
Chapter-2 

LITERATURE REVIEW 

 
 

2.0 General 

A review of the application and limitations of basic physical laws employed 

in the literatures to study the flow behavior in a single cohesive crack is 

presented. Also a brief overview of fracture mechanics in concrete structures 

followed by the applicability of linear elastic fracture mechanics (LEFM) in 

concrete gravity dams has been carried out. LEFM approach has been 

investigated to estimate certain fracture parameters like residual crack mouth 

opening displacement (CMOD), fracture toughness, and crack length. An 

estimate of location of crack at upstream face of the dam is discussed. The 

effect of creep in fracture process zone (FPZ) on CMOD-rate is reviewed. The 

modeling of transient uplift pressure in cracks of the concrete gravity dam 

under dynamic loading conditions is explored in the literatures. The 

objectives of present research work are presented on the basis of this 

exhaustive literature review. 

 

2.1 Hydraulics of Flow in Cracks 

Fractured porous media consist networks of interconnected fractures and 

pores. Fractures, generally considered as fast transport pathways 

(Zimmerman and Bodvarsson, 1996) are large (10-4 m to 10-2 m) pores and 

crevices (Tsang and Tsang, 1987; Fischer and Fluhler, 1998).The study of 

transport processes in fractured porous media is important to understand the 

single and multi-phase flow of groundwater and to predict the fate of 

pollutants in aquifer contaminated by industrial, agricultural and radioactive 

wastes (Sung-Hoon et. al.2003). It also plays important roles in studying the 
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transient uplift pressure due to seismicity (Saouma et. al. 1991; Slowik and 

Saouma, 2000) or time varying reservoir level in concrete gravity dams, 

leakage and stability of dam foundations (Terzhagi,1936;Bazant, 1975), mine 

drainages, slope stability and hydraulic fracturing (Crisstianovich and 

Zheltov, 1955; Cleary, 1980; Logan et. al. 2000; Jeffery et. al. 2001; Murdoch 

and Slack, 2002; Soliman et. al. 2004; Bahrami and Mortazavi, 2008; Bagherian 

et. al. 2010; Sarris and Papanastasiou, 2012 etc.). 

 

2.1.1 Basic Equations of Flow in Single Crack 

Flows within the fractures are governed by (1) mass conservation law and (2) 

momentum equation. While employing these basic equations to study flow 

in cracks, various assumptions are made and discussed separately to have a 

clear picture of the forms and applicability of these equations to crack flow 

problems. 

 

2.1.1.1 Mass Conservation Law 

This law requires that the rate of increase or decrease of fluid mass in a finite 

elemental control volume situated in the flow field be equal to the net rates of 

inflow or outflow. Based on the principle of conservation of mass, a 2-D 

continuity equation can be written according to continuity equation given by 

Illangasekare et. al. (1992). 

( ) ( ) ( )yx
bvbv b

x y t

ρρ ρ∂∂ ∂
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∂ ∂ ∂  (2.1)
 

Where, ��, �� = velocity of fluid in  � and  � directions respectively, at a time 

		;  
= crack aperture; ρ = density of the fluid (Fig.2.1). 

Equation (2.1) is derived without sink or source. The above equation can be 

modified by considering any one or combinations of following assumptions: 
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(i) flow is steady (ii) flow is incompressible (iii

time but is independent of space 

with fluid pressure 

1-D continuity equation is widely used in the literature (Slowik and

2000; Sarris and Papanastasiou, 2012

and Zhu, 2008) with assumption that fluid leakage through walls of the 

cracks are negligible (i.e. walls of the crack are impermeable).

 

Fig.2.1. Infinitesimal element
(Illangasekare

 

For any cross sectional area

equation can be written as

( ) ( )Q A

x t

ρ ρ∂ ∂
=

∂ ∂  

Where, � is the discharge through the 

  

(i) flow is steady (ii) flow is incompressible (iii) fluid density changes with 

time but is independent of space and (iv) crack aperture is varying linearly 

with fluid pressure � as � = 
�
,where 
� is normal stiffness of crack wall.

D continuity equation is widely used in the literature (Slowik and

Sarris and Papanastasiou, 2012; Javanmardi et. al., 2005a, 2005b;

with assumption that fluid leakage through walls of the 

cracks are negligible (i.e. walls of the crack are impermeable).

Infinitesimal element used in the derivation of continuity equation 
(Illangasekare et. al. 1992). 

For any cross sectional area�normal to flow direction 	�
equation can be written as 

 

discharge through the crack. 

7  

) fluid density changes with 

) crack aperture is varying linearly 

is normal stiffness of crack wall. 

D continuity equation is widely used in the literature (Slowik and Saouma, 

2005a, 2005b; Pekau 

with assumption that fluid leakage through walls of the 

cracks are negligible (i.e. walls of the crack are impermeable). 

 

on of continuity equation 

� , 1-D continuity 

(2.2)
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Continuity equation for two phase flow in cracks are written and 

supplemented with additional conditions. The equation of continuity for a 

wetting fluid (e.g. water) and a non-wetting fluid (e.g. gas) can be derived on 

basis of Bear (1979), Bastian (1999), Helming (1997) and Reichenberger et. al. 

(2005) equations. These equations are completed with Brooks-Corey (Brooks 

and Corey, 1964) constitutive relations. 

 

2.1.1.2 Momentum Equation and Darcy Law 

The most general form of Navier-Stokes equations for fluid flow in a single 

fracture can be written as per the equation of White (1994). 

( ) 1 2.   p
t

ν
ρ

∂ + ∇ = − ∇ + ∇
∂
v

v v F v
 (2.3)

 

Where, �= (��, ��, ��) is the velocity vector; � is the body force per unit mass; 

� is kinematic fluid viscosity; ∇ is gradient operator and  � is the pressure. In 

most of the cases, the body force is gravity. Assuming that fluid density is 

uniform and replacing  � by � + ���, the steady state Navier-Stokes equation 

can be written as  

( )2 1
. pν ∇ − ∇ = ∇v v v

ρ  (2.4)
 

The Navier-Stokes equation (2.4) is non-linear due to the presence of 

advective acceleration term ��. ∇�	� and so, it is very difficult to solve this 

equation. Consequently the Navier-Stokes equations are further simplified to 

Stokes or Reynolds equations. 

The Stokes equations are derived from the Navier-Stokes equation after 

neglecting the advective acceleration terms. The reduced Reynolds number 

were derived, based on the basis of estimates of the order of magnitude of 

the various terms in the steady state Navier-Stokes equation and written as 



Literature Review  9  

 

the product of traditional Reynolds number and some geometric parameter. 

To ensure the negligible effect of advective acceleration term in Navier-

Stokes equation, the reduced Reynolds number must be appreciably less than 

unity. Under this condition, the Navier- Stokes equation (2.4) reduces to 

Stokes equation 

2 pρ ν ∇ = ∇v   (2.5) 

For few simulated fracture profiles, the Stokes equation (2.5) has been solved 

numerically (Brown et al. 1995; Mourzenko et. al. 1995). But it has limited 

application due to computational difficulty. 

To overcome the limitations of Stokes equations Reynolds lubrication 

equations are derived under the assumption: (i) effect of geometric 

parameter used in reduced Reynolds number is negligible (ii) velocity profile 

is parabolic at every location in fracture plane and (iii) velocity satisfies the 

no-slip boundary condition at fracture walls. Under these assumptions, the 2-

D Reynolds lubrication equation is written as 

3 3 0
p p

b b
x x y y

 ∂ ∂ ∂ ∂ + =  ∂ ∂ ∂ ∂     (2.6)
 

On the basis of some studies (e.g. Brown et al. 1995; Mourzenko et. al. 1995; 

Yeo et. al. 1998; Nicholl et. al. 1999), a consensus emerged that the Reynolds 

equation overestimates the flow rate as much as 100%. Later the Reynolds 

equation were improved after including fracture tortuosity in the definition 

of fracture geometry (Ge, 1997; Waite et. al. 1999). Yeo and Ge (2005) have 

discussed the issues about the range of applicability of Reynolds equation.  

Most widely used conceptual model for fracture is two smooth parallel walls 

(Boussinesq, 1868) separated by a uniform aperture 
. For one dimensional 

flow, the Navier-Stokes equation can be solved (Krantz et. al. 1979) exactly 

for this geometry because nonlinear term vanishes identically. Solution by 
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Tsang and Witherspoon (1981) yields a parabolic velocity profile with no-slip 

condition at walls. Total velocity flux, after integrating the velocity profile is 

(Zimmerman and Bodvarsson, 1996) 

3

12

wb p
Q

x

ρ
ν

∂= −
∂  (2.7)

 

Where � is the depth of fracture. This result is known as local cubic law 

(LCL) because transmissivity (�� = � !
"# � is proportional to the cube of the 

aperture. Also, the equation (2.7) is known as Darcy law for fracture due to 

its similarity with Darcy equation used in porous media. This model, usually 

applied in 1-D flow in fractures having wide channel and smooth parallel 

walls, are found to be valid (Sausse and Genter, 2005). However many 

laboratory experiments (e.g. Raven and Gale, 1985; Pyrak-Nolte et. al. 1987; 

Durham and Bonner, 1994) and some field studies (e.g. Rasmuson and 

Neretnieks, 1986; Novakowski et. al. 1985, 1995; Raven et al. 1988) indicate 

that parallel plate concept for flow in fractures are not adequate. 

Retaining the same assumptions, as was used for the derivation of LCL 

equation, Christian et. al. (2010) modified the LCL equation for penny 

shaped cracks after taking into account the displacement-length scaling laws 

for opening mode (Vermilye and Scholz, 1995; Olson, 2003; Schultz et. al. 

2008) and showed that discharge varies as fifth power of crack aperture. 

Because of this high degree of non-linearity with crack aperture than LCL, 

they termed the derived equation as “quintic” law. 

In addition to parallel plate model, approximate solutions are also obtained 

by perturbation methods for sinusoidal fracture walls (Basha and El-Asmar, 

2003; Brush and Thompson, 2003;  Sisavath et. al. 2003). 

However, in real cracks, crack wall geometry is neither parallel nor smooth. 

Also crack walls may have leakages. Therefore to simulate the flow in real 

cracks, equation (2.7) has been widely discussed and modified in the 
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literatures (e.g. Zimmermann and Bodvarsson, 1996; Kim et. al. 2003) to 

address some of the following issues: (i) how the crack wall geometry is to be 

represented, (ii) how the crack aperture is to be measured, (iii) is  the LCL or 

Darcy law valid for convergent or divergent crack profile, (iv) what is the 

range of validity of Darcy law, (v) how Darcy law is to be modified for rough 

crack walls and (vi) what is the modification in the Darcy law if no-slip 

boundary condition is violated etc. 

 

Crack Wall Geometry 

Real fracture surfaces are very rough, unevenly distributed and are in contact 

with each other at some locations. Work of Thompson and Brown (1991) 

suggests that roughness significantly contribute to the hydro-mechanical 

behavior of fractures. The study of Zimmermann and Bodvarsson (1996), 

shows that the mean mechanical aperture of a fracture is greater than 

hydraulic aperture used in LCL equation. To measure the fracture aperture 

in � − �  plane, two surface height functions,�"��, ��and�#��, �� , are used. 

These functions measure the distance of surface points from two parallel 

reference planes located above and below the crack walls in the matrix 

(Fig.2.2). 

So aperture, measured perpendicular to the two reference plane, is defined as 

( ) ( )1 2, , ( , )b x y d z x y z x y= − −
 (2.8) 

 

 
Fig.2.2. Two rough fracture surface profile separated by distance % along 

with two reference plane separated by distance & (Zimmerman and 
Main, 2004). 
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The information about surface height functions are not known hence 

aperture 
 in equation (2.8) is treated as random variable and fractures are 

characterized in terms of small number of statistical parameters.  

Lognormal and Gamma probability distribution functions are commonly 

used to fit the aperture distributions (Tsang and Tsang, 1987; Renshaw, 1985; 

Zhan, 1998; Fetter, 1999). Sincezero-aperture cannot be represented by 

Lognormal or Gamma distribution, these probability density functions (PDF) 

are not sufficient. Oron and Brian (1998) compared the numerical fracture 

sample to the measured histograms of Brown et al. (1986) and Hakami and 

Larsson (1996). They concluded that the skewed form of aperture 

distribution is the result of contact and deformation and it can be shown that 

the surface may quite accurately be described by “shifted” Gaussian model. 

For stationary stochastic process (Box and Jenekis, 1976), two commonly 

used models of power spectra are exponential and Gaussian models. If�� is a 

parameter which gives an indication of correlation length then, for 

exponential model the surface is effectively uncorrelated for � > 4	�� whereas 

for Gaussian model the correlation is negligible for � > �� Patir and Cheng 

(1978) solved the Reynolds equation (2.6) for Gaussian surface using finite 

difference technique. 

A profile  ����  is said to be self-affine if ��)�� = )*+����, where ,� a constant 

is called Hurst exponent (Zimmerman and Main, 2004). A self-affine profile 

has a power spectrum as -�.� = /.01 , Where 2 = 2,� + 1  (Adler and 

Thovert, 1999); .  is wave number and /  is a constant. Self-affine power 

spectrum has been observed in various study of crack wall geometry (e.g. 

Brown and Scholz, 1985; Mandelbrot, 1982; Power and Tullis, 1991). 

Generally rough fracture surfaces possess self-affine fractal properties with 

Hurst exponent ,� = 0.8  [Brown and Scholz, 1985; Poon et al. 1992; 

Schmittbuhl et. al. 1995). However in practice it is not possible to detect a 

dominant wavelength for self-affine curve (Oron and Brian, 1998). 
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Measurement of Crack Aperture 

In LCL equation (2.7), it is not clear how to measure aperture 
. Equation 

(2.8) is used to measure
  vertically. However, there may be the regions 

where both the surfaces are significantly inclined to global fracture plane. In 

these regions the vertical measurement may be erroneous. Ge (1997) 

measured the aperture normal to local orientation of centerline. Mourzenko 

et. al. (1995) drew a sphere around each point on centerline and increased the 

sphere until it touched both the walls. Oron and Brian (1998) addressed this 

issue through non-dimensional analysis of Navier-Stokes equation with 

Poiseuille flow as a leading order approximation for the solution of flow 

between parallel plates. On the basis of their analysis, they concluded that 

aperture for parallel oriented fracture should not be measured on point-by-

point basis but rather as an average over certain characteristic length. 

Various definitions for fracture aperture have been shown in Fig.2.3 (The two 

rock surfaces are indicated by thick wavy lines. Aperture (a) is the distance 

between the two rock surfaces measured normal to the nominal macroscopic 

fracture plane, (b) is the distance between rock surfaces measured to the local 

normal fracture plane, (c) is the distance between two smoothed-out versions 

of the fracture surfaces, and (d) is the diameter of the largest sphere that can 

fit between the rock surfaces). They also showed that, for unmated (diagonal) 

walls, above method of aperture measurement hold true provided that mean 

half angle of the channel is limited to 0.5 radians. 

 

 

Fig.2.3. Various definitions for fracture aperture	%	(Zimmerman and Main, 
2004).  
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Further in LCL equation, aperture is termed as hydraulic aperture and 

denoted here as 
*  against the mechanical aperture 
  represented by 

equation (2.8). Elrod (1979) used Fourier transform to solve the Reynolds’s 

equation for a fracture with aperture having sinusoidal ripples and showed 

for isotropic case  

2
33

2

3
1

2
b

Hb b
b

σ 
 = − +…
 
   (2.9) 

Where 7  is the standard deviation and 〈
〉 is the mean value of mechanical 

aperture 
. 

Zimmerman et. al. (1991) showed that the above equation is valid up to 

second order for both sinusoidal and saw-tooth profiles. Renshaw (1995) 

derived an alternative expression which includes the second order terms of 

equation (2.9). Dagan (1993) has  expressed the equation (2.9) in series form 

and showed that terms after fourth term vanish, indicating that geometric 

mean is a very good approximation for hydraulic aperture in lognormal case. 

The equation (2.9) is in good agreement with several numerical simulations 

and some laboratory data (Zimmerman and Main, 2004). 

 

Limitations and Modifications of LCL Equation 

The LCL equation was derived for laminar flow in smooth wall fracture. 

Various investigators (e.g. Hasegawa and Izuchi, 1983; Oron and Brian, 1998; 

Skjetne et. al. 1999; Zimmerman and Yeo, 2000) using different approaches, 

concluded that LCL is valid for Reynolds numbers less than about 10.At 

higher Reynolds number, the relationship between pressure gradient and 

flux is nonlinear. This nonlinearity is not necessarily due to turbulence, 

which occurs only at much higher Reynolds numbers. For Reynolds number 

between 10 to 100, the observed nonlinearity is merely due to the effects of 

curvature of streamlines (Phillips, 1991) and occurs in the laminar flow 
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regime. Non-Darcian flow is more likely in single fracture (Sharp and Maini, 

1972; Quien et. al. 2005, 2007, 2010; Wen et. al. 2006) due to high flow velocity 

and hence the high Reynolds number. 

When crack walls contact each other at discrete points then fluid will flow 

through a few preferred paths (channels) which are tortuous and having 

variable aperture along their length and may or may not intersect each other. 

Under these conditions LCL equation does not provide the correct result 

(Gangi, 1978; Brown and Scholz, 1985; Brown, 1987, 1995) at low velocity due 

to formation of tortuous path at contact points (Iwai, 1976; Brown, 1987; 

Sisavath et.al. 2003) and aperture regions of recirculation due to streamline 

separation in flow field (Brush and Thompson, 2003; Bout et. al. 2006). If an 

equivalent hydraulic aperture found for the open regions of the fracture, the 

effect of asperity regions can be modeled by assuming that the fracture 

consists of regions of aperture 
 = 
�.	Many researchers have found the 

equivalent hydraulic apertures to be generally valid for LCL equation(Liu, 

2005 ; Zimmermann et. at. 1992). 

When walls of fractures contain cracks and fissures then no-slip boundary 

condition is violated and LCL equation does not provide the correct result 

for volumetric flow. Berman (1953) investigated the effects of wall porosity 

for the first time. Berkowitz (1989) studied the permeable walls incorporating 

Brinkman slip boundary conditions in 1-D modeling of fractures having 

permeable walls and concluded that no-slip underestimates the volumetric 

flow by as much as 19%. Similar deviations were also noticed by Crandall et. 

al. (2010). Flow experiments have shown that in such situations slip 

boundary condition should be applied (Beavers et.al. 1970). Therefore the 

LCL equation is modified after incorporating slip boundary condition. Study 

of Tilton and Cortelezzi (2006) have shown that wall permeability can 

significantly destabilize flows in channels with permeable walls compared to 

those with impermeable walls. Chang et. al. (2006) and Liu et. al. (2006) have 
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studied the instability of the flow and used a two-layer approach by coupling 

governing equations in the separate Newtonian fluid and Darcy/Brinkman 

porous region by appropriate interfacial boundary conditions. Beavers and 

Joseph (1967) hypothesized that the tangential component of free fluid 

velocity at the boundary of the permeable wall is considerably higher than 

mean seepage velocity within the permeable body and depends on the 

structure of the permeable material within the boundary region, flow 

direction at the interface and Reynolds number (Sahraoui and Kaviany, 

1992).  

This Beaver-Joseph slip flow hypothesis is valid for common viscous fluid at 

low Reynolds number (Neale and Nader 1974). Mohais et. al. (2011) 

presented an analytical solution incorporating Beaver-Joseph slip boundary 

conditions, using perturbation expansion to determine flow. Further Mohais 

et. al. (2012) extended this study and concluded that the hydraulic 

conductivities are modified by a numerical factor greater than one. 

In two-phase flow, the determination of volumetric flow rate is a challenging 

problem. The applicability of cubic law for flow rate calculations were 

investigated by some researchers (e.g. Iwai, 1976; Tsang and Witherspoon, 

1981, 1983; Brown, 1987). Fourar et. al. (1993) observed different flow pattern 

in their parallel plate model experiments. The two-phase air- water flow 

undergoes different modes of flow under the influences of pressures and 

different flow conditions. The classification of possible flow pattern by Ishii 

(1975) and Fourar and Bories (1995) is given in Fig.2.4. 

In two-phase-stratified flow, the air-water interface depends on aperture and 

pressure variations and therefore there is a need of identifying this interface 

(Nichole and Glass, 2001). Rasmussen (1991) applied the capillary pressure 

criteria for determining the air-water interface to study the fracture flow 

under the conditions of partial fluid saturation. Pruess and Tsang (1990)  
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Fig.2.4. Different modes of 
1995). 

 

conducted a numerical analysis based on relative permeability of two

flow subject to pressure difference between air and water. The interrelation 

of multiphase flows, relative permeability, and 

rock fractures has not been properly identified (Indraratna et. al. 2003). 

Indraratna et. al. (2003) after following the idea of Keller et. al. (2000), argued 

the existence of two

micron size and thus neglected the effect of capillary pressure. To compute 

the flow rate, LCL equation was applied separately for each zone of fracture 

aperture occupied by air and water. To determine these zones, Indraratna et

al. (2003 ) have derived the expression for locating the air

after taking into account the effects of solubility of air in water, 

compressibility and density of air and water and fracture deformation in the 

two-phase momentum conservation equation by Wallis

To describe flow regime in

boundary layer thickness near the fracture wall

thickness of the boundary layer 

then surface is assumed to be hydraulically smooth.

thickness of the boundary layer 

  

Different modes of two-phase flow (Ishii, 1975; Fourar and Bories, 

conducted a numerical analysis based on relative permeability of two

flow subject to pressure difference between air and water. The interrelation 

of multiphase flows, relative permeability, and pressure variation through 

rock fractures has not been properly identified (Indraratna et. al. 2003). 

al. (2003) after following the idea of Keller et. al. (2000), argued 

the existence of two-phase stratified flow in cracks having greater th

micron size and thus neglected the effect of capillary pressure. To compute 

the flow rate, LCL equation was applied separately for each zone of fracture 

aperture occupied by air and water. To determine these zones, Indraratna et

derived the expression for locating the air

after taking into account the effects of solubility of air in water, 

compressibility and density of air and water and fracture deformation in the 

phase momentum conservation equation by Wallis (1969).

regime in rough wall fracture it is important to

boundary layer thickness near the fracture wall (Quin et. al. 

thickness of the boundary layer is greater than the roughness of the fracture, 

umed to be hydraulically smooth. On the other hand, if the 

thickness of the boundary layer is smaller than the roughness of the 

Liquid 
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phase flow (Ishii, 1975; Fourar and Bories, 

conducted a numerical analysis based on relative permeability of two-phase 

flow subject to pressure difference between air and water. The interrelation 

pressure variation through 

rock fractures has not been properly identified (Indraratna et. al. 2003). 

al. (2003) after following the idea of Keller et. al. (2000), argued 

phase stratified flow in cracks having greater than 50 

micron size and thus neglected the effect of capillary pressure. To compute 

the flow rate, LCL equation was applied separately for each zone of fracture 

aperture occupied by air and water. To determine these zones, Indraratna et. 

derived the expression for locating the air-water interface 

after taking into account the effects of solubility of air in water, 

compressibility and density of air and water and fracture deformation in the 

(1969). 

important to estimate the 

al. 2011). When the 

greater than the roughness of the fracture, 

On the other hand, if the 

smaller than the roughness of the 
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fractures, then surface is treated as hydraulically rough.

rough condition recirculation zones inside the roughness cavities rather than 

the boundary layer would be

The earliest comprehensive work on parallel plate flow of water was 

conducted by Lomize (1951)

roughness, and aperture variability. Similar experimental studies were 

performed by Louis (1969) with nearly identical r

regime chart which identified five distinct flow regions

these results (Fig.2.5

 

Fig.2.5. Flow regime chart 
roughness (

 

For this chart, Reynolds number and relative roughness is defined 

respectively as 

h
e

D v
R

ν
=

 

and 

Relative Roughness =

  

surface is treated as hydraulically rough. Under 

recirculation zones inside the roughness cavities rather than 

the boundary layer would be the controlling parameter for flow behavior.

The earliest comprehensive work on parallel plate flow of water was 

conducted by Lomize (1951). He studied the effect of 

roughness, and aperture variability. Similar experimental studies were 

performed by Louis (1969) with nearly identical results. 

which identified five distinct flow regions was formulated from 

5). 

Flow regime chart showing flow in cracks with varying degree of 
roughness (Louis, 1969). 

Reynolds number and relative roughness is defined 

Relative Roughness
hD

ε=
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Under hydraulically 

recirculation zones inside the roughness cavities rather than 

the controlling parameter for flow behavior. 

The earliest comprehensive work on parallel plate flow of water was 

 aperture, surface 

roughness, and aperture variability. Similar experimental studies were also 

esults. After that flow 

was formulated from 

 

th varying degree of 

Reynolds number and relative roughness is defined 

(2.10)
 

(2.11)
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Where :	is average asperity height or absolute roughness and ;< is hydraulic 

radius of the crack which is equal to 2
. For hydraulically smooth condition, 

the relative roughness is less than 0.033 and transition from laminar to 

turbulent flow occurs when Reynolds number is approximately equal to 

2300. Louis (1969) also developed relationships between velocity � and 

hydraulic gradient =	for these regimes in the form 

nv KJ= −  (2.12) 

The values of hydraulic conductivity 
 and exponent >are given in the table 

2.1 for different flow conditions. 

 

Table 2.1 Values of Hydraulic Conductivity ?  and exponent @  (Louis, 
1969). 

Hydraulic 

Zone 
Hydraulic Conductivity, ? Exponent, @ 

Flow 

Condition 

I 
�
#
12� 1.0 Laminar 

II 
1

 A

�
0.079 D

2
�E

�.#F 
GH
I J⁄

 
4
7 Turbulent 

III 4L�MN� O 3.7Q ;<⁄ R √
 0.5 Turbulent 

IV 
�
#

12�T1 + 8.8�Q ;<⁄ �".FU 1.0 Laminar 

V 4L�MN� O 1.9Q ;<⁄ R √
 0.5 Turbulent 

 

For zone IV, nearly same equation was obtained by Witherspoon et. al. 

(1980). These equations have also been discussed by Wittke (1990). 

Illangaskareet.al. (1992) developed a finite element computer programme, 

called CRFLOOD, to compute uplift pressure distribution along the cracks of 

the concrete gravity dams for all types of flow.  
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2.2 Fracture Mechanics in Concrete Structures 

There are three approaches i.e. linear elastic fracture mechanics (LEFM), non-

linear elastic fracture mechanics (NLFM) and energy criterion generally 

applied to study the fracture problems in concrete structures. LEFM and 

energy approaches are precludes for understanding the fracture 

phenomenon. NLFM approach is important due to presence of fracture 

process zone (FPZ) near the crack tip. 

In LEFM, the equations of elasticity and Airy stress functions are used to 

describe the stress and displacement field near the crack tip. For two-

dimensional (2-D) problems in polar coordinates, the bi-harmonic Airy stress 

equation and related stress fields are written in terms of Airy functions (Shi, 

2009).These set of equations are supplemented by constitutive relations for 

plane stress and plane strain conditions and solved for stress and 

displacement field under given boundary conditions. 

Williams (1952, 1957) solutions of elastic stress fields to a traction free edge-

cracked problems revealed crack tip stress singularity and played an 

important role in the early development of LEFM. After that, complex stress 

function approaches (Westergaad, 1939; Muskhelishvili, 1953) were used to 

solve Airy equation to find the stress and displacement fields near the crack 

tip for all three independent modes of deformation at crack tip (Fig.2.6). 

Stress field solution near the crack tip for each mode of deformation can be 

expressed as (Shi, 2009). 

0 0

0

1
( )

2
ij ij
m mK fm

r
σ θ

π
=   (2.13) 
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Where  V� = W, WW, WWW
is the trigonometric function. Fig

components stress field near the crack tip.

 

Fig.2.6. Three independent mod

 

Fig.2.7. Stress field at crack tip C, showing rectangular and polar
coordinate components.

 

Above equation clearly shows the existence of infinite stresses at crack tip, 

known as inverse-square

reality. However, Irwin (1957) envisioned the physical significance of the 

constants contained in th

factor (SIF) to characterize the singularity at the crack tip, which turned out 

to be one of the most important concepts in fracture mechanics. 

intensity factors for all the three modes 

  

WWW are the modes of deformations,  X, Y �

is the trigonometric function. Fig.2.7 shows the rectangular and polar 

components stress field near the crack tip. 

Three independent modes of deformation at crack tip (
 
 

Stress field at crack tip C, showing rectangular and polar
coordinate components. 

Above equation clearly shows the existence of infinite stresses at crack tip, 

square-root singularity, which does not reflect the physical 

reality. However, Irwin (1957) envisioned the physical significance of the 

constants contained in these solutions and coined the term stress intensity 

factor (SIF) to characterize the singularity at the crack tip, which turned out 

to be one of the most important concepts in fracture mechanics. 

for all the three modes of crack deformation 
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es of deformation at crack tip (Shi, 2009). 
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Above equation clearly shows the existence of infinite stresses at crack tip, 

root singularity, which does not reflect the physical 

reality. However, Irwin (1957) envisioned the physical significance of the 

ese solutions and coined the term stress intensity 

factor (SIF) to characterize the singularity at the crack tip, which turned out 

to be one of the most important concepts in fracture mechanics. These stress 

crack deformation is defined in Shi 
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(2009). Analytical and numerical methods for calculating SIF have been 

extensively discussed in many text books of fracture mechanics (e.g. Broek, 

1984; Anderson, 2005) and hand books (e.g. Tada et. al. 2000) for different 

crack geometries and loading conditions. SIF is a measure of all stresses and 

strains. Crack extension will occur when the stresses and strains at the crack 

tip reach a critical value. This means that fracture must be expected to occur 

when SIF reaches a critical value called critical stress intensity factor or 

fracture toughness. 

With the crack-tip stress and displacement field now being completely 

defined in terms of SIF, an energy description of the fracture process needs to 

be described using Griffith’s (1921, 1925) fracture theory. The Griffith energy 

criterion for fracture states that crack growth can occur if the energy required 

to form an additional crack can just be provided by the system. 

Griffith energy balance for an incremental increase in the crack area 

	_�	(Anderson, 2005), under equilibrium conditions, can be expressed as 

0sT dWdE dП

dA dA dA
= + =   (2.14) 

Where `a is total energy; П is potential energy, and bc is the work required 

to create new surfaces. 

Irwin (1956) defined an energy release rate (also called crack driving force) d 

as d � −
eП

ef
. Similarly the term  

egh

ef
  is called crack resistance force (Broek, 

1984) and denoted by symbol i. The crack extension occurs when  d reaches 

a critical value called fracture toughness (Anderson, 2005). 

But crack growth may be stable or unstable, depending on how d and i vary 

with crack size. The condition for stable and unstable crack growth are  

ej

ef
≤

el

ef
  and  

ej

ef
>

el

ef
  respectively. 
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In LEFM, d  is calculated from elastic energy and is called elastic energy 

release rate. The relation between 

[e.g. Anderson, 2005). As an example for mode

written as d �
mn
o

p′
;

`′ � `/�1 − ��
#�  for plane

techniques are used in LEFM to compute the fracture energy 

To remove the crack tip singularity in the above equations, it 

take into account inelastic material behavior, such as plasticity in metals and 

fracture process zone (FPZ) in concrete

to the crack tip. 

aggregates and cement pastes bonded together at the interface, and the 

material is inherently weak in tension due to the limited bonding strength 

and various preexis

the matrix. Under external loading, an inelastic zone known as

process zone (Fig.2.

failure mechanisms.

 

Fig.2.8. Fracture 
 

Hillerborg et. al. (1976) envisioned a fictitious crack in place of physical FPZ 

and subjected it to closure traction

strength) at the tip of the FPZ and decreases to zero 

  

is calculated from elastic energy and is called elastic energy 

release rate. The relation between d and 
 has been derived in the literature 

2005). As an example for mode-I this relationship can be 

; where `′ � `  (Young modulus) for plane

for plane strain and ��  is the Poisson ratio. Compliance 

techniques are used in LEFM to compute the fracture energy 

To remove the crack tip singularity in the above equations, it 

take into account inelastic material behavior, such as plasticity in metals and 

process zone (FPZ) in concrete by introducing inelastic

 Concrete is a heterogeneous material that consists of 

and cement pastes bonded together at the interface, and the 

material is inherently weak in tension due to the limited bonding strength 

and various preexisting micro cracks and flaws formed during hardening  of 

the matrix. Under external loading, an inelastic zone known as

ig.2.8) at the crack tip is extensively developed due to micro

failure mechanisms. 

Fracture Process Zone (FPZ) in concrete (Shi

al. (1976) envisioned a fictitious crack in place of physical FPZ 

and subjected it to closure traction. The closure stress is maximum (tensile 

strength) at the tip of the FPZ and decreases to zero at a point along the 
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is calculated from elastic energy and is called elastic energy 

has been derived in the literature 
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To remove the crack tip singularity in the above equations, it is necessary to 
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where the crack opening displacement (COD) reaches its critical value

beyond which an open crack forms. Known as tension

phenomenon, the relation between the closu

fracture energy of concrete

inside the FPZ when fracture takes place in concrete.

relationship of a continuous material, the tension softening law is the 

constitutive relationship for material in the FPZ that describes the 

transitional material beha

state (Fig.2.9). The area enclosed by this tension softening curve with 

horizontal axis is the fracture energy

softening relation of concrete possesses two distinctive

descending slope caused by the rapid loss of tensile strength in the initial 

stage of softening and (ii) a long tail with the increasing COD.

 

Fig.2.9. The relation between the tensile s
(Shi, 2009).

 

The choice of tension softening curve influences the prediction of structural 

response significantly

this curve, including linear (Hillerborg et.

Wittman, 1986; Figueira

trilinear (Liaw et. al. 

  

opening displacement (COD) reaches its critical value

beyond which an open crack forms. Known as tension

phenomenon, the relation between the closure stress and the COD with

fracture energy of concrete completely defines the local material b

inside the FPZ when fracture takes place in concrete. Just like the constitutive 

relationship of a continuous material, the tension softening law is the 

constitutive relationship for material in the FPZ that describes the 

transitional material behavior from continuous state to the discontinuous 

The area enclosed by this tension softening curve with 

horizontal axis is the fracture energy d. As shown in the Fig

softening relation of concrete possesses two distinctive 

descending slope caused by the rapid loss of tensile strength in the initial 

stage of softening and (ii) a long tail with the increasing COD.

The relation between the tensile stress and the COD along the FPZ 
2009). 

choice of tension softening curve influences the prediction of structural 

response significantly, and local fracture behavior. Many different shapes o

this curve, including linear (Hillerborg et. al. 1976), bilinear (

Figueiras and Owen, 1984; CEB-FIP Model Code, 

trilinear (Liaw et. al. 1990), exponential (Footer et. al. 1986;
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opening displacement (COD) reaches its critical value 

beyond which an open crack forms. Known as tension-softening 

re stress and the COD with the 

local material behavior 
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relationship of a continuous material, the tension softening law is the 

constitutive relationship for material in the FPZ that describes the 

te to the discontinuous 

The area enclosed by this tension softening curve with 

. As shown in the Fig.2.9, the tension-

 features: (i) the 

descending slope caused by the rapid loss of tensile strength in the initial 

stage of softening and (ii) a long tail with the increasing COD. 

 
tress and the COD along the FPZ 

choice of tension softening curve influences the prediction of structural 

and local fracture behavior. Many different shapes of 

, bilinear (Roelfstra and 

FIP Model Code, 1990), 

; Reinhardt, 1985; 



Literature Review  25  

 

Gopalaratnam and Shah, 1985; Cedolin et. al. 1987), and power (Du et. al. 

1990) functions have been reported in the literatures. 

 

2.3 Estimation of Crack Location and Residual Crack Mouth 

Opening Displacement 

Historical (Hansen and Roehm, 1979; ICOLD, 2001), experimental (NRC, 

1990; Donolon and Hall, 1991; Lin et. al. 1993) and numerical (Leger and 

Leclerc, 1996) evidences have shown that gravity dams subjected to strong 

earthquake ground motions are likely to develop cracks at slope changing 

points of upstream and downstream face and also near the foundation of 

concrete gravity dams. Kanenawa et. al (2004) analyzed the FEM model of a 

100 m concrete gravity dam under deadweight, static hydrostatic pressure 

and different seismic loading for location of crack. They also studied the 

effect of seismic acceleration, tensile strength and fracture energy on crack 

length. They concluded that the cracks tend to occur in the bottom of the 

dam and near the slope changing point of upstream face of the concrete 

gravity dam. For given fracture energy and earthquake acceleration, they 

found that the relationship between crack length and tensile strength is 

almost linear.  

The crack wall motion occurs during earthquake or reservoir level variations. 

A complete hydraulic closure of crack walls during its motion under the 

influence of varying reservoir level is almost impossible due to crack wall 

asperities and existence of free sedimentary material (local crushing of 

concrete material from crack wall).  Existence of residual crack mouth 

opening displacement (CMOD) was reported by EPRI (1995) during their 

wedge- splitting (WS) experiment to evaluate the various fracture 

parameters. Javanmardi et. al. (2005a) showed that this residual crack 

opening may be taken as 0.5 mm for structural concrete. However, the 

residual crack opening in mass concrete used in concrete gravity dam is not 
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found in the literatures. Overturning moment under the influence of dead 

storage reservoir level always act on concrete gravity dams which increases 

the residual crack opening by more than 0.5 mm. This increased residual 

crack opening can be estimated by following formula assuming linear elastic 

behavior of the mass concrete: � � 
�
\r
′ ; where, 	�  is the uniform pressure 

over the crack which may be taken as equal to reservoir pressure; 
�  is the 

normal stiffness and  
\r
′   is the increased residual crack opening. The final 

residual crack opening 
\r  is then calculated after adding 0.5mm to 

increased residual crack opening. 

 

2.4 Applicability of LEFM and Estimate of Fracture Toughness 

in Cracked Concrete Gravity Dams 

Concrete dams are often referenced as a major application of fracture 

mechanics, however little work has been performed to evaluate the fracture 

properties of dam concrete. Most of the research works carried out, on the 

fracture of concrete, has concentrated on laboratory testing of small 

specimens of structural concrete. Based on these test results, a basic 

understanding of the fracture processes occurring in concrete has been 

developed. The most reliable technique for fracture toughness (denoted by 


st) determination would be based on field testing. However, appropriate 

experimental techniques have not yet been developed. The second 

recommended approach is based on recovered dam-concrete cores, using a 

technique described in Bruhwiler (1991) and evaluating the fracture 

toughness using the compliance method. Under third approach, the fracture 

toughness could be extrapolated from the size effect law, preferably on the 

basis of geometrically identical specimens, which may be difficult for 

specimens recovered from structures. 

The size effect law (SEL) was first proposed by Bazant (1984, 1993) and 

Carpinteri (1984) for fractured concrete structures. Bazant (1993) developed a 



Literature Review  27  

 

graph between nominal strength  7u  and reference structural size  ;  based 

on SEL and dimensional analysis for cracked as well as continuum 

structures. 

In the plot of MN�	7u  versus MN�	; , the linear-elastic fracture mechanics 

failures are represented by a straight line of slope - 1/2, while all stress- or 

strain-based failure criteria correspond to a horizontal line. Some studies 

(Bazant, 1983, 1984, 1987; Bazant and Pfeiffer, 1987; Bazant and Kazemi, 1990) 

have shown that the scaling law represents a gradual transition from the 

strength theory to LEFM. The transition curve was experimentally obtained 

by Walsh (1979) for notched three-point-bend (TPB) specimen. This curve 

approaches asymptotically the horizontal line for the strength theory when 

the size is becoming very small and the inclined straight line for LEFM when 

the size is becoming very large. A general exact expression for this curve 

cannot be obtained, however, under certain simplifying assumptions the 

Bazant (1983, 1984) derived an equation for it. 

 Based on laboratory Wedge-split (WS) test data and size- effect laws (SEL), 

Bruhwiler and Souma (1991) concluded that the SEL were valid with respect 

to specimen sizes and it can be used to extrapolate a fracture toughness 

(critical stress intensity factor, CSIF) value for infinitely large specimens with 

characteristic structural dimension taken as thickness of a dam through 

which a potential crack would propagate. However, dependency on 

aggregate sizes of concrete was found to be invalid. Using Bazant (1984) 

brittleness, Carpinteri (1982) brittleness and Hillorborg (1978) characteristic 

length models, Bruhwiler and Souma (1991) showed that the minimum 

structural dimension for LEFM validity is 25 m and models accounting for 

the fracture process zone (FPZ) should be used in the fracture analysis of 

arch and buttress dams as well as in the upper part of gravity dams. 

However, LEFM is applicable primarily for the bottom part of large gravity 
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dams. They also reported that compliance method based fracture toughness 

value (Souma, 1991) is more appropriate for engineering uses. 

An expression for scale factor associated with SIF (Broz et.al. 1991) can be 

derived using LEFM based SIF,  
s  (Broek, 1986). 

0I uK Lω σ π=   (2.15) 

Where  v� is some numerical correction factor that takes into account loading 

conditions, boundary conditions, and specimen geometry;  7w   is uniform 

boundary stress acting on the boundary and  x  is the corresponding crack 

length. Designating  -  for prototype and  y  for model, scaling law can be 

written as 

( )
( )

0

0

I P uPP P

I M uM MM

K L

K L

ω σ
ω σ

   
=     
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  (2.16) 

Assuming 
z]{

z]|
�

}~{

}~|
= 1 and denoting 

�{

�|
� )�  (linear dimension) above 

equation can be written as 

( )
( ) 0

I P

I M

K

K
λ=   (2.17) 

Same scale factor for SIF can be derived using Bukingham  �-theorem to 

perform a dimensional analysis. 

Plizzari and Souma (1995) performed centrifuge modeling to simulate the 

gravitational effects on crack growth in concrete gravity dams. The numerical 

values of equivalent fracture toughness with uplift pressure of 0.53Mpa were 

obtained from finite element analysis for maximum water level for four 

specimens under constant scale factor )� � 87.  In their experiment, �
s�� 

range reported is 0.74-0.88Mpa.m1/2. So using above scaling law range of 

�
s��   is calculated as 6.90-8.20Mpa.m1/2. But they have not reported the 

effect of concrete tensile strength on fracture toughness. 
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Plizzari (1997) performed a LEFM based parametric study of concrete gravity 

dam with crack on dam-foundation interface. He expressed the SIF for 

opening mode in non-dimensional form. As an example parametric study 

under full uplift pressure conditions in the crack located at dam-foundation 

interface of a triangularly shaped dam were performed using MERLIN 

(Reich et. al. 1994) software. For chosen values of non-dimensional 

parameters, Plizzari (1997) reported the range of SIF as 1.25-8.2Mpa.m1/2 for 

dam base width in the range of 20-100 m. But this model cannot be applied 

for general dam profile and crack in the body of the dam. 

Souma et.al (1991) and EPRI (1995) conducted WS test on mass concrete and 

used the data to determine the SIF using finite element (FE) modeling of 

compliance method used in LEFM and suggested extrapolating the result by 

using SEL. Souma et.al (1991) proposed a method to calculate the fracture 

toughness using WS test data in FE modeling of compliance method used in 

LEFM, assuming complete crack closure during loading-unloading cycle of 

test specimens which was at variance with reported experimental results. For 

mass concrete with 76 mm maximum aggregate size specimens, they 

obtained an average fracture toughness value of 1.04Mpa.m1/2 without uplift 

pressure. EPRI (1995) conducted the WS test on mass concrete with 76mm 

maximum aggregate size specimens and calculated the fracture toughness 

values using same method as used by Souma et. al. (1991) under both with 

and without full uplift conditions and reported an average of maximum 

value of fracture toughness as 1.11Mpa.m1/2 under full uplift pressure of 

0.1Mpa and concrete strength of 1.91Mpa. These test results for mass 

concrete with or without maximum aggregate size and uplift pressure is 

summarized in the table 2.2. 
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Table 2.2. Values of fracture toughness for mass concrete as reported in the 

literature 

Authors Test 

Max.Max. 

aggr.size 

(mm) 

?��(Witho

ut uplift) 

Mpa.m1/2 

?��(With uplift)Mpa.m1/2 

Uplift 

Pressure of 

0.1 Mpa 

Uplift 

Pressure of 

0.53 Mpa 

(1) (2) (3) (4) (5) (6) 

Souma et. al. 

(1995) 
WS 76 1.04 - - 

Plizzari and 

Souma (1995) 
Centrifuge - 0.63 - 0.83 

EPRI (1995) WS 76 1.19 1.11  

 

Table 2.2, shows that the fracture toughness values without uplift pressure is 

quite low in centrifuge modeling of Plizzari and Souma (1995) compared to 

WS tested corresponding values of Souma et. al. (1991) and EPRI (1995). 

Also, as reported by EPRI (1995), the increased uplift pressure reduces the 

fracture toughness (Table 2.2). 

Under cyclic loading (fatigue), a cyclic plastic zone forms at the crack tip, and 

the growing crack leaves behind a plastic wake. If the plastic zone is 

sufficiently smaller than elastic singularity zone, then in the presence of 

constant amplitude cyclic stress intensity, the crack growth rate (Anderson, 

2005) is dictated by 

1 0 ( , )d

dL
f K R

dN
= ∆   (2.18) 

Where, ∆
e � �
\�� − 
\Z��, i� � 
\Z� 
\��⁄ , 
\�� and  
\Z� are maximum 

and minimum fracture toughness values in each cycle,  and � is the number 

of cycles. 
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Under variable amplitude loading, particularly when there are occasional 

overloads and under loads during the loading history, the fatigue crack 

growth analyses become considerably more complicated. Consequently, 

equations of crack growth rate under constant amplitude are applied 

whenever possible. It must be recognized, however, that such analyses are 

potentially subjected to error in the case of variable amplitude loading. 

The sigmoidal curve, obtained from schematic log-log plot of  _x/_� versus 

∆
e, contains three distinct regions. At intermediate  ∆
e values, the curve is 

linear, but the crack growth rate deviates from the linear trend at high and 

low ∆
e levels. At the low end, _x/_� approaches zero at a threshold ∆
e, 

below which the crack will not grow.  The linear region of the log-log plot 

can be described by Paris Law (Anderson, 2005). In concrete structures the 

amplitude of cyclic loading rarely remains constant during the service 

period. Concrete like quasi-brittle materials when subjected to repeated loads 

with different amplitude, exhibits complicated behavior due to the presence 

of large size process zone ahead of the crack tip. Softening curves were 

obtained experimentally by Slowik et. al. (1996), based on a cyclic load, with 

pre-defined spike amplitude and frequency.  

Very few attempts have been made to predict the crack growth analytically 

in plane concrete when subjected to variable amplitude fatigue loading. 

Slowik et. al. (1996) have proposed an empirical law to study the crack 

propagation, based on linear elastic fracture mechanics (LEFM) concept. For 

concrete, the knowledge of fatigue fracture is limited. This is due to the fact 

that fracture behavior in concrete is more complicated because of its 

heterogeneous nature and presence of large size fracture process zone (FPZ) 

at the crack tip. The crack propagation study under fatigue loading began 

with the well-known Paris law which is found to exhibit a weak form of 

scaling. The earlier assumption about the Paris law coefficients as material 

constants has been proved to be invalid by various workers (e.g. Spagnoli, 
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2004; Carpinteriand Paggi, 2007; Ciavarella et. al. 2008; Ray and Chandra 

Kishen, 2011). One of the earliest attempts, made by Bazant and Xu (1991), 

who introduced the size effect into the Paris law using the size dependent 

fracture toughness. Recently, various authors (e.g. Spagnoli, 2004; Carpinteri 

et. al. 2009; Carpinteri and Spagnoli 2004; Ciavarella et. al. 2008; Carpinteri 

and Paggi, 2007, 2009; Paggi, 2009 and Ray and Chandra, 2010, 2011) have 

investigated the fatigue behavior of concrete by adopting dimensional 

analysis and self-similarity approach.  

 

2.5 Crack Mouth Opening Displacement (CMOD) Rate  

Fracture properties are affected by loading rate. The loading rate can be 

categorized as high and low. Studies of effect on fracture properties have 

been conducted by Mindess and Shah (1986) under high loading rate, in 

which the maximum load is reached in one second. Under this high loading 

rate, the creep effect of the material in fracture process zone (Shah and 

Chandra, 1970; Wittmann and Zaitsev1971; Liu et. al. 1989) cannot be 

accounted. Bazant and Gettu (1992) conducted three-point bending  

experiments to obtain the load versus CMOD and load versus load-line 

displacement curves under high and slow loading rates. They observed that 

peak load of faster curve is more than that of lower rate. Post-peak curve in 

faster rate is steeper than slower rate in load deflection curve. They 

concluded that difference in peak values in load-CMOD curve is the creep 

phenomenon occurring in the FPZ, while same phenomenon in the bulk of 

specimen is responsible for difference in the steepness of the post-peak 

curves under load-deflection plot. The detrimental effect of moisture is more 

significant at slower rates (Harsh et. al. 1990; Rossi and Boulay, 1990). The 

wedge splitting tests on dam concrete by Bruhwiller and Wittmann (1990) 

were carried out to study the influence of CMOD-rate on the specific fracture 
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energy and the strain softening diagram under fast monotonic loading rate. 

They proposed the following CMOD-rate relation. 

0
.

( )mm

n
b c b=   (2.19) 

Where, 
�\  is CMOD rate,  
\   is CMOD and �  and >�  are constants. The 

main drawback of the experiment is that specimen is provided with a 

longitudinal reinforcement in order to prevent shear failure of the 

cantilevers. Bazant and Gettu (1990) have derived the material properties 

using size-effect law. The same has not been reported by Bruhwiller and 

Wittmann (1990). Therefore, applicability of above equation to dams needs 

further investigation. Studies of fracture properties of dam concrete (He et. 

al. 1992) show that fracture behavior of dam concrete agrees well with size 

effect law and as the loading rate decreases, the fracture behavior becomes 

closer to LEFM. It is interesting to note that for long time loading, the 

concretes are more brittle than for short time loading. Because the stress 

relaxation in notched concrete specimens are very significant due to creep in 

fracture process zone (FPZ) as compared to creep in the bulk of concrete 

specimens (Bazant and Gettu, 1992). However, the effects of loading rate on 

fracture properties of concrete have been studied by various workers (e.g. 

Liu et. al. 1989; Mindess, 1985; Reinhardt, 1985, 1986; Wittmann, 1985; Ross 

and Kuennen, 1989) and it is observed that the creep is non-linear within the 

fracture process zone. Bazant (1994) derived the CMOD rate using activation 

theory for creep in FPZ. At constant temperature, his equation can be written 

as 

( ){ }0 0 0sinhm br mb C k f bσ= −  
&   (2.20) 

Where 	/�   and 			��  are constants, 7 r  is crack bridging stress, .��
\�  is a 

function of 
\ . If 7 r < .��
\  then loading and reloading (fatigue) is not 

considered. De Borst et. al. (1993) proposed a simple and alternative 
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expression, in which the cracking process is considered to be viscous and 

activation controlled process is described with a viscosity term which acts 

only in FPZ. However Van Zil et. al. (2001) showed that this alternative 

expression is unable to reflect the fatigue effect over the entire range of 

loading rates. Wu and Bazant (1993), Chaimoon et.al. (2008) and Giovanni 

(2009) applied the rate dependent fracture model with creep model for bulk 

of material in the study of crack propagation in quasi-brittle materials. They 

concluded that inclusion of both creep in the bulk of specimen and rate 

dependence of crack opening is important and if only one of these 

phenomenon is modeled, good agreement with experimental data cannot be 

obtained. Carpinteri et.al. (1997) conducted tensile and flexural creep rupture 

tests of concrete specimens to study the creep CMOD versus time behavior. 

They concluded that both tensile and flexural creep CMOD behavior are 

almost same at given sustained load level and are similar to creep behaviors 

in metals. 

 

2.6 Transient Uplift Pressure Modeling in Crack 

The studies of concrete gravity dams in past decades were mainly focused to 

address the fracture failure of the materials and its influence on dynamic 

response of the dam without much concern for safety considerations 

(Bhattacharjee and Leger, 1993; Ayari and Souma, 1990; El-Aidi and Hall, 

1989). Further, study of the concrete gravity dams with penetrated cracks 

attracted much attention to some of the researchers (Peakau and Cui, 2004; 

Peakau and Zhu, 2006). 

A static triangular uplift pressure at the base of the dam with no-drainage 

condition is assumed in safety guidelines (ICOLD, 1986; USBR, 1987; USACE, 

1995). However, there are no unified considerations for uplift pressure 

developed during dynamic pressure variations in the reservoir when cracks 

develop either in the body or at the dam-foundation interface of the concrete 
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gravity dams. Chopra and Zhang (1991) and Chavez and Fenves (1995) have 

studied the safety of concrete gravity dam under seismic condition after 

assuming a constant triangular uplift pressure at the base of the dam with 

cracks. 

To consider the transient nature of the uplift pressure, Hall (1998) assumed 

that pressure at the mouth of the crack varies in accordance with hydro 

dynamic pressure due to dam reservoir interaction and uplift pressure 

remains constant with triangular variation. Zhang and Ohmachi (1998) used 

this model for seismic crack analysis without crack wall motion to validate 

experimental results of Ohmachi et. al. (1998). Yi et. al. (1997) developed a 

one dimensional fluid pressure relation for the growing crack in brittle 

materials under hydrodynamic pressure conditions and combined their 

results with fracture mechanics model to compute crack tip stress intensity. 

However, this model was developed for small crack length which is not 

applicable for the case of cracks in concrete gravity dams where crack lengths 

are much longer.  

There are only few experimental and theoretical studies for uplift pressure 

distribution in cracks during hydrodynamic loading. Slowik and Souma 

(1994) conducted dynamic wedge- splitting (WS) test to measure the water 

pressure during propagating cracks for slow and rapid opening velocities of 

crack walls. They observed that the water front and crack front velocities 

during slow opening were almost equal while the same are quite different 

during rapid wall movement. They also reported the results for sudden crack 

closing and cyclic opening and closing of existing cracks. Further their result 

indicates that in sudden crack closure case, the water is trapped in the crack 

resulting in a temporary over pressurization. This over pressurization 

induces additional stresses causing failure of the specimen. During cyclic 

opening and closing mode, pressure variations along the crack were different 

with maximum pressure (which was more than initial hydrostatic pressure) 
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reached during closing of crack walls. Slowik and Souma (2000) proposed a 

theoretical model for opening mode considering only laminar flow in the 

cracks. Laminar flow based models is used extensively by researchers for 

hydromechanical coupling analysis of rock masses (e.g. Jing et. al. 2001). 

Tinawi and Guizani (1994) developed a theoretical model for hydrodynamic 

model for preexisting cracks in concrete gravity dams using laminar flow in 

cracks. These methods are not applicable for uplift pressure computations in 

cracks of concrete dams because turbulent and unsteady flows occur in 

cracks during hydrodynamic condition. Independent experimental works by 

Louis (1968) and Lomiz (1951) provided almost identical results for 

relationships between velocity and hydraulic gradient in cracks after taking 

into account the different flow conditions ( i. e. turbulent/laminar) and crack 

wall roughness. Illangaskare et. al. (1992) developed a finite element 

computer programme, called CRFLOOD, to compute uplift pressure 

distribution along the cracks of the concrete gravity dams for all types of 

flow characterized by Louis (1968). 

 

2.7 Dam-crown Deflection 

In the design of dam it is generally assumed that there is no tensile stress 

across the any section of the dam. It means there is no possibility of 

occurrence of cracks in the dam body. By assuming so, it is believed that no-

tension plastic design of the dam is on safer side. However, this has been 

never proved mathematically (Bazant, 1994). Bazant (1994) analyzed 

rectangular dam geometry and showed that there exists a critical size of the 

dam above which fracture mechanics gives a smaller failure load than 

classical no-tension plastic analysis. Gioia et. al. (1992) analyzed the problem 

in greater details using finite element formulations of complex dam 

geometries. They showed that differences between plasticity and fracture 

mechanics are more pronounced for the case when water penetrates into the 

crack and applies pressure on the concrete. Some results are taken from Gioia 
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et. al. (1992). Fig.2.10 shows that fracture mechanics yields a lower resistance, 

for the same horizontal displacement at the top of the dam, than plasticity 

solution with negligible tensile strength and water pressure on a pre

crack. Fig.2.11 shows a comparison of plasticity solution when realistic 

values of tensile strength and critical stress intensity factors are compared.

 

Fig.2.10. Left: Comparison of plots of overflow height of water versus 
horizontal displacement at the top of dam for no
analysis of a pre
hydrostatic pressure is considered on pre
dam cross section). Top right: Ottosen yield surface used. Lower 
right: Dam analyzed and 

 

Fig.2.11. Comparison of overflow
fracture analysis using realistic values of tensile strength and 
fracture toughness (Gioia et. al. 1992)

 

  

. Fig.2.10 shows that fracture mechanics yields a lower resistance, 

for the same horizontal displacement at the top of the dam, than plasticity 

gligible tensile strength and water pressure on a pre

crack. Fig.2.11 shows a comparison of plasticity solution when realistic 

values of tensile strength and critical stress intensity factors are compared.

Left: Comparison of plots of overflow height of water versus 
horizontal displacement at the top of dam for no
analysis of a pre-cracked dam and for fracture analysis (full 
hydrostatic pressure is considered on pre-cracked portion of the 

cross section). Top right: Ottosen yield surface used. Lower 
right: Dam analyzed and meshes (Gioia et. al. 1992)

Comparison of overflow-displacement curves for plastic and 
fracture analysis using realistic values of tensile strength and 

ture toughness (Gioia et. al. 1992). 
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. Fig.2.10 shows that fracture mechanics yields a lower resistance, 

for the same horizontal displacement at the top of the dam, than plasticity 

gligible tensile strength and water pressure on a pre-existing 

crack. Fig.2.11 shows a comparison of plasticity solution when realistic 

values of tensile strength and critical stress intensity factors are compared. 

 

Left: Comparison of plots of overflow height of water versus 
horizontal displacement at the top of dam for no-tension plastic 

cracked dam and for fracture analysis (full 
cracked portion of the 

cross section). Top right: Ottosen yield surface used. Lower 
(Gioia et. al. 1992). 

 
displacement curves for plastic and 

fracture analysis using realistic values of tensile strength and 
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However, the effect of transient pressure variation along the crack on dam-

crown deflection has not been reported in the above studies.  

 

2.8 Dam Stability against Sliding 

A static triangular uplift pressure at the base of the dam with no-drainage 

condition is assumed in safety guidelines (ICOLD, 1986; USBR, 1987; USACE, 

1995). Review of dam safety guidelines for assumptions of uplift pressure in 

cracks during seismic condition are summarized below. 

• USBR (1987) and CDSA (1997) recommend a zero uplift pressure in 

cracks of the concrete gravity dam. Its recommendation is based on 

the study of rapid opening and closing of the cracks which do not 

allow water to penetrate into the crack and hence pressure does not 

develop there. 

• ICOLD (1986) assume that uplift pressure in the crack is equal to 

reservoir head. 

• USACE (1995) and FERC (2002) recommend that uplift pressure in 

crack should be assumed to be unaffected by the earthquake. 

• IS 6512 (2000) is silent about the uplift forces in cracks and its 

distribution during earthquake conditions. 

Further, Chopra and Zhang (1991) and Chavez and Fenves (1995) studied the 

safety of concrete gravity dam under seismic condition after assuming a 

constant triangular uplift pressure at the base of the dam with crack. 

However, there are no unified considerations for uplift pressure developed 

during dynamic pressure variations in the reservoir when cracks develop 

either in the body or at the dam-foundation interface of the concrete gravity 

dams. 
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2.9 Objectives of Present Research Work 

The objectives of the present research work are as follows. 

• To develop a model for transient uplift pressure in cracks of constant 

length over given opening-closing cycle of the crack mouth under 

constant crack mouth pressure. 

• Calculation of transient uplift pressure, under constant crack mouth 

pressure, using MATLAB software and its validation from the 

available data in literature. 

• To propose crack-mouth-opening-displacement (CMOD) rate 

generating functions, caused due to creep effect in fracture process 

zone (FPZ) of the crack based on the results available in the literatures. 

• To develop the model for calculating the transient uplift pressure in 

cracks of concrete gravity dam under varying reservoir levels. 

• Calculation of dam-crown deflection under varying reservoir level 

using plane strain finite element progromme in ANSYS and its 

validation from field data. 

• Calculation of factor of safety in sliding using result of uplift pressure 

in cracks for present study and its comparison to USACE 

recommendations. 

 

2.10 Scope of Present Study 

The research work is focused on the development of a suitable uplift 

pressure, and dam-crown deflection modeling and applying it to predict the 

safety of concrete gravity dam. The research is limited to two-dimensional (2-

D) analysis of concrete gravity dams. The following areas are not covered in 

this research. 



Literature Review  40  

 

• Dynamic cracking. 

• The coupling between different crack modes, and different cracks. 

• Behavior of creep and shrinkage in the body of the dam. 

 

2.11 Summary 

Studies of fractures are important to understand and predict a variety of 

hydraulic and mechanical phenomenon. Flow field in the single crack is 

obtained using combined solution of mass and momentum equations. One 

dimensional (1-D) mass conservation equation without sink or source is used 

to derive the discharge in the cracks of concrete gravity dams under certain 

simplifying assumptions. However for two phase flow, the continuity 

equation is supplemented with additional equations describing the 

constitutive relation of effective saturation of wetting phase. Because of 

presence of advective acceleration terms, momentum equations are difficult 

to solve.  Therefore, Stokes equation were derived after neglecting the 

advective terms in momentum equations .To overcome the computational 

difficulty of Stokes equation, Reynolds equation, based on the lubrication 

theory, were used but found limited applications because, the solution of 

these equations overestimates the flow rate by as much as hundred percent. 

Most widely used conceptual model for fracture, known as local cubic law 

(LCL), is that of two smooth parallel walls separated by a uniform aperture. 

To simulate the flow in real cracks, the LCL equation has been modified to 

take into account the crack geometry, crack wall roughness and leakages. The 

LCL equation is found to be valid for laminar flow when Reynolds number is 

less than ten.  Lomize (1951) and Louis (1969) derived the momentum 

equations for both type (laminar and turbulent) of flow regimes and 

smooth/rough walls of the cracks. 

Linear, nonlinear and energy based fracture mechanics are applied to study 

the crack propagation in concrete structures. In linear elastic fracture 
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mechanics (LEFM), the solution of equations of elasticity and Airy stress 

functions for all modes of deformations at crack tip, shows the existence of 

infinite stress at crack tip. Irwin (1957) coined the term stress intensity factor 

(SIF) to characterize this singularity at the crack tip. The fracture is expected 

to occur when SIF reaches a critical value called critical stress intensity factor 

or fracture toughness. Griffith’s (1921, 1925) energy criterion for fracture led 

Irwin (1956) to define an energy release rate. The crack extension occurs 

when energy release rate reaches a critical value called fracture toughness. 

To remove the singularity at the crack tip, Hillerborg et. al. (1976) envisioned 

a fictitious crack in place of physical fracture process zone (FPZ). Known as 

tension-softening phenomenon, the relation between the closure stress and 

the crack opening displacement (COD) completely defines the local material 

behavior inside the FPZ when fracture takes place in concrete.  

Historical, experimental and numerical evidences have shown that gravity 

dams subjected to strong earthquake ground motions are likely to develop 

cracks at slope changing points of upstream and downstream face and also 

near the foundation of concrete gravity dams.  

The crack wall motion occurs during earthquake or reservoir level variations. 

A complete hydraulic closure of crack walls during its motion under the 

influence of varying reservoir level is almost impossible.  Literature study 

reveals that: (i) the size-effect law (SEL) is valid with respect to specimen 

sizes and it can be used to extrapolate a fracture toughness and (ii) the 

minimum structural dimension for LEFM validity is 25 m and models 

accounting for the fracture process zone (FPZ) should be used in the fracture 

analysis of arch and buttress dams as well as in the upper part of gravity 

dams. However, the determination of fracture toughness under fatigue and 

uplift condition is difficult and unpredictable. 

Various authors have found that creep phenomenon, active in the FPZ, is 

responsible for the crack mouth opening displacement (CMOD) rate. 
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The study for uplift pressure in cracks, under moving crack wall motion, has 

been reported by very less researchers. Dam-crown deflection and stability 

analysis, under transient uplift pressure in the cracks of concrete gravity 

dams, are not found in the literatures. On the basis of literature review, a set 

of inter-related research objectives has been framed to simulate the field data. 


