
Chapter 6

Dealing with Dynamics in Modeling for

Reliability Prediction

6.1 Introduction

In the previous chapter, we brought out the limitation of existing approaches for early

software reliability prediction, based on Markov chain and provided our approach to

address the same. A software system is made of many components, depending on the

size and complexity of the system. These components are responsible to perform their pre-

defined functions. Some functions are very critical, means the failure of such functions

fails the overall system; while some functions are less critical i.e. impact of failure of

such components does not fail the overall system. Instead the system continues to work

in degraded fashion. Therefore the reliability requirements of all the components of a

software system are not or may not necessarily be same. Reliability of the overall system

is a function of reliabilities of all of its components and their arrangements. Therefore,

understanding the criticality of real time systems, we focus on the fact that it is necessary

to access the impact of change in reliability of any component on the reliability of other

components and overall system to take some preventive action during the design phase.

The impact assessment is also very important when a software system is under

operation. Reliability gets change because of environmental conditions, during system
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operation. Hence there is a requirement to have a mechanism to assess the reliability of

all the components during operation, using operational profile data, for impact analysis.

This will help the system maintainer to take preventive and corrective actions. Preventive

action may include, switching to redundant healthy system while corrective action may

include replacement or repair of the faulty component.

This impact assessment, during operation is also important when a software system

contains one or more COTS component. Since the architectural design is not known in

case of COTS component, its early reliability assessment is difficult. Hence, its impact

analysis can be done during the operational phase.

Bayesian statistical frameworks have gained popularity in recent years for reliability

assessment and prediction. Computational reliability methods prove to be cost-efficient

for large and complex systems, and are suitable when experimental data are difficult to

obtain. However unrealistic assumptions and approximations along with limited real data

set impart uncertainty in the computational models. Hence the reliability-based design

and operational profile should be combined to improve the reliability estimation. There

are many sources of modeling errors, such as ambiguous or incomplete requirements,

design defects, poor modeling of scenarios, environmental conditions, etc. Because of

these uncertainties in modeling, model updating is best tackled as a Bayesian statistical

inference problem [93].

Collins et al. [94] proposed an approach to update Bayesian model for mechanical

systems, using identified modal parameters. Further an inclusive Bayesian framework for

updating the model is described by Katafygiotis et al. [93]. They addressed the problem

of updating a model and its associated uncertainties by utilizing dynamic response data.

This model may not be a single “best” model, but instead updates a probability distri-

bution over a specified set of structural and prediction-error probability models for the

uncertain error between the model predictions and the corresponding actual structural

response.

We extend the existing work for a software system. Software constitutes several

components; each component is responsible for performing some function. The impor-
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tance of every function is not necessarily to be same. Hence the reliability requirements of

all the components may differ. The overall reliability of the software system is a function

of the reliability of it components and their interfaces. The reliability of any component

may change during the operational phase of the system, which may affect the reliability

of its associated components and hence the overall reliability of the system. Hence there

is a requirement of updating the estimates of reliabilities of each component and overall

system whenever reliability of any components gets changed. Model updating is useful

for improvement of the prediction accuracy of the system response or its current state,

failure or healthy. In our work, we extend the focus on updating the reliability estimate

of each software component and overall software system whenever the reliability of any

component changes. Bayes’ theorem, which is used for probabilistic updating, provides

an appropriate framework for this purpose. Many researchers attempted to address for

fatigue reliability updation using Bayes’ theory [95], which are based on component level

reliability.

Specifically, we illustrate our approach on a software of a safety critical CBS of a

Nuclear Power Plant. Researchers have proposed several studies to update system level

reliability estimates when system level test data are available, also using Bayes’ theorem

[96]. These approaches are based on an assumption that if the system passes, all the

components of that system are healthy. But the healthiness of the system gives the

assurance of the healthiness of only invoked components. In the same way if the system

fails, all the components of that system do not necessarily have failed. Therefore, Martz

and Waller [97] concluded that the system test data usually does not provide the complete

information on the components’ reliability.
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6.2 Inference via Bayesian Networks

Considering a BN overX = X1, X2, . . . , Xn, Xn ∈ nodes,the joint probability and marginal

probability is given by equation 6.1 and 6.2 respectively.

P (X) = P{X1, X2, . . . , Xn} =
n∏

i=1

P (Xi|πi) (6.1)

P (Xi) =
∑
X/∈Xi

P (X) (6.2)

Given a BN that specified the JPD in a factored form, one can evaluate all the

possible inference queries by marginalization. Two types of inference support are often

considered: predictive support for node Xi, based on evidence nodes connected to Xi

through its parent nodes (also called top-down reasoning), and diagnostic support for

node Xi, based on evidence nodes connected to Xi through its children nodes (also called

bottom-up reasoning). For example, the failure of electronic IC can be represented by

BN as shown in figure 6.1. It considers an IC that fails from overheating, an event

represented by the variable ’Overheating’ (denoted by H). Such overheating can fail the

IC, represented by the variable ’IC-failure’ (denoted by F). The overheating might result

from a wrong voltage, represented by the variable ’wrong-volt’ (denoted by V) or from

environmental conditions, represented by the variable ’Environment’ (denoted by E). In

the latter case, it is reasonable to assume that other ICs of that electronic system will

suffer and report a similar overheating syndrome, an event represented by the variable

Other-ICs (denoted by O). The state of all the variables are either true (denoted by “T ′′)

or false (denoted by ′′F ′′). One might consider the diagnostic support for the belief on

unwanted environmental conditions at the electronic installation, given the observation

that the IC fails. Such a support is formulated by equation 6.3:

P (E = T |F = T ) =
P (E = T, F = T )

P (F = T )
(6.3)
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where,

P (E = T |F = T ) =
∑

V,O,H∈[T,F ]

P (E = T )P (V )

× P (O|E = T )P (H|V,E = T )P (F = T |H) (6.4)

and

P (F = T ) =
∑

V,O,H∈[T,F ]

P (E)P (V )P (O|E)P (H|V,E)P (F = T |H) (6.5)

                                           

Environment Wrong-volt 

Other-ICs Overheating 

IC-failure 

Figure 6.1: BN representation of IC.

6.3 A Case Study

We take the same case study as we have taken in section 4.2 and section 5.4 to illustrate

our approach.

6.4 Reliability Estimate Updation

When the state of any software component changes, the state of other software com-

ponents and hence state of overall software system can be updated using BN through

backward propagation. The method is shown for the series system. The same approach

can be adopted for the parallel system.
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Consider a series system of the TF software. Data acquisition and Testing are the

two important functions of TF, for which there are two dedicated components. The

failure of either component, fails the total system. Let these components are denoted by

A and B respectively, and TF is represented by C. Since it is a series system, the failure

probability of TF can be computed by equation 6.6:

P (C = F ) = 1× P (A = F )P (B = F ) + 1× P (A = F )P (B = T )

+ 1× P (A = T )P (B = F )

(6.6)

= P (A) + P (B)− P (A)P (B) (6.7)

where P (X) = P (X = F ) Here we presume that A & B are independent, otherwise

P (C) = P (A) + P (B)− P (A,B) (6.8)

To incorporate dependency, let SA and SB are the strengths of A & B respectively, and

applied load W be the random variables, considering this is the total load only for A &

B components.

∴ P (A) = f(SA,W ) and P (B) = f(SB,W )

Assuming that A takes l fraction of load, so B will take l
l−1
fraction of load. Hence, in

case TF failure is observed, the failure probability of A & B and probability distributions

of the corresponding random variables can be updated as:

P (A = F |C = F ) =
P (A = F,C = F )

P (C = F )
=

P (A)

P (C)

=
SA ≤

w
l

P (C)

(6.9)
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P (B = F |C = F ) =
P (B = F,C = F )

P (C = F )
=

P (B)

P (C)

=
SB ≤

w
l

l−1

P (C)

(6.10)

f(sA|C = F ) =
dF (sA|C = F )

dsA
=

d

dsA
(
P (SA ≤ sA, C = F )

P (C = F )
) (6.11)

From equations 6.1 and 6.2, the probability of TF failure is computed as:

P (C = F ) =

∫

SA

∫

SB

∫

w

P (A = T |sA,W )P (B = F |sB,W )f(sA)f(sB)f(w)d(sA)d(sB)d(w)+

∫

SA

∫

SB

∫

w

P (A = F |sA,W )P (B = T |sB,W )f(sA)f(sB)f(w)d(sA)d(sB)d(w)+

∫

SA

∫

SB

∫

w

P (A = F |sA,W )P (B = F |sB,W )f(sA)f(sB)f(w)d(sA)d(sB)d(w)

(6.12)

P (C = F ) = P (A = T,B = F ) + P (A = F,B = T ) + P (A = F,B = F )



CHAPTER 6. DYNAMICS IN MODELING FOR RELIABILITY PREDICTION 104

P (C = F ) =

∫

SA≥
w

l
,SB≤

w

1

l − 1

f(SA)f(SA)f(w)dsAdsBdw+

∫

SA≤
w

l
,SB≥

w

1

l − 1

f(SA)f(SA)f(w)dsAdsBdw+

∫

SA≤
w

l
,SB≤

w

1

l − 1

f(SA)f(SA)f(w)dsAdsBdw (6.13)

∴ P (C = F ) = P (SA ≥
w

l
∩ SB ≤

w

1

l − 1

) + P (SA ≤
w

l
∩ SB ≥

w

1

l − 1

)+

P (SA ≤
w

l
∩ SB ≤

w

1

l − 1

) (6.14)

MCS can be used to solve equation 6.14.

Now using equation 6.2,

P (SA ≤ sA, C = F ) =

SA∫

−∞

∫

SB

∫

w

P (A = T |sA,W )P (B = F |sB,W )f(sA)f(sB)f(w)d(sA)d(sB)d(w)+

SA∫

−∞

∫

SB

∫

w

P (A = F |sA,W )P (B = T |sB,W )f(sA)f(sB)f(w)d(sA)d(sB)d(w)+

SA∫

−∞

∫

SB

∫

w

P (A = F |sA,W )P (B = F |sB,W )f(sA)f(sB)f(w)d(sA)d(sB)d(w)
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= P (SA ≥
w

l
∩ SB ≤

w

1

l − 1

∩ SA ≤ sA)+

P (SA ≤
w

l
∩ SB ≥

w

1

l − 1

∩ SA ≤ sA)+

P (SA ≤
w

l
∩ SB ≤

w

1

l − 1

∩ SA ≤ sA) (6.15)

Similarly distributions of other two variables RB and W can be updated. Using equation

6.14 and 6.15, equations 6.9, 6.10 and 6.11 can be solved.

If input B fails, other nodes can be updated as

P (A = F |B = F ) =
P (A = F,B = F )

P (B = F )
(6.16)

f(sB|B = F ) =
dF (sB|B = F )

dsB
=

d

dsB

P (SB ≤ sB, B = F

P (B = F )
(6.17)

Again, distributions of other two variables RA and W can be updated similarly. The

estimate of system reliability can also be updated as component reliability gets change,

as follows:

P (C = F |B = F ) =
P (C = F,B = F )

P (B = F )
=

P (B = F )

P (B = F )
= 1 (6.18)

6.5 Experimental Validation

For the illustration of above concept, let RA, RB and W are independent. The failure

probabilities of components A and B; and that of TF is given by Monte Carlo simulation

as:

P (A = F ) = P (SA ≤
w

l
) = 0.000004792 (6.19)

P (B = F ) = P (SB ≤
w
l

l−1

) = 0.000002102 (6.20)
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Table 6.1: Statistical Parameters of SA, SB and W

Statistical Parameters SA SB w

Mean Value (requests/second) 16 22 14
Standard deviation 3.2 4 4.2

P (C = F ) = P (SA ≥
w

l
∩ SB ≤

w
l

l−1

) + P (SA ≤
w

l
∩ SB ≥

w
l

l−1

)+

P (SA ≤
w

l
∩ SB ≤

w
l

l−1

)

= 0.000001209 + 0.0000131 + 0.0000117

= 0.000026009

(6.21)

This result can be validated from the conventional reliability estimation method, which

represents failure probability as the intersection of the two possible failure paths:

P (C = F ) = P ((SA <
w

l
∩ SB < w) ∩ (SB <

w
l

l−1

∩ SA < w)) = 0.00003 (6.22)

From equation 6.21 and equation 6.22, we see that the result of Bayesian and conventional

approach are same. The mean values and standard deviations of RA, RB andW are given

in table 6.1.

The failure probabilities of components A and B can be updated whenever TF failure

probability gets observed, as shown in equation 6.23 and 6.24.

P (A = F |C = F ) =
P (A = F,C = F )

P (C = F )
=

P (A)

P (C)

=
P (SA ≤

w
l
)

P (C)

=
0.000004792

0.00003
= 0.1597 (6.23)
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Table 6.2: Failure Probability of components A and B as a function of system C

P (C = F ) P (A = F |C = F ) P (B = F |C = F )
0.00003 0.1597 0.0701
0.00009 0.0532 0.0236
0.00015 0.0320 0.0140
0.00021 0.0228 0.0100
0.00027 0.0177 0.0078
0.00033 0.0145 0.0064
0.00039 0.0123 0.0054

P (B = F |C = F ) =
P (B = F,C = F )

P (C = F )
=

P (B)

P (C)

=
P (SA ≤

w
l

l−1

)

P (C)

=
0.000002102

0.00003
= 0.07007 (6.24)

The criticality of the software component can be known by analyzing the effect of its

failure on the failure probability of the system, in case of parallel system. This is because

of its infinite criticality in case of series system, like in our case study, the failure of any

of A or B will fail the complete system. The same can be verified as:

P (C = F |A = F ) =
P (C = F,A = F )

P (A = F )
=

P (A)

P (A)
= 1

P (C = F |B = F ) =
P (C = F,B = F )

P (B = F )
=

P (B)

P (B)
= 1

In case of the series system, the system maintainer can get a clue about the failure

of a particular component or components of the system, if system failure is observed,

by updating its component failure probability. This will help to bring up the system

in a healthy state. Table 6.2 shows the update failure probability of components A

and B, given failure probability of TF system C. We have assumed that the failure

probabilities of components A and B are constant and have been known by Monte Carlo

simulation, as given in equation 6.19 and equation 6.20 respectively. The analysis can

be performed by drawing the chart, as shown in figure 6.2. The blue, red and green line
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shows P(C=F),P(A=F|C=F) and P(B=F|C=F) respectively. Interestingly, we see that

on a slight increase of failure probability of system C, there is an exponentially decrease

on the failure probability of components A and B, assuming the failure probability of A

and B is constant.

                                                                                              

Figure 6.2: Failure probability of A, B and C.

6.6 Conclusion

We have used the BN to compute the updated estimate of reliabilities of the components

of the CBS or CBS itself, whenever any of its component reliabilities or system reliability

changes. Any CBS is composed of several components, which are arranged in series or

parallel. Those individual components are accountable for the proper functioning of the

system. Since the components are themselves coupled in some fashion, the change in any

component reliability can affect the reliabilities of the components which are connected

to it. We have devised an innovative method using BN and MCS, to update the estimate

of individual component reliability or the system reliability. This can help the maintainer

to take preventive action. We have validated our approach on a running safety critical

CBS of NPP, known as Test Facility and shown the experimental results.


