0

γm
D410L7

}
cosχ

]
rdrdθ,



312 Seshadri et al.

P5=
βm

2γm

(j−1) 2π
3

+α+θb
2∫

(j−1) 2π
3

+α−θb
2

l∫

c

[
B42L2

(
ωε0ε

,
r,4

γm
B42L8 − βmnπ

γ2
mrθb

D42L4

)
sin2 ξ

−D42L4

{(
βmnπ

γ2
mrθb

B42L2 − ωµ0

γm
D42L8

)
cos ξ − ωµ0

γm
D420L9

}
cos ξ

]

rdrdθ.

In the above expressions of power Pp, Ap, Bp, Cp and Dp

(p = 1, 2, . . .) are the field constants and L1, L2, . . . , L10 are functions
of structure parameters and are defined in Appendix.

3. SIMULATION

The simulation of the helical SWS under consideration (Fig. 1) is
carried out using commercially available 3D Electromagnetic software,
Ansoft HFSS [18]. This high frequency structure simulator (HFSS)
software is based on the finite element method (FEM). The helical
structure is an axially periodic structure and for the time efficient
simulation, the helical slow-wave structure can be truncated for a single
period. A single period structure length and master-slave boundary is
adapted in the present simulation model [18]. A master-slave boundary
related by the expression EM = ES exp(jφ) is used, where EM is
the electric field boundary of the master and ES is the electric field
boundary of the slave and φ the phase factor are used for getting the
eigen frequencies.

(a) (b)

Figure 2. Simulation model of helical slow-wave structure (a) and
with meshes (b).
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The eigenmode solver is used to compute the frequencies for the
phase difference specified between the master and slave boundaries
resulting in different sets of eigenfrequencies for varying phase
differences. The dispersion relation is calculated using the expression
vp = ω/β where ω is the angular frequency, β is the axial propagation
constant. The onaxis electric field strength Ez0(0) and the total
power propagating down the structure, is obtained through the field
calculator of the HFSS software. The post processor gives the axial
electric field and power propagating through the structure. The
calculator of the post processing section is made up of a stack of
registers, each of which can hold field quantities on which a quantity is
to be calculated. The simulated value of the interaction impedance K
of the helical SWS is obtained through a statement written to realize
the expression (7).

In the present HFSS simulation approach where helical structure
is truncated for a single period and gives a time efficient simulation.
The computation time is very short using the ordinary PC.

4. RESULTS AND DISCUSSION

The present simplified approach has been reportedly yielded in the
past for other types of helical structures [11] the results as accurate
as those obtained by a complex analysis using the tape-helix model.
The results of the present simplified analysis (Section 3) for the helical
structure with dielectric supports embedded in the segmented metal
envelope have been presented and numerically appreciated in this
section (Figs. 3–8). The results with respect to both the dispersion
and the interaction impedance characteristics obtained by the present
analysis with the help of (5) and (7), respectively (Section 3), have

(a) (b)

Figure 3. Comparison of dispersion characteristics (a) and interaction
impedance (b) with the present analytical results, and the analytical
results of Liu et al. [11] as well as with simulation (HFSS) values.



314 Seshadri et al.

(a) (b)

Figure 4. Comparison of theoretical (solid line) and simulated
(HFSS) (broken line) results for the phase velocity (a) and interaction
impedance (b) versus frequency characteristics, taking the helix inner
radius (ai) as the parameter.

(a) (b)

Figure 5. Comparison of theoretical (solid line) and simulated
(HFSS (broken line) phase velocity (a) and interaction impedance (b)
versus frequency characteristics, taking the tip of the segment as the
parameter.

agreed within 5% with those obtained through simulation (using HFSS
tool) (Section 4). In the dispersion characteristics, the fundamental-
mode propagation constant has been interpreted for the phase velocity
vp.

The results for the normalized phase velocity and the interaction
impedance obtained by the present analysis have been compared
with the results obtained for the similar structure previously though
involved and cumbersome analysis [11]. Fig. 3 show that the dispersion
as well as the interaction impedance characteristics obtained using
these two analytical results very closely matches to each other and
within 3% with those obtained through simulation (using HFSS tool)
for the structure parameters reported in [11].
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(a) (b)

Figure 6. Comparison of theoretical (solid line) and simulated (HFSS
(broken line) phase velocity (a) and interaction impedance (b) versus
frequency characteristics, taking permittivity of the support material
(εr) as the parameter.

(a) (b)

Figure 7. Comparison of theoretical (solid line) and simulated (HFSS)
(broken line) phase velocity (a) and interaction impedance (b) versus
frequency characteristics, taking the segment angle as the parameter.

In order to numerically appreciate the broadband potential
of the structure, the normalized phase velocity (vp/c) versus
frequency (dispersion) and the interaction impedance versus frequency
characteristics have been plotted for the various structure parameters,
namely, the helix thickness (helix inner radius (ai)) (Fig. 4), the
position of metal segment tips (c) (Fig. 5), the relative permittivity
of the dielectric support rod material (εr) (Fig. 6), the segment wedge
angle (Fig. 7), and the helix pitch (p) (Fig. 8). The present analytical
results have agreed with the simulation results within 5%, for both
the dispersion and the interaction impedance (Figs. 4–8). The helical
slow-wave structure dimensions, for a practical wideband TWT are
taken typically as, mean helix radius (a) = 0.6mm, helix outer
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radius (b) = 0.8mm, metal segment tip radius (c) = 1.0m, metal
envelope radius (d) = 1.75 mm, helix pitch (p) = 0.63mm, helix
tape-width (δ) = 0.25mm, APBN rectangular helix-support rod width
(w) = 0.5mm, vane wedge angle (α) = 72◦.

It is found from that, with the increase in helix thickness, both
analytical and simulated results agree closely with each other and both
give negative to positive dispersion (Fig. 4). Also with the increase
in vane height, higher permittivity value of the support material,
higher wedge angle of the vanes and lower helix pitch, the structure
exhibit negative to positive dispersion. However, the analytical results
give better agreement at lower frequencies with those obtained by
simulation and more so at higher permittivity values of the helix-
support materials. The effect of the segment wedge angle (Fig. 7) is not
significant in both analytical and simulated results. The interaction
impedance of the structure obtained using the present analysis and
simulation agree closely throughout a wide range of frequencies, with
respect to the variation of the structure parameters.

(a) (b)

Figure 8. Comparison of theoretical (solid line) and simulated (HFSS
(broken line) phase velocity (a) and interaction impedance (b) versus
frequency characteristics, taking the helix pitch as the parameter.

5. CONCLUSION

A simple field analysis has been developed for a helical structure
supported by rectangular shaped discrete dielectric support rods
partially embedded in the metal segments projecting radially inward
from a metal envelope, a structure that could be easily fabricated and
assembled as well, to be used in the high-gain wideband TWTs. The
closed form simplified expressions has been obtained by combining the
tape model dispersion relation for free-space helix with the dielectric
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loading factor obtained for the loaded helix in the sheath model.
The dispersion and interaction impedance characteristics obtained by
the present analysis agreed with those obtained by more involved
analytical method reported in the literature. The present analytical
results were also validated against simulation, using HFSS tool, with
an agreement within 5% for both the dispersion and interaction
impedance characteristics for a wide range of structure parameters.
An appropriate choice of the helical structure parameters provided
flat to negative structure dispersion with an appreciable interaction
impedance values over a wide frequency band. This establishes
the potential of the proposed helical SWS as a high-gain wideband
interaction structure. Also, it is hoped that present simple field
analysis which retains the rigor of the tape-helix model would be
useful in the design and optimization of this helical structure for the
development of wideband TWTs.
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APPENDIX A.

Ap, Bp, Cp and Dp (p = 1, 2, . . . ,) are the field constants and L1, L2,
. . . , L10 are the functions of the structure parameters and are given as
follows:

A2 =
Mm,1ImaEz (0)

Mm,1Ima + Nm,1Kma

B2 = A2
Nm,1

Mm,1

A3 =−
[

Ez{0}
Kmb−Pm,1Imb

][
Pm,1Ima

Mm,1Ima+Nm,1Kma

]
[Mm,1Imb+Nm,1Kmb]

B4 =− A3

Pm,1

B41 =−
[

Ez{0}
Kmb − Pm,1Imb

] [
Ima

Mm,aIma + Nm,1Kma

]

[Mm1Imb + Nm,1Kmb]
[
Pm,1Imc −Kmc

X1

]

B42 = B41
X1

X3
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C1 =−
(

jγm

ωµ0 cotψ

)(
Ima

Mm,1Ima

)
Ez{0}

C2 =−
(

jγm

ωµ0 cotψ

)(
Mm,2Ima

Mm,2Ima + Nm,2K
,
ma

)
Ez{0}

D2 = C2
Nm,2

Mm,2

C3 =−
[

Qm,1

Qm,1Imb −Kmb

] [
jγm

ωµ0 cotψ

] [
Ima

Mm,2Ima + Nm,2Kma,

]

[Mm,2Imb + Nm2Kmb] Ez{0}
D3 =− C3

Qm,1

D4,,1 =−
[

1
Q1Imb −Kmb

] [
jγm

ωµ0 cotψ

]

(
Ima

M2Ima + N2K
,
ma

) (
M2Imb + N2Kmb

X5

)
Ez{0}

D4,2 =
X5

X7
D4,1

where Xv (v = 1, 2, . . . , 8) are functions of structure parameters and
are expressed as:

X1 =
[
Knπ/θa

{γc)− Knπ/θa
{γl)

Inπ/θa
{γl)

Inπ/θa
{γc)

]
sinχ

X2 =
[
K ′

nπ/θa
{γc)− Knπ/θa

{γl)
Inπ/θa

{γl)
I ′nπ/θa

{γc)
]

sinχ

X3 =
[
Knπ/θb

{γc)− Knπ/θb
{γd)

Inπ/θb
{γd)

Inπ/θb
{γc)

]
sin ξ

X4 = ε′r,4

[
K ′

nπ/θb
{γc)− Knπ/θb

{γd)
Inπ/θb

{γd)
I ′nπ/θb

{γc)
]

sin ξ

X5 =

[
K ′

nπ/θa
{γc)−

K ′
nπ/θa

{γl)

I ′nπ/θa
{γl)

I ′nπ/θa
{γc)

]
cosχ

X6 =

[
Knπ/θa

{γc)−
K ′

nπ/θa
{γl)

I ′nπ/θa
{γl)

Inπ/θa
{γl)

]
cosχ

X7 =

[
K ′

nπ/θb
{γc)−

K ′
nπ/θb

{γd)

I ′nπ/θb
{γd)

I ′nπ/θb
{γc)

]
cos ξ
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X8 =

[
Knπ/θb

{γc)−
K ′

nπ/θb
{γd)

I ′nπ/θb
{γd)

Inπ/θb
{γc)

]
cos ξ

χ =
nπ

θa

(
φ− J

2π

3
+ θa

)

ξ =
nπ

θb

(
φ− (J − 1)

2π

3
+

α− θb

2

)
.

The functions (L1, . . . , L10) appearing in the expressions of power are
as follows:

L1 = X1/ sinχ|r=c , L2 = X3/ sin ξ|r=d , L3 = X6/ cosχ|r=d ,

L4 = X8/ cos ξ|r=d , L5 = X1/ cosχ|r=d , L6 = X5/ cosχ|r=d ,

L7 = K ′
0{γr} − K ′

0{γl}
I ′0{γl} I ′0{γr}, L8 = X4/ sin ξ]r=l ,

L9 = K ′
0{γr} − K ′

0{γd}
I ′0{γd} I ′0{γr}, L10 = X2/ sin ξ]r=l .
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