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We consider a linear polymer chain in a disordered environment modeled by percolation clusters on a square
lattice. The disordered environment is meant to roughly represent molecular crowding as seen in cells. The
model may be viewed as the simplest representation of biopolymers in a cell. We show the existence of
intermediate states during stretching arising as a consequence of molecular crowding. In the constant distance
ensemble the force-extension curves exhibit oscillations. We observe the emergence of two or more peaks in
the probability distribution curves signaling the coexistence of different states and indicating that the transition
is discontinuous unlike what is observed in the absence of molecular crowding.
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I. INTRODUCTION

Every major change in cellular systems involves mechani-
cal movement at a single molecule level. Recent advances in
single molecule force spectroscopy �SMFS�, e.g., optical
tweezers, atomic force microscope, etc., have allowed cellu-
lar processes to be examined at the single molecule level
�1–4�. Moreover, by applying a force of the order of pN on
an isolated protein in vitro, the response of the force has been
studied in order to understand the elastic, structural, and
functional properties of proteins �2,5,6�. Modeling of pro-
teins using simplified interactions amenable to statistical-
mechanics analysis has been used extensively to theoretically
understand the outcomes of these experiments �7–10�.
Among the theoretical approaches lattice models despite
their simplicity have proved to be quite predictive and have
provided much important information about cellular pro-
cesses �11–15�.

New challenges have arisen in the area of protein folding
when removed from an artificial, controlled environment in
vitro and relocated to the cellular environment �16–19�. Cells
have a very crowded environment because they are com-
posed of many different kinds of biomolecules that may oc-
cupy a large fraction ��40%� of the total volume �Fig. 1�.
This condition leads to a phenomenon called “volume exclu-
sion” which is caused by the steric repulsion between differ-
ent molecules �20,21�. It is now known that molecular
crowding can influence the stability, dynamics, and function
of proteins. Thus far, in theoretical modeling, the cellular
environment has been considered as homogeneous with each
monomer �amino acid� interacting with all its nearest neigh-
bors �14,15� of which there is a fixed number for each given
lattice. In vivo, the cellular environment and the interactions
involved in the stability of proteins are no longer homoge-
neous. It is essential to somehow model this disordered me-
dia say via the introduction of randomness into the connec-
tivity of the underlying lattice. Linear polymer chains
trapped in a porous �random� media have been studied in
detail because of the technological importance in filtration,

gel permeation chromatography, etc. �22–24�. However, the
response of a polymer to a force remains an elusive problem
which has thus far not been studied in detail.

The aim of this paper is to study the effect of an applied
force on a polymer in an artificially reproduced environment
with molecular crowding similar to what is observed in a
cell. In general the effect of the force on the reaction coor-
dinate �end-to-end distance� �25� is mainly determined by the
competition between a loss of configurational entropy and a
gain in internal energy due to the stretching of the protein
caused by the applied force. The confinement of the proteins
to a restricted portion of a cell leads to a further loss in
entropy because of the molecular crowding and this may
affect the behavior of the proteins. Since SMFS experiments
are performed on proteins with only a few monomers we
expect that modeling the effect of a force on a finite chain in
a disordered environment may provide a better understand-
ing of the unfolding process in vivo. In disordered media
information about the dependence of the reaction coordinate
and the probability distribution of the reaction coordinate on
the parameters of the system are difficult to obtain analyti-
cally and one therefore has to resort to numerical studies.

The freely jointed chain �FJC� and the wormlike chain
�WLC� �developed for polymers� �9,10� are models which
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FIG. 1. Schematic representation of a polymer chain in a disor-
dered medium. Black and white circles represent available and un-
available sites, respectively. The imposed restriction of unavailabil-
ity of certain sites gives rise to a “volume exclusion” of about 40%
as seen in the cell. One end of the polymer chain is kept fixed while
a force F is applied at the other end. Dashed line corresponds to
nearest-neighbor attractive interaction among monomers.
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have been used extensively in order to understand the un-
folding process and they correctly describe the force exten-
sion �F-x� curves in the intermediate and high force regime.
However, these models ignore excluded volume effects in
their description. Off lattice simulations do provide much
important information about unfolding processes �11�, but
the exact density of states over the entire force regime is
difficult to obtain. Recently, exact and complete information
about the density of states was obtained using exact enu-
meration technique. Such studies can reproduce many quali-
tative features of the force-induced transitions as well as re-
veal many new insights into the mechanisms governing the
cellular processes �12–14,26–28�.

II. MODEL

We model the polymer chain as self-attracting self-
avoiding walks �SASAWs� whose one end is kept fixed and a
force is applied at the other end. The confinement imposed
by molecular crowding has been modeled by generating site
percolation clusters �23,24,29� on the underlying square lat-
tice of M sites with a fixed density p of available sites. In
order to model the “volume exclusion,” which is about 40%
of the total volume �20,21�, we choose a density p of avail-
able sites just above the percolation threshold pc�=0.5928�
�24�. It means that a SASAW cannot access about 40% of the
volume as happens in the cell. The percolation process gives
rise to a distribution of clusters, which will vary in size from
isolated disorder sites up to clusters with an extent spanning
the entire system. Due to the randomness of the clusters the
ground state of the system will not be fixed �as is the case on
a regular lattice�, but may vary with each realization. Be-
cause of the steric repulsion between the molecule of interest
and the surrounding biomolecules �20,21�, in the present
model we do not consider interactions between the polymer
and the disorder sites. The model can readily be extended to
three dimensions �3D� �14�. The qualitative nature of the F-x
curve should remain the same. But in the case of 3D lattices
the density of states can be calculated exactly for walks of
length up to only 20 steps and one therefore has to use other
methods, e.g., Monte Carlo simulation �14�, molecular dy-
namics �11� etc., to study such systems.

Since molecular crowding is a dynamical phenomenon
involving the appearance, disappearance, and movement of
voids, the internal structure of the cell changes continuously.
To model this we perform an averaging over many realiza-
tions while keeping pc constant. This ensures that the con-
centration of the crowding agent does not change, but the
internal structure may change as happens in the cell. Since
we are near to percolation threshold, every disorder realiza-
tion constitutes the partition function which is nonzero. The
partition function of the ith realization of the disorder con-
figuration may be written as

Zi = �
�Np,�x��

CN
�i��Np, �x��uNp��x�. �1�

Here CN
�i��Np , �x�� is the number of distinct conformations of

walks of length N in the ith realization of the disordered with
Np nonbonded nearest-neighbor pairs and whose end points

are a distance x apart. � is the Boltzmann weight for the
force defined as exp���F · x̂��, where x̂ is the unit vector
along the x axis. � is defined as 1

kT , where k is the Boltzmann
constant and T is the temperature. u=exp�−��� is the Boltz-
mann weight of nearest-neighbor interactions with energy �.
In the following, we set � /k=1 and focus our discussion on
the force-induced globule-coil transition on the percolative
lattice. Throughout this paper �¯� denotes an average over
various realizations and �¯	 denotes thermal averaging. In
the present study we enumerate all possible walks of length
N=45 steps on given percolation clusters using 15 000 real-
izations �Ntot� of the percolation process. For the sake of
comparison we also enumerate walks of the same length on
the square lattice with no disorder. It has been shown in
previous studies that the chain length considered here is suf-
ficient to predict the correct qualitative behavior and while
increasing the chain length yields better estimates of say the
phase boundary; the qualitative features of the phase-
diagram remain the same �27,28�.

The limit T→� corresponds to pure self-avoiding walks
�SAWs�, i.e., polymers in a good solvent �8�. We reproduced
the scaling proposed by Blavatska and Janke �24� for SAWs
on a percolation cluster as well as for the square lattice. In
Figs. 2�a� and 2�b� we plot ln Zi with i for two different sets
�5000 each� of realizations. In Fig. 2�c�, we have plotted the
histogram of ln Z. The resulting distributions overlap �within
statistical error bar� with each other having a common peak.

III. RESULTS

In studying properties of disordered systems one encoun-
ters two types of averages in the literature, namely, the an-
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FIG. 2. �Color online� �a� and �b� show the variation of ln Z for
two different sets of realizations �5000 each� at T=0.3 and F=0.3.
In �c� we plot a histogram of ln Z. Note that all the three histograms
overlap within statistical error bar. �d�–�f� are for T=1.0 and F
=1.0.
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nealed average and the quenched average �22,30�. In the case
of annealed averaging, conformational changes in the disor-
der have time scales which are very fast compared to the
motion of the polymers. Therefore, in the annealed case, av-
eraging has to be done over all possible conformations of the
disorder implying that Ntot→�. In the case of quenched dis-
order the biopolymers unfold very fast compared to the con-
formational changes �if any� of the disorder sites. In fact
neither type of averaging is entirely appropriate as far as the
unfolding of a biopolymer in the presence of continuously
moving crowding agents is concerned. It may be noted that
unfolding takes place on time scales on the order of micro-
seconds to a few seconds. In such a relatively short time span
the internal structure of a cell can change substantially but
not enough to access all possible conformations and hence
increasing the number of realization toward the limit of in-
finity is not an experimental prerequisite. In view of the time
scale involved in unfolding, we restrict ourselves to averag-
ing over a finite but large set of realizations which may
roughly mimic a real system in vivo. The number of realiza-
tions considered here is almost 20 times more than previous
studies �23�. The approximate annealed average of the reac-
tion coordinate in this case may be defined as

��x�	D =

1

Ntot
�i ��Np,�x�� x�i�CN

�i��Np, �x��uNp��x�

Z
, �2�

where Z=�iZi /Ntot and the summation is over Ntot realiza-
tions of the disorder. It may be noted that in the limit Ntot
→� the annealed average and the pure system will give the
same results and the two summations of Eq. �2� can be in-
terchanged. In this case there are roughly 2M possible con-
formations and hence summation over all of them is compu-
tationally impossible. The suffix “D” in Eq. �2� corresponds
to an approximate annealed averaging that depends on the
disorder realization. The quenched average of the reaction
coordinate for the ith realization is given by

�x�i�	Q =
��Np,�x�� x�i�CN

�i��Np, �x��uNp��x�

Zi
. �3�

The sample average over Eq. �3� can be written as

��x	Q� = �
i

�x�i�	Q/Ntot, �4�

which we call an average over quenched disorder.

A. Analysis in constant force ensemble

In Fig. 3�a� we show some of the representative plots of
quenched averaged reaction coordinate obtained from Eq. �3�
for different realizations. In Fig. 3�b� we plot the extension
versus the force for the approximate annealed disorder aver-
age ���x�	D� and the sample averaged quenched disorder
���x	Q�� at low temperature �T=0.3�. For the sake of com-
pleteness we also plot �x	 versus F for the pure case at the
same temperature. In the approximate annealed case we find
multistep plateaus which are absent in the pure case. Such
plateaus have been observed in the pure case at much lower
T during force induced unfolding �14,28�. It appears that
disorder reduces the entropy of the system �making the sol-
vent poorer� which causes the emergence of such plateaus.
We expect qualitatively similar behavior for other sets of
realizations with a finite Ntot and these plateaus will vanish
and approach the pure case in the limit Ntot→�. Notably
every specific realization shows such plateaus, which are in-
duced by the disorder. However sample averaging �Eq. �4��
over quenched disorder �Eq. �3�� smoothen the plateaus. At
high temperature the entropy of the system is high enough
that any effects of disorder vanish. As a consequence of this
the force-extension curve overlaps with the pure case as can
be seen from Fig. 3�c�.

B. Analysis in constant distance ensemble

It is known that in protein folding, the protein acquires a
unique �native� conformation among a large number of con-
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FIG. 3. �Color online� Figures show the variation of extension with force. In �a� we show some of the representative F-x curves for
different disorder realizations at T=0.3. �b� and �c� show the approximate annealed average and sample-averaged quenched disorder at low
T �0.3� and high T �1.0�. In these plots, we also show the pure case for comparison. The individual realization and approximate annealed
average exhibit multistep plateaus which are absent in the sample-averaged quenched and pure cases.

EFFECTS OF MOLECULAR CROWDING ON STRETCHING … PHYSICAL REVIEW E 79, 051801 �2009�

051801-3



formations and many biological functions depend on this.
However, in a “disordered protein” �31,32� there is no unique
native conformation and diseases such as Alzheimer are the
result of that. In fact the ground-state entropy of such mol-
ecules is comparatively larger than the native conformations
�unique in the case of a protein� but much less than the
entropy associated with the globule of the same length �31�.
It is therefore important to have a reference calculation
which predicts the shape of these curves in quasiequilibrium
in order to precisely estimate kinetic effects in the experi-
ments or in molecular or Langevin dynamics simulations
�13�. In the case of polymers we find that the residual en-
tropy of the globule on the percolation cluster is much less
than the entropy of the globule �pure case� on the square
lattice. Moreover, on the percolation cluster, the number of
interactions per monomer is not the same as on a pure square
lattice and this induces a heterogeneity in interactions along
the chain even for a homopolymer. The number of nearest
neighbors in this case varies between 0 and 2 in comparison
to the pure lattice where this number is always 2. Because of
this the present model may give some intrinsic features close
to such molecules because of the induced heterogeneity in
the interaction. Since atomic force microscopy �AFM� works
in the constant distance ensemble �CDE� �26,28�, we also
calculate �F	 in the CDE and plotted it against x �Fig. 4�. It is
interesting to note that the model presented here shows os-
cillations in the F-x curve for the approximate annealed case.
However, for the sample-averaged quenched disorder and
pure cases, such oscillations are absent.

C. Probability distribution

It has been shown that the probability distribution curves
P�x� provide important information about cellular processes
�26,27�. P�x� can be calculated from the following expres-
sions for the approximate annealed and averaged quenched
cases:

PA�x� =
�i �NP

CN
�i��Np, �x��uNp��x�

�i
Zi

�5�

and

PQ�x� =
1

Ntot
�

i


�NP
CN

�i��Np, �x��uNp��x�

Zi

� . �6�

For the pure, approximate-annealed, and sample-averaged
quenched disorder cases, the probability distribution curves
shown in Figs. 5 and 6 display qualitatively similar behavior
at low and high forces with T=0.3. For F=0 we find a peak
position corresponding to the collapsed state. At high F it
peaks around the stretched state. The collapse transition is of
second order in two dimensions �2D� �33� which can be seen
from the probability distribution curve shown in Fig. 5�b� for
the pure case. Near the transition point the peak broadens,
which indicates that the transition is continuous �Fig. 5�b��.
However, in the approximate annealed case �Figs. 6�a�–6�l��,
one can see the emergence and disappearance of peaks for
different F at T=0.3. With increasing F we see that the
height of one peak increases while others decrease. We find
at many different forces that the height of two peaks �at
different positions� becomes equal indicating the coexistence
of two states. These features are observed for each and every
realization of disorder. This gives the signature that the tran-
sition is no longer continuous.
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FIG. 4. �Color online� Same as Fig. 3, but at constant distance ensemble. The strong oscillations can be seen here for individual disorder
realizations and in the approximate annealed case, but absent in the pure and sample-averaged quenched cases.
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which shows the broadening of the peaks at F=0 and F=1.1.
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IV. CONCLUSIONS

Recently, Yuan et al. �34� studied the effect of concentra-
tion of dextran �disorder sites� which is quite below the pc on
the mechanical stability of protein molecules. They found
that average force increases with concentration in presence
of crowding agents �dextran�. For the low concentration,
force increases linearly, but above than 30% concentration it
is no more linear. Our early calculation for small realization
does show such behavior and we find that there is a cross-
over when concentration approaches to pc �35�.

In this work we have reproduced most of the studied be-
havior of a polymer chain at force F=0, e.g., scaling of the
probability distribution curve �SAWs� for pure and disor-
dered lattices �24�. Our results are also consistent with earlier
studies, i.e., at F=0, x is less than the pure case for approxi-

mate annealed averaging while greater for sample averaged
quenched case �Fig. 3�b�� �22,23�. The approximate annealed
average in fact represents the typical effect of the quenched
disorder case. However, entropy induced by sample averag-
ing over quenched realization smoothens the reaction coor-
dinate and we therefore observe a monotonic increasing ef-
fect in the force-extension curve. Similar features have also
been seen for individual disorder at high temperature where
entropy smoothens such plateaus.

We have modeled the unfolding process in a cell where
the polymer is surrounded by noninteracting biomolecules.
Our results based on exact enumeration technique clearly
show that disorder induces intermediate states because of the
heterogeneity in the interaction. The occurrence of peaks of
equal height in the probability distribution shows the coex-
istence of two states at different forces suggesting that the
transition is discontinuous in the case of finite chains. This
may be because the underlying structure �percolation clus-
ters� is no longer a regular lattice but a fractal �24�. At this
stage long chain simulation is required to verify this. It is
important to recall that experimentally observed coil-globule
transition is also first order. In constant distance ensemble
system probes local ground state and average of force is
calculated from them. Therefore, heterogeneity in nonbonded
nearest-neighbor interaction induced by disorder shows such
strong oscillation in the F-x curve. At this stage additional
work is needed to understand the effect of a force in the
cellular environment.
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transition is no longer continuous.
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