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The investigation is to explore the transportation of a viscoelastic fluid with frac-
tional Burgers’ model by peristalsis through a channel under the influence of 
wall slip condition.  This analysis has been carried out under the assumption of 
long wavelength and low Reynolds number. An approximate analytical solution 
of the problem is obtained by using homotopy analysis method. It is assumed that 
the cross-section of the channel varies sinusoidally along the length of the chan-
nel. The expressions for axial velocity, volume flow rate, and pressure gradient 
are obtained. The effects of the fractional parameters  and , material constants 
1, 2, 3, slip parameter k, and amplitude  on the pressure difference and fric-
tion force across one wavelength are discussed numerically and with the help of 
illustrations. 
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Introduction 

The transportation by which a fluid can be transported through a distensible tube 

when contraction or expansion waves propagate progressively along its length is known as 

peristaltic transport. The movements of food bolus through esophagus, chyme through 

intestines, urine in the ureters, and blood through blood vessels (arteries, veins, arterioles, 

venules, and capillaries etc.) are some examples of peristaltic flow. Studying peristaltic flows, 

especially with a view to applications in biomechanics and physiology, one should consider 

real material properties of the fluid being transported and determine the essential departures 

from the results of the theories for viscoelastic fluids. These investigations are, also, 

interesting for engineering applications. 
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Latham [1] investigated the fluid mechanics of peristaltic pumps and since then, 

other papers on the same subject have followed by Burns et al. [2] and Shapiro et al. [3]. 

These papers are useful contributions to the understanding of peristaltic pumping, but their 

relevance to the problem of the ureter is not investigated by the authors. Burns et al. [2] have 

used perturbation techniques to study the peristaltic motion through a channel and a tube, 

while Shapiro et al., have solved the problem of peristaltic pumping under assumption of long 

wavelength and low Reynolds number for two dimensional and axisymmetric flows of 

Newtonian fluid. 

In many applications the flow pattern corresponds to a slip flow, the fluid presents a 

loss of adhesion at the wetted wall making the fluid slide along the wall. In the study of fluid-

solid surface interactions the concept of slip of a fluid at a solid wall serves to describe 

macroscopic effects of certain molecular phenomena. In all study on peristaltic flow, much 

works are studied with no slip condition, but some few authors [4-7] have studied the wall 

slip effect on the peristaltic transport of Newtonian and non-Newtonian fluids through 

channel/tube. 

In the literature, the mechanics of non-linear fluids presents special challenges to 

engineers, physicists and mathematicians since the non-linearity can manifest itself in a 

variety of ways. Some workers [8-10] are investigated the peristaltic transport of viscoelastic 

fluid with Maxwell model and they discussed the effect of relaxation time on the peristaltic 

transport. While Hayat et al. [11-13] have investigated the peristaltic transport of viscoelastic 

fluid with the Jeffrey model and they have also discussed the effect of relaxation and 

retardation time on the peristaltic transport. 

Fractional calculus has encountered much success in the description of 

viscoelasticity. The starting point of the fractional derivative model of non-Newtonian model 

is usually a classical differential equation which is modified by replacing the time derivative 

of an integer order by the so-called Riemann–Liouville fractional calculus operators. This 

generalization allows one to define precisely non-integer order integrals or derivatives. 

Fractional Burgers’ model is the model of viscoelastic fluid.  In general, fractional Burgers’ 

model is derived from well known Burgers’ model by replacing the ordinary time derivatives 

to fractional order time derivatives and this plays an important role to study the valuable tool 

of viscoelastic properties. Some authors [14-28] have investigated unsteady flows of 

viscoelastic fluids with fractional Maxwell model, fractional generalized Maxwell model 

fractional second grade fluid, fractional Oldroyed-B model, fractional Burgers’ model and 

fractional generalized Burgers’ model through channel (annulus) tube and solutions for 

velocity field and the associated shear stress are obtained by using Laplace transform, Fourier 

transform, Weber transform, Hankel transform, and discrete Laplace transform. 

First time, Liao [29] proposed the homotopy analysis method (HAM), which is a 

method to find series solutions of various types of linear and non-linear problem. HAM is 

based on homotopy and a fundamental concept of topology, has a freedom in choosing initial 

approximations and auxiliary linear operators which often helps to transfer the complicated 

non-linear problem to its simpler form. Recently some authors [30-35] have solved the linear 

and non-linear problem by using HAM. 

Motivated by the above facts, in this paper the authors have studied the effects of 

wall slip condition on the peristaltic transport of viscoelastic fluid with fractional Burgers’ 

model through a channel under the assumption of long-wavelength and low Reynolds 

number. HAM is applied to find approximate analytical solution of the problem and the 

numerical results of the problem for different particular cases are depicted graphically. The 
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effects of fractional parameters, material constants, slip parameter and amplitude on the 

pressure difference and friction force across one wavelength are discussed and presented 

through graphs.  

Mathematical formulation 

The constitutive equation for viscoelastic fluid with fractional Burgers’ model is 

given by: 
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t t t
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where , , , andt S   , are the time, shear stress, rate of shear strain, and viscosity, respectively, 

1 2 3, ,   are material constants, and  and  are the fractional time derivative parameters such 

that 0 <  ≤  ≤ 1. This model reduces to fractional Oldroyd-B, fractional Maxwell, fractional 

second grade models, respectively, when, 2 2 3 1 20, 0, 0          and with =  = 1, 

these models reduce to Oldroyd-B, Maxwell, second grade models. Classical Navier-Stokes 

model is obtained by substituting 1 2 3 4 0       . 
 

The governing equations of motion for incompressible fluids are: 
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where , , , , , and u v p   are the fluid density, velocity, axial co-ordinate, transverse velocity, 

transverse co-ordinate, and pressure, respectively.  

The physical parameters are non-dimensionalized as follows:  
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where , , and h Q  are transverse displacement of the walls, amplitude of the wave, and 

volume flow rate, respectively, and their counterparts without  are the corresponding 

parameters in the dimensionless form. The parameters , a, and c symbolize the wavelength, 

the semi-width of the channel, and the wave velocity, respectively. Re stands for the Reynolds 

number while δ is defined as the wave number. 

Equations (2) with the help of eqs. (1) and (3) under the assumptions of long 

wavelength and low Reynolds number, give rise to: 
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The boundary conditions are: 

 

– regularity condition 
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– slip condition 
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where k is the slip parameter, 
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Integrating eq. (4) with respect to , and using eq. (5), we get: 
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Further integrating eq. (8) from h  to   and using eq. (6), yields: 
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The volume flow rate is 

0
d

h
Q u   , which, by virtue of eq. (9), reduces to: 
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The transformations between the wave and the laboratory frames, in the dimension-

less form, are given by: 
 

 , , 1, ,x t y U u V v q Q h          (11) 
 

where the left side parameters are in the wave frame and the right side parameters are in the 

laboratory frame. 

We further assume that the wall undergoes contraction and relaxation as given by: 

 21 cos ( )h x    (12) 
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The time-averaged flow rate Q  is given by: 
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Equation (10), in view of eqs. (11) and (13) gives: 
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Solution of the problem by HAM 

Equation (14) can be rewritten as: 
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where f(x,t) = ¶p/¶x and 3 2
2(3/ ){[ 1 ( /2)] /( 3 )}A Q h h kh       

To solve eq. (15) by means of HAM, we choose the initial approximation: 
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with the property 

 1 2[ ] 0L c c t   (18) 
 

where c1 and c2 are integral constants. Furthermore, eq. (15) suggests that we define an 

equation of non-linear operator as: 
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Now, we construct the zero-order deformation equation: 
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Obviously, when  = 0 and  = 1, 
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Therefore, as the embedding parameter increases from zero to unity, (x,t,) varies 

from the initial guess f0(x,t) to the solution f(x,t). Expanding (x,t;) in Taylor series with 

respect to , one can find: 
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If the auxiliary linear operator, the initial guess and the auxiliary parameter  are 

properly chosen, the above series is convergent at  = 1, then one has: 
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which must be one of the solutions of the original non-linear equation, as proved by Liao [36].  

Now we define the vector: 
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Now, the solution of the m
th

-order deformation eq. (22) for 1m , becomes: 
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where the integration constants 1c and 2c are determined by the initial condition (23). We now 

successively obtain: 
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 (28) 

as so on. 

Proceeding in this manner the components Zn, n  0 of the HAM can be completely 

obtained and the series solutions are thus entirely determined. 

Finally we approximate the analytical solution ( , )f x t by the truncated series: 

 
( , ) lim ( , )N

N
f x t x t


  (29) 

where 1

n
0

( , ) ( , )
N

N
n

x t Z x t




    

(27) 
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The above series solutions generally converge very rapidly. A classical approach of 

convergence of this type of series is already presented by Abbaoui et al. [37]. 

The pressure difference p and friction force F across one wavelength are given by: 
 

 1

0

d
p

p x
x


 


  (30) 

 
 1

0

d
p

F h x
x

 
  

 
  (31) 

Numerical results and discussion 

The main objective of this article is to study the influences of wall slip condition and 
characteristics of peristaltic pumping of fractional Burgers’ fluid through the channel. Equa-
tions (30) and (31) are not integrable analytically due to the complexity of the expressions 
(26)-(28). Consequently, numerical integration is required to evaluate the integral and hence 
MATHEMATICA software is used to evaluate the integrals and later generate all the plots. 

Numerical and graphical results are described just to see the effects of various 

fractional time derivative parameters a and b,
 
material constants 1, 2, 3, and 4, time t and 

amplitude f
 
on the pressure rise p

 
and friction force F through a channel. The behaviors of 

different models of viscoelastic fluids such as fractional Burgers’ model (FBM), fractional 

Oldroyed-B model (FOBM), fractional Maxwell model (FMM), fractional second grade 

model (FSGM), second grade model (SGM) on p
 
and F are presented through illustrations. 

Figures 1-24 are sketched to see the variations of pressure rise p and friction forces 
F against averaged flow rate Q , at fixed value of p0 = 0

 
and p1 = 0. As expected there is a 

linear relation between pressure rise and averaged flow rate. Also it is worth mentioning that 
the increase in the averaged flow rate reduces the pressure and thus maximum flow rate is 
achieved at zero pressure and maximum pressure occurs at zero averaged flow rate. Through 
figs. 1-8, we discuss the effects of relevant parameters on pressure rise with averaged flow 
rate. The influences of same parameters on the friction force vs. averaged flow rate are 
presented in figs. 9-16. Figures 17-24 display the comparative study for different models of 
fluids on pressure rise with averaged flow rate. 

Figures 1-8 are plotted in order to see the effects of the parameters on the variation 

of pressure rise against the averaged flow rate. Figure 1 illustrates the variation of p vs. the 

averaged flow rate Q  for different values of a = 1/5, 2/5, 3/5, 4/5
 
at fixed parameters f = 0.6, 

k = 1, t = 0.4, b = 4/5, l1 = 4, l2 = 1, l3 =1. Figure 2 depicts that p
 
vs. the averaged flow rate 

Q , for various values of b = 1/5, 2/5, 3/5, 4/5 at fixed parameters  f = 0.6, k = 1, t = 0.4, a = 

= 1/5, l1 = 4, l2 = 1, and l3 =1. It is evident that the pressure decreases with increase in   

while it increases with increase  in  b. In  order to illustrate the effects of  material constants 

l1 = 4, 3, 2, and 1, l2 = = 0.4, 0.6, 0.8, and 1.0, l3 = 4, 3, 2, and 1 on the pressure rise against 

averaged flow rate. Figures 3-5 have been prepared at fixed parameters f = 0.6, k = 1, t = 0.4, 

a = 1/5, and b = 4/5. It is seen that pressure rise increases by increasing 1  whereas decreases 

with the increase in l2 and the effect of l3 is found similar to that of l1. Figure 6 presents the 

variation of pressure with averaged flow rate for various values of slip parameter k = 0, 1, 2, 

and 3
 
at fixed parameters f = 0.6, t = 0.4, a = 1/5, b = 4/5, l1 = 4,  l2 = 1, and l3 = 1. It is 

interesting to note that with an increase in k, pressure rise diminishes. Figure 7 and 8 display 

the influence of time t and amplitude f = 0.4, 0.5, 0.6, and 0.7 on pressure with averaged flow 

rate at k = 1, a = = 1/5, b = 4/5, l1 = 4, l2 = 1, and l3 = 1. The observations regarding the 

effects t  and   on pressure rise are similar to that of b. 
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Figure 1. Pressure vs. averaged flow rate for 
various values of a at f = 0.6, k = 1, t = 0.4,  
b = 4.5, l1, = 4, l2 = 1, and l3 = 1 

 

 
Figure 2. Pressure vs. averaged flow rate for 
various values of b at f = 0.6, k = 1, t = 0.4,  
a = 1/5, l1 = 4, l2 = 1, and l3 = 1 

 
Figure 3. Pressure vs. averaged flow rate for 

various values of l1 at f = 0.6, k = 1, t = 0.4,  
a = 4.5, and b = 4/5 

 
Figure 4. Pressure vs. averaged flow rate for 

various values of l2 at f = 0.6, k = 1, t = 0.4,  
a = 1.5, b = 4/5, l1, = 4, and l3 = 1 

 

 
Figure 5. Pressure vs. averaged flow rate for 
various values of l2 at f = 0.6, k = 1, t = 0.4,  

a = 1.5, b = 4/5, l1, = 4, and l2 = 1 

 
Figure 6. Pressure vs. averaged flow rate for 
various values of k at f = 0.6, k = 1, t = 0.4,  

a = 1.5, b = 4/5, l1, = 4, l2 = 1, and l3 = 1 
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Figure 7. Pressure vs. averaged flow rate for 
various values of t at f = 0.6, k = 1, a = 1.5,  

b = 4/5, l1, = 4, l2 = 1, and l3 = 1 

 
Figure 8. Pressure vs. averaged flow rate for 

various values of of f at t = 0.4, k = 1, a = 1.5,  
b = 4/5, l1, = 4, l2 = 1, and l3 = 1 

 
Figures 9-16 show the effects of relevance of parameters on friction force F with Q . 

Figures 9-10 describe the results obtained for F vs. Q  at various values of a and b. Figures 

11-14 are plotted to show the influences of material constants l1, l2, and l3 
on the variation 

of F with Q . Also the variations of F with Q  for different values of t and f are presented in 

figs. 15 and 16, respectively. From figs. 9-16, it is revealed that the friction force has the 

opposite behavior compared to that of the pressure rise. 
 

 
Figure 9. Friction force vs. averaged flow  
rate for various values of a at f = 0.6, k = 1,  

t = 0.4, b = 4/5, l1 = 4, l2 = 1, and l3 = 1  

 
Figure 10. Friction force vs. averaged flow rate 
forvarious values of b at f = 0.6, k = 1, t = 0.4,  
a = 1/5, l1 = 4, l2 = 1, and l3 = 1 

 

 
Figure 11. Friction force vs. averaged flow rate 
for various values of l1 at f = 0.6, k = 1, t = 0.4, 

a = 1/5, b = 4/5, l2 = 1, and l3 = 1 

 
Figure 12. Friction force vs. averaged flow rate 

for various values of l2 at f = 0.6, k = 1, t = 0.4, 
a = 1/5, b = 4/5, l1 = 4, and l3 = 1 
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Figure 13. Friction force vs. averaged flow rate 

for various values of l3 at f = 0.6, k = 1, t = 0.4,  
a = 1/5, b = 4/5, l1 = 4, and l2 = 1 
 

 
 

 

 
Figure 14. Friction force vs. averaged flow rate 
for various values of k at f = 0.6, t = 0.4, a = 1/5,  

b = 4/5, l1 = 4, l2 = 1, ans l3 = 1 

 
Figure 15. Friction force vs. averaged flow rate 

for various values of t at f = 0.6, k = 1,  a = 1/5,  
b = 4/5, l1 = 4, l2 = 1, and l3 = 1 

 
Figure 16. Friction force vs. averaged flow rate 

for various values of f at t = 0.4, k = 1,  a = 1/5,  
b = 4/5, l1 = 4, l2 = 1, and l3 = 1 

 

 

Figures 17-24 are illustrated in order to study the variations of p
 
 with Q  for 

different fractional and ordinary models of fluids such as FBM (f = 0.6, k = 1, t = 0.4, a = 

= 1/5, b = 4/5, l1 = 4,  l2 = 0.1,  l3 = 1), BM (f = 0.6, k = 1, t = 0.4, a = 1, b = 1,  l1 = 4, 

l2 = 0.1, l3 = 1), FOBM (f = 0.6, k = 1, t = 0.4, a = 1/5, b = 4/5,  l1 = 4,  l2 = 0, l3 = 1), 

OBM (f = 0.6, k = 1, t = 0.4, l1 = 4, l2 = 0.1, l3 = 1, a = 1, b = 1), FMM (f = 0.6, k = 1, t = 

= 0.4, a = 1/5, b = 4/5, l1 = 4, l2 = 0, l3 = 0) MM (f = 0.6, k = 1, t = 0.4, a = 1, b = 1, l1 = 

= 4, l2 = 0, l3 = 0), FSGM (f = 0.6, k = 1, t = 0.4, a = 1/5, b = 4/5,  l1 = 0, l2 = 0, l3 = 1), 

and SGM (f = 0.6, k = 1, t = 0.4, a = 1, b = 1, l1 = 0, l2 = 0, l3 = 1). It is observed that the 

pressure rise for standard models is more significant in comparison to their corresponding 

fractional models. Also it is seen that the sequence of increasing order of pressure rise for 

different fractional models as FOBM > FMM > FSGM > FBM. Similar observations are 

found for standard models of fluids such as OBM > MM > SGM > BM. Finally, the 

maximum pressure rise for OBM and minimum pressure rise for BM are noticed. 
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Figure 17. Pressure vs. averaged flow rate for 
FBM (f = 0.6, k = 1, t = 0.4,  a = 1/5, b = 4/5,  
l1 = 4, l2 = 0.1, and l3 = 1) 

 
Figure 18. Pressure vs. averaged flow rate for 
BM (f = 0.6, k = 1, t = 0.4,  a = 1, b = 1, l1 = 4,  

l2 = 0.1, and l3 = 1) 

 

 
Figure 19. Pressure vs. averaged flow rate for 
FOBM (f = 0.6, k = 1, t = 0.4,  a = 1/5, b = 4/5,  
l1 = 4, l2 = 0, and l3 = 1) 

 
Figure 20. Pressure vs. averaged flow rate for 
OBM (f = 0.6, k = 1, t = 0.4,  a = 1, b = 1, l1 = 4,  

l2 = 0, and l3 = 1) 

 

 

 
Figure 21. Pressure vs. averaged flow rate for 
FMM (f = 0.6, k = 1, t = 0.4,  a = 1/5, b = 4/5,  

l1 = 4, l2 = 0, and l3 = 0) 

 
Figure 22. Pressure vs. averaged flow rate for MM 
(f = 0.6, k = 1, t = 0.4,  a = 1, b = 1, l1 = 4, l2 = 0,  

and l3 = 0) 
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Figure 23. Pressure vs. averaged flow rate for 
FSGM (f = 0.6, k = 1, t = 0.4,  a = 1/5, b = 4/5,  
l1 = 0, l2 = 0, and l3 = 1) 

 
Figure 24. Pressure vs. averaged flow rate for 
SGM (f = 0.6, k = 1, t = 0.4,  a = 1, b = 1, l1 = 0,  
l2 = 0, and l3 = 1) 

Concluding remarks 

In this analysis, influence of wall slip condition on peristaltic flow of viscoelastic 

fluid with fractional Burgers’ model under the long wavelength and low Reynolds number 

assumption through a channel has been discussed. Approximate analytical solutions have 

been obtained by homotopy analysis method. Interaction of various emerging parameters with 

peristaltic flow is studied with the help of illustrations. The comparison among the results of 

different models of fluids is made. On the basis of presented analysis, some interesting 

observations have been disclosed: 

 pressure rise across one wavelength diminishes by increasing averaged flow rate, 

 with the increase in a, the pressure rise decreases, 

 the behavior of b on the pressure rise is opposite to that of a, 

 pressure rise increases with increase in l1, l3, but increase in l2 reduces the pressure rise, 

 the behavior of k on pressure rise is similar to that of a, 

 an increase in f increases the pressure rise and also similar character of t on pressure rise 

is pointed out, 

 friction force has opposite character when compared with that of pressure rise, 

 pressure rise for fractional models of the fluids is noted much lesser than that for the cor-

responding standard models, and 

 the maximum pressure rise for OBM and minimum pressure rise for BM is remarkable. 

Nomenclature 

a  –  semi-width of the channel, [m] 
c  –  wave velocity, [ms–1] 
F  –  friction force, [kgms–2] 
h  –  transverse displacement of the wall, [m] 

 –  non-zero auxiliary parameter 
k  –  slip parameters, [s] 

p  –  pressure, [kgm–1s–2] 
Q  –  volume flow rate, [m3s–1] 
S  –  shear stress, [kgm–1s–2] 

t  –  time, [s] 
u  –  axial velocity, [ms–1] 

 

v  –  transverse velocity, [ms–1] 

Greek symbols 

  –  rate of shear strain, [radian] 

  –  transverse co-ordinate [m] 
  –  wavelength, [m] 

1 2 3 4, , ,    –  material constants, [s] 
  –  viscosity, [kgm–1s–1] 
  –  axial co-ordinate, [m] 
  –  fluid density, [kgm–3] 
  –  amplitude of the wave, [m] 
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