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a b s t r a c t

In the present paper the Analytical approximate solution of a fractional diffusion equation
is deducedwith the help of powerful Variational Iterationmethod. By using an initial value,
the explicit solutions of the equation for different cases have beenderived,which accelerate
the rapid convergence of the series solution. The present method performs extremely well
in terms of efficiency and simplicity. Numerical results for different particular cases of the
problem are presented graphically.
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1. Introduction

The fractional calculus has a tremendous use in basic sciences and engineering. Oldham and Spanier [1] have played a
key role in the development of the subject. Several fundamental works solving fractional differential equations have been
undertaken by Miller and Rose [2], Podlubry [3], Diethelm and Ford [4], Diethelm [5] etc. Recent applications have included
solving various classes of nonlinear fractional differential equations numerically. Variational Iteration Method is one of
the powerful methods by which the exact and appropriate analytical solutions for nonlinear equations can be obtained.
The variational iteration method was first proposed by He [6–10] and was successfully applied to solve nonlinear systems
of PDE’s and nonlinear differential equations of fractional order by Shawagfeh [11], Diethelm and Ford [12], Momani and
Odibat [13] etc.
The analytical fractional diffusion equation in time is governed by the equation

∂αu(x, t)
∂tα

= D
∂2u(x, t)
∂x2

−
∂

∂x
(F(x)u(x, t)), 0 < α ≤ 1,D > 0 (1)

where ∂α

∂tα (·) is the Caputo derivative of order α, u(x, t) represents the probability density function of finding a particle at
the x in the time t , the positive constant D depends on the temperature, the friction coefficient, the universal gas constant
and finally on the Avagadro number, F(x) is the external force. In the present paper, it is considered that D = 1, α = 1

2
and F(x) = −x. This type of problem was solved by Saha Ray and Bera [14] by using Adomian Decomposition Method. The
main disadvantage of Adomian method, is that the solution procedure for calculation of Adomian polynomials is complex
and difficult, as pointed out by many researchers. In this paper, the Variation iteration method is used to overcome the
demerit of the Adomian method. Using the initial condition, the analytical expression of u(x, t) for various values of x and
t for different particular cases are derived and presented through graphs. The elegance of this method can be attributed to
its simplistic approach in seeking the analytic solution of the problem.
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2. Solution of the problem

We consider the equation

∂1/2u(x, t)
∂t1/2

=
∂2u(x, t)
∂x2

+
∂

∂x
(xu(x, t)) (2)

with initial condition u(x, 0) = f (x).
Eq. (1) can be written as

∂u(x, t)
∂t

=
∂1/2

∂t1/2
∂2u(x, t)
∂x2

+
∂1/2

∂t1/2
∂

∂x
(xu(x, t)) . (3)

According to the variational iteration method, we consider the correction functional in t-direction in the following form

un+1(x, t) = un(x, t)+
∫ t

0
λ(ξ)

[
∂un(x, ξ)
∂ξ

−
∂1/2

∂ξ 1/2

∂2ũn(x, ξ)
∂x2

−
∂1/2

∂ξ 1/2

∂

∂x

(
xũn(x, ξ)

)]
dξ . (4)

It is obvious that the successive approximation uj, j ≥ 0 can be established by determining Lagrange multiplier λ. The
function ũn is a restricted variation, which means δũn = 0. The successive approximation un+1(x, t), n ≥ 0 of the solution
u(x, t) will be readily obtained upon using Lagrange’s multiplier, and by using any selective function u0. The initial value
u(x, 0) and ut(x, 0) are usually used for selecting the zeroth approximation u0. To find the optimal value of λ, we have

δun+1(x, t) = δun(x, t)+ δ
∫ t

0
λ(ξ)

∂un(x, ξ)
∂ξ

dξ = 0. (5)

This yields the stationary condition

λ′(ξ) = 0 (6)
and 1+ λ(ξ) = 0 (7)
which gives λ = −1. (8)

Substituting this value of Lagrangian multiplies in the Eq. (4),we get the following iteration formula

un+1(x, t) = un(x, t)+
∫ t

0

[
∂un(x, ξ)
∂ξ

−
∂1/2

∂ξ 1/2

∂2un(x, ξ)
∂x2

−
∂1/2

∂ξ 1/2

∂

∂x
(xun(x, ξ))

]
dξ . (9)

Beginning with an initial approximation u0(x, t) = u(x, 0) = f (x), we obtain the following successive approximations

u1(x, t) = u0(x, t)−
∫ t

0

[
∂u0(x, ξ)
∂ξ

−
∂1/2

∂ξ 1/2

∂2u0(x, ξ)
∂x2

−
∂1/2

∂ξ 1/2

∂

∂x
(xu0(x, ξ))

]
dξ

= f (x)+
∫ t

0

[
∂1/2

∂ξ 1/2

∂2f (x)
∂x2

+
∂1/2

∂ξ 1/2

∂

∂x
(xf (x))

]
dξ

u2(x, t) = u1(x, t)−
∫ t

0

[
∂u1(x, ξ)
∂ξ

−
∂1/2

∂ξ 1/2

∂2u1(x, ξ)
∂x2

−
∂1/2

∂ξ 1/2

∂

∂x
(xu1(x, ξ))

]
dξ

and so on.
Finally the exact solution is obtained by

u(x, t) = lim
n→∞

un(x, t). (10)

In other words, the correction functional (4) will give several approximations and, therefore, the exact solution is obtained
at the limit of the resulting successive approximations.

3. Illustrative examples

Example 1. Let us consider f (x) = 1, then

u0(x, t) = 1

u1(x, t) = 1+
2
√
t

√
π

u2(x, t) = 1+
√
t
√
π
+ t

u3(x, t) = 1+
2
√
t

√
π
+ t +

4t3/2

3
√
π
.
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Thus,

un(x, t) = 1+
2
√
t

√
π
+ t +

4t3/2

3
√
π
+ · · · .

The exact solution is

u(x, t) = lim
n→∞

un(x, t)

= 1+
t1/2

Γ (3/2)
+

t
Γ (2)

+
t3/2

Γ (5/2)
+ · · ·

=

∞∑
r=0

t r/2

Γ (r/2+ 1)

= E1/2(
√
t) (11)

where Eα(t) =
∑
∞

k=0
tk

Γ (αk+1) (α > 0) is the Mittag–Leffler function in one parameter.

Example 2. Let us consider f (x) = x, we then obtain

u0(x, t) = x

u1(x, t) = x+
4x
√
t

√
π

u2(x, t) = x+
4x
√
t

√
π
+ 4xt

u3(x, t) = x+
4x
√
t

√
π
+ 4xt +

32xt3/2

3
√
π

u4(x, t) = x+
4x
√
t

√
π
+ 4xt +

32xt3/2

3
√
π
+ 8xt2.

Therefore,

un(x, t) = x+
4x
√
t

√
π
+ 4xt +

32xt3/2

3
√
π
+ 8xt2 + · · · .

The exact solution is

u(x, t) = lim
n→∞

un(x, t)

= x+
2xt1/2

Γ (3/2)
+
22xt
Γ (2)

+
23xt3/2

Γ (5/2)
+
24xt2

Γ (3)
+ · · ·

=

∞∑
r=0

2rxt r/2

Γ (r/2+ 1)

= xE1/2(2
√
t). (12)

The above result is in complete agreement with Saha Ray and Bera [14].

Example 3. Now consider f (x) = x2, then

u0(x, t) = x2

u1(x, t) = x2 +
2(2+ 3x2)

√
t

√
π

u2(x, t) = x2 +
2(2+ 3x2)

√
t

√
π

+ (8+ 9x2)t

u3(x, t) = x2 +
2(2+ 3x2)

√
t

√
π

+ (8+ 9x2)t +
4(26+ 27x2)t3/2

3
√
π

.
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Fig. 1. Three dimensional figure for u(x, t)with respect to x and time t .

Fig. 2. Plot of u(x, t) vs. time t when x = 1.

And finally the exact solution is

u(x, t) = lim
n→∞

un(x, t)

= x2 +
2(2+ 3x2)

√
t

√
π

+ (8+ 9x2)t +
4(26+ 27x2)t3/2

3
√
π

+ · · ·

= x2 +
(2+ 3x2)t

1
2

Γ ( 32 )
+
(8+ 9x2)t
Γ (2)

+
(26+ 27x2)t3/2

Γ ( 52 )
+ · · ·

=

∞∑
r=0

kr t r/2

Γ (r/2+ 1)
, where kr = x2 + (1+ x2)(3r − 1)

= E1/2(k
√
t). (13)

4. Numerical results and discussion

In this section, numerical results of the displacement u(x, t) for various values of x and t for Examples 2 and 3 are made,
which are presented through Figs. 1–4.
Figs. 1 and 2 respectively represent three a dimensional figure for u(x, t) w.r.t x & t and a two dimensional figure for

u(x, t) for different values of t at x = 1 for Example 2. Figs. 3 and 4 are those for Example 3. It is seen from the figures
that, in both the cases, u(x, t) increases with the increase of x and t . But the increase of u(x, t) is much higher for Example 3
in comparison with that of Example 2. This implies that if the degree of the polynomial, which mathematically expresses
the initial condition, increases, then the increase of the values of the u(x, t) w.r.t both x & t becomes higher. Here, all the
computations and Figures are made using the Mathematica (Version 5.2) Software.
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Fig. 3. Three dimensional figure for u(x, t)with respect to x and time t .

Fig. 4. Plot of u(x, t) vs. time t when x = 1.

5. Conclusion

By using variational iterationmethodwe obtain the analytical solution of the fractional diffusion equation. This technique
is very powerful in finding solutions for various physical problems. Showing its application for finding solutions in fractional
diffusion equation, we may conclude that this method will be very useful for solving many Engineering problems, both
analytically and numerically.
The main advantage of the method is its fast convergence to the solution. The numerical results obtained here, conform

to its high degree of accuracy. Moreover, it avoids the volume of calculations required by the Adomian polynomials, for
finding the solution by Adomian decomposition method (Saha Ray and Bera [14]).
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