
Chapter-3 

MATHEMATICAL MODELING 

 
 

3.0 General 

Uplift pressure distribution in cracks of the concrete gravity dam changes in 

time and space during changing reservoir level along either propagating or 

existing crack in concrete gravity dams. The effect of creep phenomenon in 

the FPZ is assumed to cause only temporal variation of crack mouth opening. 

The effect of creep in dam body or crack FPZ has been assumed to be 

negligible in present study of structural behavior of the concrete gravity 

dam. Creep phenomenon in a FPZ of given crack is influenced by interaction 

of multiple cracks, fatigue, alkali-silica-reaction (ASR), crack location and its 

geometry etc. The influence of these factors on FPZ-creep and hence CMOD 

rate are not available in literatures. Therefore, simplified CMOD rate 

function for single crack, taken from literatures, has been used as CMOD rate 

generating functions. This CMOD rate generating function is used in the 

solution of transient uplift pressure in cracks of the concrete gravity dam 

using 1-D mass and momentum equation, discussed in Chapter 2. The effect 

of this uplift on dam crown deflection has been accomplished through the 

FEM formulation of plane-strain linear elastic equations. Also factor of safety 

against sliding has been evaluated after considering these uplift pressures. 

 

3.1 Transient Pressure in Single Crack 

Transient pressure variation in single cohesive crack is developed in present 

section. Transient nature of pressure is introduced through crack wall 

motion. The crack wall motion may be caused either by earthquakes, creep 

phenomenon in fracture process zone (FPZ) or fatigue due to reservoir level 
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variations. Crack length is assumed to be constant during each opening-

closing cycle and it changes only from one cycle to another. Due to uncertain 

value of fracture toughness the crack length are assumed iteratively for each 

cycle. 

 

3.1.1 Hydrodynamic Description of Water Flow with Moving 

Walls 

Based on the test results for temporal and spatial pressure variation along the 

crack length of existing and new cracks, Javanmardi et. al. (2005a, 2005b) 

developed the hydraulics of one dimensional water flow in a single crack 

under moving impermeable walls (Javanmardi et. al. 2005a). 

Due to pushing of the water by existing reservoir water pressure at crack 

mouth, water flows from crack mouth toward the crack tip during its first 

opening cycle in both existing and new cracks [Fig. 3.1(a)]. Water fills the 

voids developed due to crack opening and saturates completely the existing 

crack while propagating crack is saturated partially with saturation 

length	��� . The magnitude of pressure varies along full length of existing 

crack but in propagating crack pressure decreases from reservoir pressure �� 

at crack mouth to void pressure at the end of saturation length. The void is 

occupied by both water vapor and air. So the void pressure is determined by 

using certain thermodynamic equilibrium equations representing two-

component single phase flow. But when there is no air in the concrete, the 

pressure decreases to water vapor pressure (cavitation) and water vapor fills 

the voids. 

During crack closing, volume of the voids decreases due to squeezing out of 

water from existing crack [Fig.3.1 (a)] and propagating crack [Fig. 3.1(c)]. On 

increasing the crack closing velocity, the existing water is pressurized and 

now it flows in two opposite direction from a stagnation point along the 
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Opening Mode

Fig.3.1(a). Water flow and pressure distribution in existing crack 
Cavitation) with moving walls (Javanmardi et.

 

Opening Mode

Fig.3.1(b). Water flow and pressure distribution in existing crack 
Cavitation) with moving walls

 

Opening Mode

Fig.3.1(c). Water flow and pressure distribution in 
walls (Javanmardi et.

 

eling  

Opening Mode 

 

Closing Mode

Water flow and pressure distribution in existing crack 
with moving walls (Javanmardi et. al. 2005a). 

Opening Mode 

 

Closing Mode

Water flow and pressure distribution in existing crack 
with moving walls (Javanmardi et. al. 2005a). 

Opening Mode 

 

Closing Mode

Water flow and pressure distribution in new crack with moving 
walls (Javanmardi et. al. 2005a). 
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Closing Mode 

 

Water flow and pressure distribution in existing crack (Without 

Closing Mode 

 

Water flow and pressure distribution in existing crack (With 

Closing Mode 

 

crack with moving 
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saturation part of the crack in propagating crack while same phenomenon is 

found in existing crack after first opening –closing cycle [Fig.3.1 (b)]. The 

pressure at stagnation point is maximum and it decreases from this point 

toward the saturation region boundaries to become equal to the pressure at 

these two points. 

In subsequent opening cycles, new voids are developing along propagating 

crack with water flow along crack from mouth toward crack tip during 

opening cycle. Water flow can only fill the voids close to the crack mouth and 

saturation length decreases. The only difference between the first opening 

and subsequent opening cycles is the existence of some water in residual 

opening that was already filled due to crack closing. 

The water flow and corresponding pressure during second and subsequent 

cycle is therefore similar to that of the first closing cycle except that there is 

already some water in wetted unsaturated region. Thus saturation length 

may be longer at the end of the second closing cycle. 

The case of propagating crack with saturated and unsaturated part is 

basically similar to an existing crack when cavitation occurs. 

 

3.1.2 Mathematical Modeling of Transient Uplift Pressure in 

Cracks with Moving Walls 

Javanmardi et. al. (2005b) developed a theoretical modeling using the 

momentum equations proposed by Louis (1968) and discussed in Wittke 

(1990) for un- penetrated wedge shaped existing cracks under the following 

assumptions (Fig. 3.2). 

• Walls of the crack are impermeable and rigid. This assumption can 

be introduced as the fluid permeability of cracks is significantly 

higher than that of un-cracked concrete. 

• Flow is one dimensional along straight length of wedge crack. 
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• Water compressibility is negligible

• The flow in un

• Water vapor pressure is zero.

• Density of water

• There is no sink or source.

• Lower wall

• Crack wall s

• Crack width is of unit dimension.

• Crack length is fixed

• Velocity head gradient is neglected in both laminar and turbulent 

flow.  

• Flow in crack is a single phase 

between air and water.

Fig.3.2. Assumed crack in opening mode

 

The theoretical modeling of 

of boundary conditions and solution scheme to

parameters by trial and error procedures

In present study, mathematical modeling of uplift pressure is carried o

supplemented with sufficient number of boundary conditions 

transport equation for mass conservation during closing phase of the crack, 

eling  

compressibility is negligible. 

flow in unsaturated part is insignificant. 

Water vapor pressure is zero. 

of water� is independent of space. 

There is no sink or source. 

Lower wall of the crack is fixed and only upper wall

Crack wall stiffness is constant. 

Crack width is of unit dimension. 

Crack length is fixed. 

Velocity head gradient is neglected in both laminar and turbulent 

Flow in crack is a single phase flow and there is no int

between air and water. 

Fig.3.2. Assumed crack in opening mode.

The theoretical modeling of Javanmardi et. al. (2005b) lacks sufficient number 

of boundary conditions and solution scheme to calculate the unknown flow 

parameters by trial and error procedures has been suggested

In present study, mathematical modeling of uplift pressure is carried o

supplemented with sufficient number of boundary conditions 

transport equation for mass conservation during closing phase of the crack, 
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crack is fixed and only upper wall moves. 

Velocity head gradient is neglected in both laminar and turbulent 

there is no interaction 

 

. 

(2005b) lacks sufficient number 

the unknown flow 

ed. 

In present study, mathematical modeling of uplift pressure is carried out and 

supplemented with sufficient number of boundary conditions and Reynolds 

transport equation for mass conservation during closing phase of the crack, 
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to solve unknown parameters (e.g. stagnation pressure etc.) which are 

necessary to calculate complete pressure field in cracks at any time. 

 

3.1.2.1 Continuity Equation 

Opening Mode 

1-D continuity equation, widely used by various workers (e.g. Slowik and 

Saouma, 2000; Sarris and Papanastasiou, 2012 etc.), is written with 

assumption that fluid leakage through walls of the crack are negligible (i.e. 

walls of the crack are impermeable). For any cross sectional area		� of the 

crack, normal to flow direction			, the 1-D continuity equation can be written 

as 

( ) ( )Q A

x t

ρ ρ∂ ∂
=

∂ ∂  
(3.1) 

Where, 
 is the discharge through the crack. 

Considering unit thickness, equation (3.1) can be modified as: 

( )
0

Q b

x t

ρρ ∂ ∂+ =
∂ ∂  

(3.2) 

Where � is the crack opening at any distance 		from the crack mouth and 

time	�. Neglecting the water compressibility, equation is further simplified as  

 
0

Q b

x t

∂ ∂+ =
∂ ∂

 (3.3) 

For rigid crack wall  

(1 )m

x
b b

L
= −

  (3.4)
 

Where �� crack mouth opening displacement (CMOD) and � is the crack 

length.  
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Using value of � in

(saturation length),

( )
.

m

sp sp

b
Q L L x L x

L
 = − − −  

Where 
.

mb   is the crack mouth opening displacement rate

equation gives discharge equation for flow in wedge shaped rigid crack in a 

concrete gravity dam

Closing Mode 

During the closing phase

discharge becomes zero

in both the direction from the stagnation point during the closing process of 

crack mouth. The distance of

stagnation length and denoted as

Fig.

 

 The discharge formula given by equation 

using the boundary condition that 

eling  

in equation (3.4) and boundary condition, that 

 
 
 0; equation (3.3) can be integrated as

( )2 21

2sp spQ L L x L x
 = − − −    

is the crack mouth opening displacement rate (CMOD

equation gives discharge equation for flow in wedge shaped rigid crack in a 

concrete gravity dam during crack opening mode. 

During the closing phase, there occurs a point along the crack where 

discharge becomes zero. This point is called stagnation point. Water moves 

direction from the stagnation point during the closing process of 

The distance of the point from the crack mouth

stagnation length and denoted as �� as shown in Fig.3.3. 

Fig.3.3. Assumed crack in closing mode 

The discharge formula given by equation is modified for closing mode after 

using the boundary condition that at , 0sx L Q= = .   
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condition, that at 	 
 ��� 

as 

(3.5) 

(CMOD rate). The 

equation gives discharge equation for flow in wedge shaped rigid crack in a 

there occurs a point along the crack where 

point. Water moves 

direction from the stagnation point during the closing process of 

the point from the crack mouth is termed as 

 

 

modified for closing mode after 
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( ) ( )2 2

.
1

2
m

s s

b
Q L L x L x

L
 = − − −    (3.6)

 

The equation (3.6) gives discharge equation for flow in wedge shaped rigid 

crack in a concrete gravity dam during crack closing mode. 

 

3.1.2.2 Momentum Equation 

Work of Louis (1969) as discussed in Chapter-2, has been utilized for present 

formulation. Javamardi et. al. (2005a) have shown that the relative roughness 

�
��


0.5 is a good approximation for concrete cracks. Therefore, for this 

relative roughness value, the crack is assumed to be hydraulically rough 

(
�
��

>0.033). Louis (1969) flow diagram shows that hydraulic zone IV 

(laminar flow) and hydraulic zone V (turbulent flow) are applicable for 

hydraulically rough crack. Flow changes from laminar to turbulent at 

Reynolds number (�� 
 2
 �⁄ ) nearly 2300. The momentum equations are 

written for laminar and turbulent flow separately according Louis (1969; 

Table 2.1). 

Laminar Flow 

( )
2

1.5

 1

 

12 1 8.8 / h

n

gb
K

Dν ε

=  
 
 =
   +     

  (3.7) 

Where, �	 kinematic viscosity of water and � is the hydraulic conductivity. 

Therefore, for laminar flow Louis (1969) momentum equation becomes 

Q KbJ= −  (3.8) 

Where, TH
J

x

∂=
∂

   is hydraulic gradient and �� is the total head given by 
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2

2T

p v
H z

gγ
= + +  (3.9) 

Here � is location of crack which is fixed. On assumption that velocity head is 

negligible, 

1
0pH p z

J
x x xγ

∂ ∂ ∂ = = = ∂ ∂ ∂   (3.10) 

Where, �� is now pressure head, therefore, equation simplifies to  

3
2

p
Q C b

x

∂= −
∂

 (3.11) 

Where 

( )2 1.5
 

12 1 8.8 / h

g
C

Dνγ ε
=

  +
   

(3.12) 

Turbulent Flow  

0.5

1.9
4

/ h

n

K glog b
Dε

= 


  =   
    

(3.13) 

Therefore, for turbulent flow Louis (1969) momentum equation becomes 

0.5Q KbJ= −  (3.14) 

After inserting the values of �  and � in equation (3.14), the resulting 

equation is 

2 3
3

p
Q C b

x

∂=
∂

  (3.15) 

Where, 

( )

2

3

16 1.9
log

/ h

g
C

Dγ ε
  =   

   
  (3.16) 
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3.3 Transient Pressure Calculation and Boundary Conditions 

For the sake of clarity ����� ! and  ����� " are used respectively, for laminar and 

turbulent pressure gradients in subsequent discussions. Pressure calculation 

starts from the determination of opening (�#� ≥ 0) and closing (�# � < 0) mode 

of the crack. The respective continuity and momentum equations for laminar 

and turbulent flows are coupled together when solving the differential 

equation for pressure. The laminar and turbulent flow regions are separated 

by transition lengths. It is assumed that when Reynolds number �� 	≤ 2300 

then flow is laminar otherwise flow is turbulent. These criteria can be used to 

find the transition lengths or it can be calculated iteratively. Pressure in crack 

varies from hydrostatic pressure at mouth to vapor pressure (taken as zero) 

at the tip of crack. Considering these factors in mind the integral equations of 

pressure are written separately for opening and closing mode. 

 

3.3.1 Opening Mode 

In the opening mode, laminar flow occurs near the crack mouth. The position 

where laminar flow changes to turbulent flow are denoted by �". �" is 

calculated using expressions for Reynolds number and continuity equation 

(3.5) for opening mode. The integral equations for variation of pressure along 

the crack is written as 

( )

( )

0
0

( , )

0

m t

t

m t sp

t

x dp
p dx x L

dx l
P x t

L xdp dp
p dx dx L x L

dx dxl tL

  + ≤ ≤ ∫  
 = 

    + + ≤ ≤∫ ∫       

  (3.17)   

Here ��� is the saturation length of crack where the pressure at any given 

time is assumed to be zero. Using this condition the ��� is calculated as 
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   0   
0

spt

m

t

LL dp dp
p dx dx

dx dxl tL

   + + =∫ ∫   
        (3.18) 

 

3.3.2 Closing Mode 

In closing mode, flow starts from stagnation point in both upstream and 

downstream directions. Flow is laminar near the stagnation point. With the 

help of Reynolds expression and continuity equation (3.6) for closing mode, 

two transition lengths �"* and �"� can be calculated where change of flow 

from laminar to turbulent occurs. Denoting the stagnation length and 

stagnation pressure by �� and �� respectively, the pressure variation for 

upstream %	 ≤ ��' and downstream %	 > ��' can written as follows. 

Pressure in upstream section%+ ≤ ,-' 

( )

( )

0
0

( , )

0

m tu

tu

m tu s

tu

x dp
p dx x L

dx t
P x t

L xdp dp
p dx dx L x L

dx dxt lL

  + ≤ ≤ ∫  
 = 

    + + ≤ ≤∫ ∫         

 (3.19) 

Pressure in downstream section  %+ > ,-'  

( )

( )
0

0

( , )

tu s

tu s

tu s td

tu s td

L L x

m s td
t l lL L

L L L x

m td sp
t l l tL L L

dp dp dp
p dx dx dx L x L

dx dx dx
P x t

dp dp dp dp
p dx dx dx dx L x L

dx dx dx dx

      + + + ≤ ≤      
     

= 
        + + + + ≤ ≤               

∫ ∫ ∫

∫ ∫ ∫ ∫

 

               (3.20) 

In the above set of equations, ��,  �� and ��� are unknown parameters and 

can be determined by using two boundary conditions and Reynolds 

transport theorem for mass conservation as follows: 

First boundary condition 

 When  	 
 �� then � 
 �� and therefore 
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0

tu sL L

m s
t lL

dp dpp dx dx p
dx dx

   
   
   

+ + =∫ ∫

Second boundary condition

When			 
 ��� then 

0

tu s td

m

L L

t l l tL L L

dp dp dp dp
p dx dx dx

dx dx dx dx
       
       
       

+ + + + =∫ ∫ ∫ ∫

Reynolds transport

As per Reynolds transport e

conservation law for

dm d
dV dA

dt dt
ρ ρ  = + = 

 
∫∫∫ ∫∫

Where . and � are mass and density of water

velocity vector and 

/� of elemental control volume

Fig.3.4. Control volume for calculation of stagnation point

 

For the present case a control volume lying 

stagnation point (Fig.3.4)

noting that at stagnation poin

yields 

eling  

tu s

tu

L

m s
t lL

dp dpp dx dx p
dx dx

   
   
   

+ + =∫ ∫
 

boundary condition 

then � 
 0 and hence 

       0
sptu s td

tu s td

LLL L

t l l tL L L

dp dp dp dp
p dx dx dx

dx dx dx dx
       
       
       

+ + + + =∫ ∫ ∫ ∫

Reynolds transport equation for mass conservation 

Reynolds transport equation, given by White (1994)

for the elemental control volume can be written as

( )v. 0 dV dAnρ ρ= + =∫∫∫ ∫∫       

are mass and density of water respectively

and 0 is the outward unit normal vector on 

control volume /1. 

. Control volume for calculation of stagnation point

For the present case a control volume lying between crack mouth 

(Fig.3.4) is assumed. Applying the above equation and 

noting that at stagnation point velocity of water is zero, the
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(3.21)

 

    

 (3.22)

 

given by White (1994), the mass 

can be written as 

(3.23) 

respectively; 2 is the water 

is the outward unit normal vector on elemental surface 

 

. Control volume for calculation of stagnation point 

between crack mouth and 

is assumed. Applying the above equation and 

, the equation (3.23) 
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1
2 0

2
s

s m m

Ld
L b Q

dt L

  − + =  
  

    (3.24) 

Where 
� is the discharge at crack mouth given by 

( )2

2
2m

m s s

b
Q L L

L
L= − −

ɺ

     (3.25) 

The equation (3.23) is first differentiated w.r.t. time and then solved by 

method of separation of variables with the condition that �� 
 � when 

�� 
 ��3. The resulting expression is 

1 mr
s

m

b
L L L

b

 
= − − 

 
 (3.26) 

Equations (3.21), (3.22) and (3.26) are solved together for ��, �� and ���. With 

these now known values, the set of equations (3.19) and (3.20) are solved to 

get the pressure distribution along the crack. 

 

3.4 Calculation of Uplift Force in Cracks 

Uplift force in the crack is calculated by integrating ( , )P x t  for both opening 

and closing modes. 

0

( ) ( , )
L

F t P x t dx= ∫
 

(3.35) 

Where, ( )F t  is uplift force in the crack at any time �. 
 

3.5 Dam-crown Deflection Formulation 

Generally it is believed that no-tension plastic design of the dam is on safer 

side. However, results of finite element analysis of complex dam geometries 

(Gioia et. al. 1992) showed that differences between plasticity and fracture 



Mathematical Modeling  56  

 

mechanics are more pronounced for the case when water penetrates into the 

crack and applies pressure on the concrete. However, in these studies, the 

effect of transient pressure variation along the crack on dam-crown 

deflection has not been reported. In the present study, effect of transient 

pressure variation on horizontal dam-crown deflection is formulated under 

certain set of assumtions. 

 

3.5.1 Assumtions 

• Crack length remains costant during each opening-closing cycle. 

• Linear elastic fracture mechanics (LEFM) is applicable with plane 

strain condition. 

• Concrete is homogeneous and isotropic. 

 

3.5.2  Plane Strain Elastic Equation 

Since axis length of the dam is very large in comparison to sectional 

dimensions of the dam, therefore, plane strain formulation with unit 

thickness is applicable for present case. For the case of plane strain, all the 

strain related to z-axis ( along the dam length) vanish. 

0zz yz zx= = =ε ε ε   (3.36) 

Here strain 4	 is defined in terms of displacement vector u as follows 

(Tauchert 1974). 

1

2
j k

jk
k j

u u

x x

 ∂ ∂= +  ∂ ∂ 
ε

 (3.37)

 

Where, 5, 7 
 1, 2, 3 represent the component along the orthogonal 	, 9, � axis 

respectively. Linear stress-strain constitutive relation in tensor form can be 

written as 
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2ij ij ij kkσ µ λδ= +ε ε   (3.38) 

Where, :;< are stresses in the direction of 5 on plane normal to	=; >;< is 

Kronecker delta defined as 

1

0ij

if i j

if i j
δ

=
=  ≠

  (3.39) 

And, ? and @ are Lame constants which, for Elastic Modulus A and Poisson 

ratio �B,  are given as 

  
( )

( ) ( )

0

0

0 0

2 1

1 1 2

E

E

µ
ν

νλ
ν ν

=
+

=
+ −

  (3.40) 

Equation (3.38) is inverted and simplified using the equation (3.40), which 

gives 

( ){ }0 0

1
1ij ij ij kkE

ν σ ν δ σ= + −ε   (3.41) 

Applying the conditions of plane strain (Equ. (3.36)) in equation (3.41) stress- 

strain relation in matrix notation can be written as 

( ) ( )
( )

0 0
0

0 0

1 0
1

1 0

0 0 1

xx xx

yy yy

xy xy

E

ν ν σ
ν

ν ν σ
σ

   − − 
+    = − −    

        

ε

ε

ε

  (3.42) 

Equation (3.42) can be written in abbreviated form as 

{ } [ ]{ }= D σε   (3.43) 

Or by inversion equation (3.43) can be transformed to 

{ } [ ]{ }σ = C ε   (3.44) 

Where [ ] [ ]-1C = D  . 
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3.5.3 Plane Strain Energy Equation 

The strain energy in three- dimensional space may be written as 

{ } { }T
U dV= ∫∫∫ σε   (3.45) 

Equation (3.45) can be written in unabridged notation for Plane strain 

condition as 

( )( )
( )

( ) ( )2 2 2 20

0 0 0

2
2 1 1 2 2 1

xx yy xx yy xy

E E
dVU

ν
ν ν ν

+ + + +
+ − +

 =  
 ∫∫∫ ε ε ε ε ε   (3.46) 

 

3.5.4 Triangular Plane Strain Finite Element  

For problem domain having curved or straight edges with other than 90° 

angles, elements of triangular shape are preferable (Yang, 1990). Dam section 

belongs to this kind of problem domain. In this section a six degree of 

freedom, triangular plane strain finite element is formulated based on the 

following assumptions. 

• Within each element, lines initially straight remain straight in their 

displaced position. 

• The plane strains are assumed to be constant within each element. 

• The element stresses are replaced by stress resultants which act at the 

corners of the element. 

A three noded triangular element with two degree of freedom at each node 

has been taken for deriving the stiffness equation. In displaced position 

horizontal and vertical displacement of a node 5 is represented by %C< 	, D<'. 
Based on the linear displacement assumption, the displacement at any point 

(	, 9) can be described by the following linear functions. 
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( )
( )

0 1 2

0 3 4

,

,

u x y u a x a y

v x y v a x a y

= + + 
= + + 

  (3.47) 

Where, CB, DB, FG, FH, FI, FJ are displacement constants. These six displacement 

constants can be obtained in terms of nodal point displacement and 

geometry of the element by using nodal point displacement conditions. 

Using equations (3.37) and (3.47), strain displacement relation can be written 

as 

{ } { } [ ]TT T=ε q A   (3.48) 

Where, K4L is strain vector; KML is nodal displacement vector and NOP is the 

coefficient matrix. 

 

3.5.5 Derivation of Element Stiffness Matrix 

The element stiffness matrix can be derived after performing the partial 

differentiation of the strain energy with respect to each degree of freedom, 

following Castigliano’s theorem. The strain energy for unit thickness 

triangular element can be written in the following form. 

{ } { }T
U dA= ∫∫ σε  (3.49) 

Where, Q is strain energy and KRL is stress vector. 

Using equation (3.44) and (3.48), the stress-displacement relation can be 

written as 

{ } [ ][ ]{ }=σ C A q   (3.50) 

Substituting equations (3.48) and (3.50) into equation (3.49), we have 

{ } [ ] [ ][ ] { }TT
U dA =

 ∫∫q A C A q   (3.51) 

Applying the Castigliano’s first theorem 
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i
i

U
F

q

∂=
∂

 

Where, S; is the force in direction of

the strain energy with respect to each of the six degree of freedom of the 

finite element, we finally obtain

{ } [ ]{ }=F k q  

Where, KTL is force vector and 

[ ] [ ] [ ][T= ∫∫k A C A

 

3.5.6 Boundary Conditions for Dam

Boundary conditions

foundation, (b) uplift pressure in cracks in the dam body

pressure at upstream face of the dam

(Fig.3.5). 

Fig.3.5. Boundary conditions for 

 

eling  

is the force in direction of	=. By performing partial differentiation of 

the strain energy with respect to each of the six degree of freedom of the 

element, we finally obtain 

 

is force vector and NUP is stiffness matrix defined as

[ ]dAk A C A  

Boundary Conditions for Dam- Crown Deflection

Boundary conditions are written separately for (a) uplift pressures at dam 

(b) uplift pressure in cracks in the dam body

tream face of the dam and (d) dam foundation displacement 

. Boundary conditions for dam-crown deflections.

60  

(3.52) 

By performing partial differentiation of 

the strain energy with respect to each of the six degree of freedom of the 

(3.53) 

is stiffness matrix defined as 

(3.54) 

eflection 

are written separately for (a) uplift pressures at dam 

(b) uplift pressure in cracks in the dam body, (c) hydrostatic 

dam foundation displacement 

 

crown deflections. 
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(a) Dam Foundation uplift pressure 

At dam foundation interface, uplift force in crack portion as calculated by 

present model is applied. In un-cracked portion of the section along the 

crack, triangular uplift force due to seepage is assumed. 

( )

( )

( )
0

,

0

spHL

B
mH

L

p x t dx

P
F t B x dx

B

elsewhere




= −





∫

∫  (3.55) 

(b) Uplift force in dam-body crack 

Uplift force on the section taken along the crack located in the dam body is 

divided into two part (a) crack portion and (b) un-cracked portion. Uplift 

force in the crack portion is calculated using the result of uplift pressure of 

present model. In un-cracked portion, zero uplift force is assumed. For 

section length V,, the uplift pressure can be written as: 

( ) ( )
0

,

0

sphL

p x t dx
F t

elsewhere


= 



∫  (3.56) 

(c) Hydrostatic force at upstream face of the dam 

Triangular hydrostatic pressure variation is assumed at the upstream face of 

the dam. Therefore, horizontal force acting on the upstream force can be 

written as 

 ( )
0

 
H

HF t xdxγ= ∫  (3.57) 
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(d) Dam foundation displacement 

Foundation of the dam is assumed to be rigid. 

( ) ( ), 0,0 0u v when y= =   (3.58) 

 

3.6 Factor of Safety against Sliding 

The sliding stability is based on a factor of safety as a measure of 

determining the resistance of the structure against sliding. In present study 

sliding factor of safety as recommended by USACE (1995) has been used. 

Assuming zero cohesion, sliding factor of safety can be written as 

( )0 0

0
s

V t
F

H

µ ∑
=

∑
 (3.59) 

Where, S� is sliding factor of safety, ?B is friction coefficient, ∑1B%�' is the 

summation of vertical forces acting on the dam (including uplift forces) and  

∑�B is the summation of horizontal forces acting on the dam. The factor of 

safety is calculated for following two cases of transient uplift pressure in the 

cracks. 

• USACE (1995) criteria of no-change in uplift pressure during reservoir 

level variation. Uplift pressure at section varies from full reservoir level 

at upstream face to zero at downstream face of the dam. 

• Uplift pressure variations in cracks as calculated in present study 

during reservoir level variation are considered. However at intact 

portion of the section passing through crack, the uplift pressure is 

assumed to be zero. 

Sliding factor of safety, calculated for abovementioned two cases are 

computed and compared. In either of two cases, in addition to uplift forces in 

cracks, following set of forces are considered: 
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1. Dam body force. 

2. Linear hydrostatic pressure variation at upstream face of the dam. 

3. Tail water pressure is assumed to zero. 

4. Silt pressure is zero. 

5. Drains are in-operative. 

 

3.7 Summary 

One dimensional mathematical modeling of transient uplift pressure in the 

single wedge-shaped crack has been done on the basis of various 

assumptions and understanding of hydrodynamic phenomenon occurring 

during crack-wall motion. One dimensional continuity and Louis (1969) 

momentum equations for different flow regimes (laminar/ turbulent) and 

hydraulic roughness have been coupled separately for opening and closing 

phases of crack-wall motion. The resulting partial differential equations 

contains unknown pressure as function of space and time together with some 

important unknown parameters like saturation length, stagnation point and 

stagnation pressure. These unknown parameters are first solved using 

known or assumed boundary conditions and equation resulting from 

application of Reynolds transport equation of mass conservation to control 

volume chosen between crack mouth and stagnation point during closing 

phase. After calculating these flow parameters, partial differential equations 

are written in integral form separately for opening and closing mode to 

calculate pressure field at any given time. 

For the dam, plane strain linear elastic equations have been developed, after 

assuming that LEFM is applicable for cracks in concrete gravity dams. A six 

degree of freedom triangular plane strain finite element is formulated. The 

element stiffness matrix is derived after performing the partial differentiation 

of the strain energy with respect to each degree of freedom following 

Castigliano’s theorem. Boundary conditions are written separately for (a) 
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transient uplift pressures at dam foundation, (b) transient uplift pressures in 

cracks in the dam body and (c) hydrostatic pressure at upstream face of the 

dam.  

In present study, sliding factor of safety as recommended by USACE (1995) 

is has been used assuming that concrete cohesion is zero. Sliding factor of 

safety is calculated separately for two uplift pressure conditions in cracks: (i) 

Uplift pressure distribution as recommended by USACE and (ii) Uplift 

pressures in present study.  


