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a b s t r a c t

In the present paper, we obtain the approximate solution of Abel’s integral equation by
using the following powerful, efficient but simple methods:
(i) He’s homotopy perturbation method (HPM),
(ii) Modified homotopy perturbation method (MHPM),
(iii) Adomian decomposition method (ADM) and
(iv) Modified Adomian decomposition method (MADM).
The validity and applicability of these techniques are illustrated through various

particular cases which demonstrate their efficiency and simplicity in solving these types
of integral equations compared with the other existing methods.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The real world problems in scientific fields such as solid state physics, plasma physics, fluidmechanics, chemical kinetics
and mathematical biology are nonlinear in general when formulated as partial differential equations or integral equations.
In the last two decades,many powerful and simplemethods have been proposed and applied successfully to approximate

various types of singular integral equations with a wide range of applications [1–19]. In this paper, we discuss the three
different methods namely, He’s homotopy method (HPM), Adomian decomposition method (ADM) and modified Adomian
decomposition method (MADM) proposed by He [1–6], Adomian [7–12] andWazwaz [13–16] respectively and apply these
to solve singular Volterra integral equations with Abel’s kernel.
Abel studied a particular integral equation of the Volterra type, in order to solve the following problem.
Let a material point of mass m move under the influence of gravity on a smooth curve lying in a vertical plane. Let the

time t which is required for the point to move along the curve from the height x to the lowest point of the curve be a given
function f of x. The answer to the question, ‘‘what is the equation of the curve?’’ leads to the integral equation

f (x) =
∫ x

0

ϕ(t)
√
2g(x− t)

dt, (1)

where g is the acceleration due to the gravity.
Abel’s equation is one of the integral equations derived directly from a concrete problem of physics, without passing

through a differential equation. The generalized Abel’s integral equation on a finite segment was studied by Zeilon [20].

2. Homotopy perturbation method and its modification

In this method, using the homotopy technique of topology, a homotopy is constructedwith an embedding parameter p ∈
[0, 1]which is considered as a ‘‘small parameter’’. This method became very popular amongst the scientists and engineers,
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even though it involves continuous deformation of a simple problem into a more difficult problem under consideration.
Most of the perturbationmethods depend on the existence of a small perturbation parameter but many nonlinear problems
have no small perturbation parameter at all. Many new methods have been proposed in the late nineties to solve such
nonlinear equations devoid of such small parameters [21–24]. Late 1990s saw a surge in applications of homotopy theory in
the scientific and engineering computations [1,2,25,26]. When the homotopy theory is coupled with perturbation theory it
provides a powerful mathematical tool [27–29]. A review of recently developedmethods of nonlinear analysis can be found
in [30]. To illustrate the basic concept of HPM, consider the following nonlinear functional equation

A(u) = f (r), r ∈ Ω, with the boundary conditions : B
(
u,
∂u
∂n

)
= 0, r ∈ ∂Ω, (2)

where A is a general functional operator, B is a boundary operator, f (r) is a known analytic function, and ∂Ω is the boundary
of the domainΩ . The operator A is decomposed as A = L+ N , where L is the linear and N is the nonlinear operator. Hence
Eq. (2) can be written as

L(u)+ N(u)− f (r) = 0, r ∈ Ω.

We construct a homotopy v(r, p) : Ω × [0, 1] → R satisfying

H(v, p) = (1− p) [L(v)− L(u0)]+ p [A(v)− f (r)] = 0, p ∈ [0, 1], r ∈ Ω. (3)

Hence,

H(v, p) = L(v)− L(u0)+ pL(u0)+ p [N(v)− f (r)] = 0, (4)

where u0 is an initial approximation for the solution of Eq. (2). As

H(v, 0) = L(v)− L(u0) and H(v, 1) = A(v)− f (r),

it shows thatH(v, p) continuously traces an implicitly defined curve from a starting pointH(u0, 0) to a solutionH(v, 1). The
embedding parameter p increases monotonously from zero to one as the trivial linear part L(u) = 0 deforms continuously
to the original problem A(u) = f (r). The embedding parameter p ∈ [0, 1] can be considered as an expanding parameter [1]
to obtain

v = v0 + pv1 + p2v2 + · · · . (5)

The solution is obtained by taking the limit as p tends to 1, in Eq. (5). Hence

u = limp→1 v = v0 + v1 + v2 + · · · . (6)

The series (6) converges for most cases and the rate of convergence depends on A(u)− f (r) [1].
We consider the following singular Volterra integral equation of the second kind

y(x) = f (x)+
∫ x

0

y(t)
√
x− t

dt, 0 ≤ x ≤ 1. (7)

To solve Eq. (7) by He’s HPM, we consider the following convex homotopy:

(1− p) [L(x)− y0(x)]+ p
[
L(x)− f (x)−

∫ x

0

L(t)
√
(x− t)

dt
]
= 0. (8)

We seek the solution of (8) in the following form,

L(x) =
∞∑
i=0

piLi(x), (9)

where Li(x), i = 0, 1, 2, . . . are the functions to be determined. We use the following iterative scheme to evaluate Li(x).
The initial approximation to the solution L0(x) = y0(x) is taken to be f (x), therefore,

L0(x) = y0(x) = f (x).

Substituting (9) into (8) and equating the coefficients of pwith the same power, one gets

p0: L0(x) = f (x)

p1: L1(x)−
∫ x

0

L0(t)
√
(x− t)

dt = 0⇒ L1(x) =
∫ x

0

f (t)
√
(x− t)

dt

p2: L2(x)−
∫ x

0

L1(t)
√
(x− t)

dt = 0⇒ L2(x) =
∫ x

0

L1(t)
√
(x− t)

dt

p3: L3(x)−
∫ x

0

L2(t)
√
(x− t)

dt = 0⇒ L3(x) =
∫ x

0

L2(t)
√
(x− t)

dt, . . . .
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Hence, the solution of Eq. (7) is given by,

y(x) = limp→1 L(x) =
∞∑
i=0

Li(x). (10)

In the modified homotopy perturbation method (MHPM), we break f (x) into an infinite sum as follows

f (x) =
∞∑
i=0

ki(x), and define

ψ(x; p) =
∞∑
i=1

piki(x)→ f (x) as p→ 1. (11)

The initial approximation to the solution is taken to be k0(x). Substituting (9) and (11) into (8) and equating coefficients of
pwith the same power one gets the exact solution.
It is to be noted that the rate of convergence of the series (10) depends upon the initial choice y0(x) as illustrated by the

given numerical examples.

3. The Adomian decomposition method and its modification

The Adomian decompositionmethod has been applied to a wide class of functional equations [7–12,31] by scientists and
engineers since the beginning of the 1980s. Adomian gives the solution as an infinite series usually converging to a solution.
Consider the following singular Volterra integral equation of the second kind of the form

y(x) = f (x)+
∫ x

0
k(x, t)y(t) dt, f (x) ∈ L2(R). (12)

The ADM assumes an infinite series solution for the unknown function y(x), given by

y(x) =
∞∑
n=0

yn(x). (13)

Substituting (13) into (12), we get∑
n

yn(x) = f (x)+
∫ x

0
k(x, t)

∑
n

yn(t) dt. (14)

The ADM uses the following recursive relation to evaluate the various iterates y1, y2, y3,. . . in (13)

y0(x) = f (x), yn+1(x) =
∫ x

0
k(x, t)yn(t) dt, n ≥ 0. (15)

Recently, Wazwaz [15] proposed a modification in ADM by constructing the zeroth component y0(x) of the decomposition
in a slightly different way. He splitted the function f (x) as the sum of two functions f1(x) and f2(x) in L2(R) and suggested
the following recursive scheme:

y0(x) = f1(x), y1(x) = f2(x)+
∫ x

0
k(x, t)y0(t) dt, and

yn+1(x) =
∫ x

0
k(x, t)yn(t) dt, n ≥ 1. (16)

This type of modification provides more flexibility to the ADM in solving complicated integral equations and avoids the
unnecessary complexity in calculating the Adomian polynomials. In this case, the decomposition series (14) has a rapid rate
of convergence in real physical problems. The rapid convergence ensures that only a few iterations are required to get the
accurate solution of the problem.
In this paper, we assume the kernel k(x, t) to be Abel’s kernel i.e.

k(x, t) =
1

√
(x− t)

, and 0 ≤ x ≤ 1.

4. The application of HPM, MHPM, ADM and MADM

Example 4.1. Consider the singular Volterra integral equation [32]

y(x) = x2 +
16
15
x5/2 −

∫ x

0

y(t)
√
x− t

dt, 0 ≤ x ≤ 1, (17)

with x2 as the exact solution.
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Fig. 1. The exact and the approximate solutions of the singular Volterra integral equation (17), in Example 4.1, case 1(a).

Fig. 2. The error E(x) for Example 4.1, case 1(a).

Case 1(a): Homotopy perturbation method
A homotopy perturbation method can be constructed as follows (from Eq. (8)):

H(y, p) = y(x)− x2 −
16
15
x5/2 + p

∫ x

0

y(t)
√
x− t

dt. (18)

One can now try to obtain a solution of Eq. (16) in the form of

L(x) = L0(x)+ pL1(x)+ p2L2(x)+ · · · (19)

where Li(x), i = 0, 1, 2, . . . are functions yet to be determined. From Eqs. (18) and (19) the approximations are:

p0: L0(x) = x2 +
16
15
x5/2

p1: L1(x)+
∫ x

0

L0(t)
√
(x− t)

dt = 0⇒ L1(x) = −
16
15
x5/2 −

πx3

3

p2: L2(x)+
∫ x

0

L1(t)
√
(x− t)

dt = 0⇒ L2(x) =
πx3

3
+
32
105

πx7/2

p3: L3(x)+
∫ x

0

L2(t)
√
(x− t)

dt = 0⇒ L3(x) = −
32
105

πx7/2 −
π2x4

12
, . . . ,

p18: L18(x)+
∫ x

0

L18(t)
√
(x− t)

dt = 0⇒ L18(x) =
π9x11

19958400
+

8192
316234143225

π9x23/2.

Hence, from Eq. (10), the solution is

y(x) =
∞∑
i=0

Li(x) =
n∑
i=0

Li(x)+ O(x3+
n
2 ) = x2 + O(x3+n/2) = x2 as n→∞. (20)

Figs. 1–3 show the comparison between the exact solution y(x) (solid line) and the approximate solution g(x) (dotted line)
obtained by truncating (20) at level n = 18, the error E(x) = g(x) − y(x) and the relative error R(x) = g(x)−y(x)

y(x) · 100
respectively.
Case 1(b) Choosing the initial guess L0(x) = x, the following iterates of the solution are obtained

L0(x) = x, L1(x) = −x+ x2 −
4
3
x3/2 +

16
15
x5/2, L2(x) =

4
3
x3/2 −

16
15
x5/2 +

1
2
πx2 −

1
3
πx3
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Fig. 3. The relative error R(x) for Example 4.1, case 1(a).

Fig. 4. The exact and the approximate solutions of the singular Volterra integral equation (17), in Example 4.1, case 1(b).

Fig. 5. The error E(x) for Example 4.1, case 1(b).

L3(x) = −
1
2
πx2 +

1
3
πx3 −

8
15
πx5/2 +

32
105

πx7/2, . . .

L18(x) =
1

3628800
π9x10 −

1
19958400

π9x11 +
81024

654729075
π8x19/2 −

4096
13749310575

π8x21/2.

Therefore, the solution is given by,

y(x) =
∞∑
i=0

Li(x) =


n∑
i=0

Li(x)+ O(xm+2) = x2 + O(xm+2), n = 2m

n∑
i=0

Li(x)+ O(xm+5/2) = x2 + O(xm+5/2), n = 2m+ 1
→ x2 as n→∞.

The above series is truncated again at level n = 18 to obtain Figs. 4–6 conveying the same information for case 1(b) as
Figs. 1–3 did for the case 1(a).
Case 1(c):Modified Homotopy perturbation method
Writing f (x) =

∑
∞

i=0 ki(x), where k0(x) = x
2, k1(x) = 16

15x
5/2 and ki(x) = 0 for i ≥ 2, we get L0(x) = x2. Hence, the

various iterates are as follows:

p0: L0(x) = x2, p1: L1(x) =
16
15
x5/2 −

∫ x

0

L0(t)
√
(x− t)

dt ⇒ L1(x) = 0

p2: L2(x) =
∫ x

0

L1(t)
√
(x− t)

dt ⇒ L2(x) = 0.
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Fig. 6. The relative error R(x) for Example 4.1, case 1(b).

Therefore, one can see that Ln(x) = 0, for all n ≥ 1 and hence,

y(x) = L0(x)+ L1(x)+ L2(x)+ · · · = x2, is the exact solution. (21)

Case 1(d): Adomian decomposition method
From the recursive scheme (15), we get

y0(x) = x2 +
16
15
x5/2, y1(x) = −

∫ x

0

y0(t)
√
x− t

dt = −
16
15
x5/2 −

πx3

3
,

y2(x) = −
∫ x

0

y1(t)
√
x− t

dt =
πx3

3
+
32
105

πx7/2, y3(x) = −
∫ x

0

y2(t)
√
x− t

dt = −
32
105

πx7/2 −
π2x4

12
,

y4(x) =
π2x4

12
+
64
945

π2x9/2, . . . , y18(x) =
π9x11

19958400
+

8192
316234143225

π9x23/2.

These iterates are the same as obtained from HPM. Hence, the solution is given by

y(x) =
n∑
i=0

yi(x)+ O(x3+n/2) = x2 as n→∞. (22)

Case 1(e):Modified Adomian decomposition method
As suggested before, we split f (x) into two parts f1(x) = x2 and f2(x) = 16

15x
5/2 and obtain

y0(x) = x2, y1(x) =
16
15
x5/2 −

∫ x

0

y0(t)
√
x− t

dt = 0, therefore,

yn+1(x) = 0, n ≥ 0. (23)

Hence,

y(x) =
∞∑
n=0

yn(x) = x2, which is the exact solution, as well. (24)

Example 4.2. Consider the singular Volterra integral equation [33]

y(x) = x+
4
3
x3/2 −

∫ x

0

y(t)
√
x− t

dt, 0 ≤ x ≤ 1, (25)

which has x as the exact solution.
Case 1(a): Homotopy perturbation method
A homotopy perturbation method can be constructed as:

H(y, p) = y(x)− x−
4
3
x3/2 + p

∫ x

0

y(t)
√
x− t

dt, (26)

giving various Li(x) as follows:

L0(x) = x+
4
3
x3/2, L1(x) = −

4
3
x3/2 −

πx2

2
, L2(x) =

πx2

2
+
8
15
πx5/2, . . .

L18(x) =
1

3628800
π9x10 +

2048
13749310575

π9x21/2.
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Fig. 7. The exact and the approximate solutions of the singular Volterra integral equation (25), in Example 4.2, case 1(a).

Fig. 8. The error E(x) for Example 4.2, case 1(a).

Fig. 9. The relative error R(x) for Example 4.2, case 1(a).

Hence, from Eq. (10), the solution is

y(x) =
n∑
i=0

Li(x)+ O(x2+n/2)→ x as n→∞. (27)

Figs. 7–9 show the comparison between the exact and approximate solutions, the error between them and the relative error
respectively when the series (27) is truncated at level n = 18.
Case 1(b):Modified Homotopy perturbation method
Arguments similar to Example 4.1 case 1(c) suggest to choose L0(x) = x, thus obtaining the various components as,

L0(x) = x, Ln(x) = 0 for all n ≥ 1.

Hence, the solution is given as

y(x) = L0(x)+ L1(x)+ L2(x)+ · · · = x. (28)

Case 1(c): Adomian decomposition method
As explained in Eq. (15), we have

y0(x) = x+
4
3
x3/2, y1(x) = −

4
3
x3/2 −

π

2
x2, y2(x) =

π

2
x2 +

8π
15
x5/2,

y3(x) = −
8π
15
x5/2 −

π2

6
x3, y4(x) =

π2

6
x3 +

16π2

105
x7/2, . . .

y18(x) =
1

3628800
π9x10 +

2048
13749310575

π9x21/2.
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Hence, the approximate solution is given by

y(x) =
∞∑
i=0

yi(x) =
n∑
i=0

yi(x)+ O(x2+n/2) ≈ x. (29)

Case 1(d):Modified Adomian decomposition method
By splitting f (x) into two parts f1(x) = x and f2(x) = 4

3x
3/2, we get

y0(x) = x, therefore, yn+1(x) = 0, n ≥ 0. (30)

Hence,

y(x) =
∞∑
n=0

yn(x) = x, which is the exact solution, as well. (31)

Example 4.3. Consider the singular Volterra integral equation [32]

y(x) = 2
√
x−

∫ x

0

y(t)
√
x− t

dt, 0 ≤ x ≤ 1, (32)

which has y(x) = 1 − eπxerfc(
√
πx) as the exact solution, where the complementary error function erfc is defined as,

erfc(x) = 2
√
π

∫
∞

x e
−u2 du.

Case 1(a): Homotopy perturbation method
A homotopy perturbation method is constructed as follows:

H(y, p) = y(x)− 2
√
x+ p

∫ x

0

y(t)
√
x− t

dt. (33)

The various Li(x),= 0, 1, 2, . . ., are:

L0(x) = 2
√
x, L1(x) = −πx, L2(x) =

4
3
πx3/2, L3(x) = −

π2x2

2
, L4(x) =

8
15
π2x5/2, . . . .

Hence, the solution is given as

y(x) =
∞∑
n=0

Ln(x)

= 2
√
x− πx+

4
3
πx3/2 −

1
2
π2x2 +

8
15
π2x5/2 −

1
6
π3x3 +

16
105

π3x7/2 − · · ·

=

∞∑
r=1

(−1)r−1(πx)r/2

Γ
( r
2 + 1

) = 1− E 1
2

(
−
√
πx
)
,

= 1− eπxerfc(
√
πx) (the exact solution), (34)

where Eα(z) =
∑
∞

r=0
zr

Γ (αr+1) , (α > 0) is the Mittag–Leffler function in one parameter.
Case 1(b): Adomian decomposition method
For this problem, the various components yi(x) are given as:

y0(x) = 2
√
x, y1(x) = −πx, y2(x) =

4
3
πx3/2, y3(x) = −

π2x2

2
,

y4(x) =
8
15
π2x5/2, y5(x) = −

π3x3

6
, y6(x) =

16
105

π3x7/2, . . . and so on.

Thus the solution y(x) is obtained as,

y(x) =
∞∑
n=0

yn(x) =
∞∑
r=1

(−1)r−1(πx)r/2

Γ
( r
2 + 1

) ,

= 1− eπxerfc(
√
πx) (the exact solution). (35)

From the Figs. 10 and 11 (plotted by taking 24 iterates and x = 0, 0.01 . . . , 1), we conclude that the approximate solution
of problem (32), given by ((34)/ (35)), is quite accurate.
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Fig. 10. The exact and the approximate solutions of the singular Volterra integral equation (32) in Example 4.3 are represented by y(x) (solid line) and
g(x) (dotted line) respectively.

Fig. 11. The error E(x) = y(x)− g(x) for the singular Volterra integral equation (32) in Example 4.3.

Fig. 12. The exact and the approximate solutions of the singular Volterra integral equation (36), in Example 4.4, case 1(a).

Fig. 13. The error E(x) for Example 4.4, case 1(a).

Example 4.4. Consider the singular Volterra integral equation

y(x) =
√
x+

πx
2
−

∫ x

0

y(t)
√
x− t

dt, 0 ≤ x ≤ 1, (36)

which has y(x) =
√
x as the exact solution.

Case 1(a): Homotopy perturbation method (Figs. 12–14).
A homotopy perturbation method can be constructed as follows (from Eq. (8)):

H(y, p) = y(x)−
√
x−

πx
2
+ p

∫ x

0

y(t)
√
x− t

dt. (37)
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Fig. 14. The relative error R(x) for Example 4.4, case 1(a).

One can now try to obtain a solution of Eq. (37) in the form of

L(x) = L0(x)+ pL1(x)+ p2L2(x)+ · · · (38)

where Li(x), i = 0, 1, 2, . . . are functions yet to be determined. From Eqs. (37) and (38) the approximations are:

p0: L0(x) =
√
x+

π

2
x

p1: L1(x)+
∫ x

0

L0(t)
√
(x− t)

dt = 0⇒ L1(x) = −
1
2
πx−

2
3
πx3/2.

Similarly,

L2(x) =
1
4
π2x2 +

2
3
πx3/2, L3(x) = −

1
4
π2x2 −

4
15
π2x5/2, . . .

L18(x) =
1

7257600
π10x10 +

512
654729075

π9x19/2.

Hence, from Eq. (10), the solution is given by

y(x) =
∞∑
i=0

Li(x) =
√
x. (39)

Case 1(b):Modified Homotopy perturbation method
A modified homotopy perturbation method is constructed as follows:

p0: L0(x) =
√
x, p1: L1(x) =

π

2
x−

∫ x

0

L0(t)
√
(x− t)

dt ⇒ L1(x) = 0,

p2: L2(x) =
∫ x

0

L1(t)
√
(x− t)

dt ⇒ L2(x) = 0.

Therefore, one can see that Ln(x) = 0, for all n ≥ 1 and hence,

y(x) = L0(x)+ L1(x)+ L2(x)+ · · · =
√
x, is the exact solution.

As Adomian decomposition method gives the same series solution as given by HPM, we will skip this method from now
onwards.
Case 1(c):Modified Adomian decomposition method
By splitting f (x) into two parts f1(x) =

√
x and f2(x) = π

2 x, we get

y0(x) =
√
x, therefore, yn+1(x) = 0, n ≥ 0. (40)

Hence,

y(x) =
∞∑
n=0

yn(x) =
√
x, which is the exact solution, as well. (41)

Example 4.5. Consider the singular Volterra integral equation

y(x) =
1
√
x
+ π −

∫ x

0

y(t)
√
x− t

dt, 0 ≤ x ≤ 1, (42)

which has y(x) = 1
√
x as the exact solution.
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Fig. 15. The exact and the approximate solutions of the singular Volterra integral equation (42), in Example 4.5, case 1(a).

Fig. 16. The error E(x) for Example 4.5, case 1(a).

Fig. 17. The relative error R(x) for Example 4.5, case 1(a).

Case 1(a): Homotopy perturbation method
A homotopy perturbation method can be constructed as follows (from Eq. (8)):

H(y, p) = y(x)−
1
√
x
− π + p

∫ x

0

y(t)
√
x− t

dt. (43)

The various iterates are given as:

L0(x) =
1
√
x
+ π, L1(x) = −π − 2πx1/2, L2(x) = π2x+ 2πx1/2,

L3(x) = −π2x−
4
3
π2x3/2, . . .

L22(x) =
1

39916800
π12x11 +

2048
13749310575

π11x21/2.

Hence,

y(x) =
∞∑
i=0

Li(x) =
1
√
x
. (44)

The Figs. 15–17 are self explanatory.
Case 1(b):Modified Homotopy perturbation method
A modified homotopy perturbation method is constructed as follows:

H(y, p) = y(x)−
1
√
x
− π + p

∫ x

0

y(t)
√
x− t

dt. (45)
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p0: L0(x) =
1
√
x
, p1: L1(x) = π −

∫ x

0

L0(t)
√
(x− t)

dt ⇒ L1(x) = 0.

Therefore, one can see that Ln(x) = 0, for all n ≥ 1 and hence,

y(x) = L0(x)+ L1(x)+ L2(x)+ · · · =
1
√
x
, is the exact solution.

Case 1(c):Modified Adomian decomposition method
By splitting f (x) into two parts f1(x) = 1

√
x and f2(x) = π , we get

y0(x) =
1
√
x
, therefore, yn+1(x) = 0 n ≥ 0. (46)

Hence, y(x) =
∑
∞

n=0 yn(x) =
1
√
x , which is the exact solution, as well.

As MHPM is more convenient and simple to use, we solve the following examples by using MHPM and MADM.

Example 4.6. Consider the singular Volterra integral equation

y(x) =
1
1+ x

+
2 arc sinh

√
x

√
1+ x

−

∫ x

0

y(t)
√
x− t

dt, 0 ≤ x ≤ 1, (47)

which has y(x) = 1
1+x as the exact solution.

Case 1(a):Modified Homotopy perturbation method
A modified homotopy perturbation method is constructed as follows:

H(y, p) = y(x)−
1
1+ x

−
2 arc sinh

√
x

√
1+ x

+ p
∫ x

0

y(t)
√
x− t

dt. (48)

p0: L0(x) =
1
1+ x

, p1: L1(x) =
2 arc sinh

√
x

√
1+ x

−

∫ x

0

L0(t)
√
(x− t)

dt ⇒ L1(x) = 0

p2: L2(x) =
∫ x

0

L1(t)
√
(x− t)

dt ⇒ L2(x) = 0⇒ Li(x) = 0 for i > 2.

Hence,

y(x) = L0(x)+ L1(x)+ L2(x)+ · · · =
1
1+ x

, is the exact solution.

Case 1(b):Modified Adomian decomposition method
By splitting f (x) into two parts f1(x) = 1

1+x and f2(x) =
2 arc sinh

√
x

√
1+x

, we get

y0(x) =
1
1+ x

, therefore, yn+1(x) = 0, n ≥ 0. (49)

Therefore, y(x) =
∞∑
n=0

yn(x) =
1
1+ x

, which is the exact solution, as well. (50)

Example 4.7. Consider the singular Volterra integral equation

y(x) = |x− c| +
2
3

∣∣√x (2x− 3c)∣∣− ∫ x

0

y(t)
√
x− t

dt, 0 ≤ x ≤ 1, (51)

which has y(x) = |x− c| as the exact solution.
Case 1(a):Modified Homotopy perturbation method
A modified homotopy perturbation method is constructed as follows:

H(y, p) = y(x)− |x− c| −
2
3

∣∣√x (2x− 3c)∣∣+ p ∫ x

0

y(t)
√
x− t

dt. (52)

Writing f (x) =
∑
∞

i=0 ki(x), where k0(x) = |x− c|, k1(x) =
2
3

∣∣√x (2x− 3c)∣∣ and ki(x) = 0 for i ≥ 2, we get L0(x) = |x− c|.
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Hence, the various iterates are as follows:

p0: L0(x) = |x− c| , p1: L1(x) =
2
3

∣∣√x (2x− 3c)∣∣− ∫ x

0

L0(t)
√
(x− t)

dt ⇒ L1(x) = 0.

Therefore, one can see that Ln(x) = 0, for all n ≥ 1 and hence,

y(x) = L0(x)+ L1(x)+ L2(x)+ · · · = |x− c| , is the exact solution.

Case 1(b):Modified Adomian decomposition method
By splitting f (x) into two parts f1(x) = |x− c| and f2(x) = 2

3

∣∣√x (2x− 3c)∣∣, we get
y0(x) = |x− c| , it is easy to see that, yn+1(x) = 0, ≥ 0. (53)

Hence, y(x) =
∞∑
n=0

yn(x) = |x− c| , which is the exact solution, as well. (54)

5. Conclusion

From the above examples, it is obvious that HPM and ADM give the same approximate solutions, where as when we
apply MHPM, the iterates become zero (as seen from the examples) from second iterates itself as is the case with MADM.
So MADM and HPM (with different choice for L0(x)) are much more efficient and simpler than HPM and ADM. The rate of
convergence for the series representing the solution obtained by HPM depends upon the initial choice L0(x).
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